summaryrefslogtreecommitdiffstats
path: root/src/base/seq/seqAigCore.c
blob: ce4563f9b64cd781f5a7fb4f4411774447458371 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/**CFile****************************************************************

  FileName    [seqRetCore.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Construction and manipulation of sequential AIGs.]

  Synopsis    [The core of retiming procedures.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: seqRetCore.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "seqInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

/* 
    Retiming can be represented in three equivalent forms:
    - as a set of integer lags for each node (array of chars by node ID)
    - as a set of node numbers with lag for each, fwd and bwd (two arrays of Seq_RetStep_t_)
    - as a set of latch moves over the nodes, fwd and bwd (two arrays of node pointers Abc_Obj_t *)
*/

static void        Abc_ObjRetimeForward( Abc_Obj_t * pObj );
static int         Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtk, stmm_table * tTable, Vec_Int_t * vValues );
static void        Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable );
static void        Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel );

static void        Seq_NtkImplementRetimingForward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves );
static int         Seq_NtkImplementRetimingBackward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves, int fVerbose );
static void        Abc_ObjRetimeForward( Abc_Obj_t * pObj );
static int         Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtk, stmm_table * tTable, Vec_Int_t * vValues );
static void        Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable );
static void        Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel );

static Vec_Ptr_t * Abc_NtkUtilRetimingTry( Abc_Ntk_t * pNtk, int fForward );
static Vec_Ptr_t * Abc_NtkUtilRetimingGetMoves( Abc_Ntk_t * pNtk, Vec_Int_t * vSteps, int fForward );
static Vec_Int_t * Abc_NtkUtilRetimingSplit( Vec_Str_t * vLags, int fForward );
static void        Abc_ObjRetimeForwardTry( Abc_Obj_t * pObj, int nLatches );  
static void        Abc_ObjRetimeBackwardTry( Abc_Obj_t * pObj, int nLatches );
  

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Performs performs optimal delay retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_NtkSeqRetimeDelay( Abc_Ntk_t * pNtk, int nMaxIters, int fInitial, int fVerbose )
{
    Abc_Seq_t * p = pNtk->pManFunc;
    int RetValue;
    if ( !fInitial )
        Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
    // get the retiming lags
    p->nMaxIters = nMaxIters;
    if ( !Seq_AigRetimeDelayLags( pNtk, fVerbose ) )
        return;
    // implement this retiming
    RetValue = Seq_NtkImplementRetiming( pNtk, p->vLags, fVerbose );
    if ( RetValue == 0 )
        printf( "Retiming completed but initial state computation has failed.\n" );
}

/**Function*************************************************************

  Synopsis    [Performs most forward retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_NtkSeqRetimeForward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose )
{
    Vec_Ptr_t * vMoves;
    Abc_Obj_t * pNode;
    int i;
    if ( !fInitial )
        Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
    // get the forward moves
    vMoves = Abc_NtkUtilRetimingTry( pNtk, 1 );
    // undo the forward moves
    Vec_PtrForEachEntryReverse( Abc_Obj_t *, vMoves, pNode, i )
        Abc_ObjRetimeBackwardTry( pNode, 1 );
    // implement this forward retiming
    Seq_NtkImplementRetimingForward( pNtk, vMoves );
    Vec_PtrFree( vMoves ); 
}

/**Function*************************************************************

  Synopsis    [Performs most backward retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_NtkSeqRetimeBackward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose )
{
    Vec_Ptr_t * vMoves;
    Abc_Obj_t * pNode;
    int i, RetValue;
    if ( !fInitial )
        Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
    // get the backward moves
    vMoves = Abc_NtkUtilRetimingTry( pNtk, 0 );
    // undo the backward moves
    Vec_PtrForEachEntryReverse( Abc_Obj_t *, vMoves, pNode, i )
        Abc_ObjRetimeForwardTry( pNode, 1 );
    // implement this backward retiming
    RetValue = Seq_NtkImplementRetimingBackward( pNtk, vMoves, fVerbose );
    Vec_PtrFree( vMoves ); 
    if ( RetValue == 0 )
        printf( "Retiming completed but initial state computation has failed.\n" );
}




/**Function*************************************************************

  Synopsis    [Implements the retiming on the sequential AIG.]

  Description [Split the retiming into forward and backward.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Seq_NtkImplementRetiming( Abc_Ntk_t * pNtk, Vec_Str_t * vLags, int fVerbose )
{
    Vec_Int_t * vSteps;
    Vec_Ptr_t * vMoves;
    int RetValue;

    // forward retiming
    vSteps = Abc_NtkUtilRetimingSplit( vLags, 1 );
    // translate each set of steps into moves
    if ( fVerbose )
    printf( "The number of forward steps  = %6d.\n", Vec_IntSize(vSteps) );
    vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 1 );
    if ( fVerbose )
    printf( "The number of forward moves  = %6d.\n", Vec_PtrSize(vMoves) );
    // implement this retiming
    Seq_NtkImplementRetimingForward( pNtk, vMoves );
    Vec_IntFree( vSteps );
    Vec_PtrFree( vMoves );

    // backward retiming
    vSteps = Abc_NtkUtilRetimingSplit( vLags, 0 );
    // translate each set of steps into moves
    if ( fVerbose )
    printf( "The number of backward steps = %6d.\n", Vec_IntSize(vSteps) );
    vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 0 );
    if ( fVerbose )
    printf( "The number of backward moves = %6d.\n", Vec_PtrSize(vMoves) );
    // implement this retiming
    RetValue = Seq_NtkImplementRetimingBackward( pNtk, vMoves, fVerbose );
    Vec_IntFree( vSteps );
    Vec_PtrFree( vMoves );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Implements the given retiming on the sequential AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_NtkImplementRetimingForward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves )
{
    Abc_Obj_t * pNode;
    int i;
    Vec_PtrForEachEntry( Abc_Obj_t *, vMoves, pNode, i )
        Abc_ObjRetimeForward( pNode );
}

/**Function*************************************************************

  Synopsis    [Retimes node forward by one latch.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeForward( Abc_Obj_t * pObj )  
{
    Abc_Obj_t * pFanout;
    int Init0, Init1, Init, i;
    assert( Abc_ObjFaninNum(pObj) == 2 );
    assert( Seq_ObjFaninL0(pObj) >= 1 );
    assert( Seq_ObjFaninL1(pObj) >= 1 );
    // remove the init values from the fanins
    Init0 = Seq_NodeDeleteFirst( pObj, 0 ); 
    Init1 = Seq_NodeDeleteFirst( pObj, 1 );
    assert( Init0 != ABC_INIT_NONE );
    assert( Init1 != ABC_INIT_NONE );
    // take into account the complements in the node
    if ( Abc_ObjFaninC0(pObj) )
    {
        if ( Init0 == ABC_INIT_ZERO )
            Init0 = ABC_INIT_ONE;
        else if ( Init0 == ABC_INIT_ONE )
            Init0 = ABC_INIT_ZERO;
    }
    if ( Abc_ObjFaninC1(pObj) )
    {
        if ( Init1 == ABC_INIT_ZERO )
            Init1 = ABC_INIT_ONE;
        else if ( Init1 == ABC_INIT_ONE )
            Init1 = ABC_INIT_ZERO;
    }
    // compute the value at the output of the node
    if ( Init0 == ABC_INIT_ZERO || Init1 == ABC_INIT_ZERO )
        Init = ABC_INIT_ZERO;
    else if ( Init0 == ABC_INIT_ONE && Init1 == ABC_INIT_ONE )
        Init = ABC_INIT_ONE;
    else
        Init = ABC_INIT_DC;

    // make sure the label is clean
    Abc_ObjForEachFanout( pObj, pFanout, i )
        assert( pFanout->fMarkC == 0 );
    // add the init values to the fanouts
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        if ( pFanout->fMarkC )
            continue;
        pFanout->fMarkC = 1;
        if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
            Seq_NodeInsertLast( pFanout, Abc_ObjFanoutEdgeNum(pObj, pFanout), Init );
        else
        {
            assert( Abc_ObjFanin0(pFanout) == pObj );
            Seq_NodeInsertLast( pFanout, 0, Init );
            Seq_NodeInsertLast( pFanout, 1, Init );
        }
    }
    // clean the label
    Abc_ObjForEachFanout( pObj, pFanout, i )
        pFanout->fMarkC = 0;
}


/**Function*************************************************************

  Synopsis    [Implements the given retiming on the sequential AIG.]

  Description [Returns 0 of initial state computation fails.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Seq_NtkImplementRetimingBackward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves, int fVerbose )
{
    Seq_RetEdge_t RetEdge;
    stmm_table * tTable;
    stmm_generator * gen;
    Vec_Int_t * vValues;
    Abc_Ntk_t * pNtkProb, * pNtkMiter, * pNtkCnf;
    Abc_Obj_t * pNode, * pNodeNew;
    int * pModel, RetValue, i, clk;

    // return if the retiming is trivial
    if ( Vec_PtrSize(vMoves) == 0 )
        return 1;

    // create the network for the initial state computation
    // start the table and the array of PO values
    pNtkProb = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
    tTable   = stmm_init_table( stmm_numcmp, stmm_numhash );
    vValues  = Vec_IntAlloc( 100 );

    // perform the backward moves and build the network for initial state computation
    RetValue = 0;
    Vec_PtrForEachEntry( Abc_Obj_t *, vMoves, pNode, i )
        RetValue |= Abc_ObjRetimeBackward( pNode, pNtkProb, tTable, vValues );

    // add the PIs corresponding to the white spots
    stmm_foreach_item( tTable, gen, (char **)&RetEdge, (char **)&pNodeNew )
        Abc_ObjAddFanin( pNodeNew, Abc_NtkCreatePi(pNtkProb) );

    // add the PI/PO names
    Abc_NtkAddDummyPiNames( pNtkProb );
    Abc_NtkAddDummyPoNames( pNtkProb );

    // make sure everything is okay with the network structure
    if ( !Abc_NtkDoCheck( pNtkProb ) )
    {
        printf( "Seq_NtkImplementRetimingBackward: The internal network check has failed.\n" );
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        Abc_NtkDelete( pNtkProb );
        stmm_free_table( tTable );
        Vec_IntFree( vValues );
        return 0;
    }

    // check if conflict is found
    if ( RetValue )
    {
        printf( "Seq_NtkImplementRetimingBackward: A top level conflict is detected. DC latch values are used.\n" );
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        Abc_NtkDelete( pNtkProb );
        stmm_free_table( tTable );
        Vec_IntFree( vValues );
        return 0;
    }

    // get the miter cone
    pNtkMiter = Abc_NtkCreateTarget( pNtkProb, pNtkProb->vCos, vValues );
    Abc_NtkDelete( pNtkProb );
    Vec_IntFree( vValues );

    if ( fVerbose )
    printf( "The number of ANDs in the AIG = %5d.\n", Abc_NtkNodeNum(pNtkMiter) );

    // transform the miter into a logic network for efficient CNF construction
//    pNtkCnf = Abc_Ntk_Renode( pNtkMiter, 0, 100, 1, 0, 0 );
//    Abc_NtkDelete( pNtkMiter );
    pNtkCnf = pNtkMiter;

    // solve the miter
clk = clock();
//    RetValue = Abc_NtkMiterSat_OldAndRusty( pNtkCnf, 30, 0 );
    RetValue = Abc_NtkMiterSat( pNtkCnf, (sint64)500000, (sint64)50000000, 0, 0, NULL, NULL );
if ( fVerbose )
if ( clock() - clk > 100 )
{
PRT( "SAT solving time", clock() - clk );
}
    pModel = pNtkCnf->pModel;  pNtkCnf->pModel = NULL;
    Abc_NtkDelete( pNtkCnf );

    // analyze the result
    if ( RetValue == -1 || RetValue == 1 )
    {
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        if ( RetValue == 1 )
            printf( "Seq_NtkImplementRetimingBackward: The problem is unsatisfiable. DC latch values are used.\n" );
        else
            printf( "Seq_NtkImplementRetimingBackward: The SAT problem timed out. DC latch values are used.\n" );
        stmm_free_table( tTable );
        return 0;
    }

    // set the values of the latches
    Abc_NtkRetimeSetInitialValues( pNtk, tTable, pModel );
    stmm_free_table( tTable );
    free( pModel );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Retimes node backward by one latch.]

  Description [Constructs the problem for initial state computation.
  Returns 1 if the conflict is found.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtkNew, stmm_table * tTable, Vec_Int_t * vValues )  
{
    Abc_Obj_t * pFanout;
    Abc_InitType_t Init, Value;
    Seq_RetEdge_t RetEdge;
    Abc_Obj_t * pNodeNew, * pFanoutNew, * pBuffer;
    int i, Edge, fMet0, fMet1, fMetN;

    // make sure the node can be retimed
    assert( Seq_ObjFanoutLMin(pObj) > 0 );
    // get the fanout values
    fMet0 = fMet1 = fMetN = 0;
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
        {
            Init = Seq_NodeGetInitLast( pFanout, 0 );
            if ( Init == ABC_INIT_ZERO )
                fMet0 = 1;
            else if ( Init == ABC_INIT_ONE )
                fMet1 = 1;
            else if ( Init == ABC_INIT_NONE )
                fMetN = 1;
        }
        if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
        {
            Init = Seq_NodeGetInitLast( pFanout, 1 );
            if ( Init == ABC_INIT_ZERO )
                fMet0 = 1;
            else if ( Init == ABC_INIT_ONE )
                fMet1 = 1;
            else if ( Init == ABC_INIT_NONE )
                fMetN = 1;
        }
    }

    // consider the case when all fanout latches have don't-care values
    // the new values on the fanin edges will be don't-cares
    if ( !fMet0 && !fMet1 && !fMetN )
    {
        // make sure the label is clean
        Abc_ObjForEachFanout( pObj, pFanout, i )
            assert( pFanout->fMarkC == 0 );
        // update the fanout edges
        Abc_ObjForEachFanout( pObj, pFanout, i )
        {
            if ( pFanout->fMarkC )
                continue;
            pFanout->fMarkC = 1;
            if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
                Seq_NodeDeleteLast( pFanout, 0 );
            if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
                Seq_NodeDeleteLast( pFanout, 1 );
        }
        // clean the label
        Abc_ObjForEachFanout( pObj, pFanout, i )
            pFanout->fMarkC = 0;
        // update the fanin edges
        Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
        Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
        Seq_NodeInsertFirst( pObj, 0, ABC_INIT_DC );
        Seq_NodeInsertFirst( pObj, 1, ABC_INIT_DC );
        return 0;
    }
    // the initial values on the fanout edges contain 0, 1, or unknown
    // the new values on the fanin edges will be unknown

    // add new AND-gate to the network
    pNodeNew = Abc_NtkCreateNode( pNtkNew );
    pNodeNew->pData = Abc_SopCreateAnd2( (Extra_MmFlex_t *)pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );

    // add PO fanouts if any
    if ( fMet0 )
    {
        Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
        Vec_IntPush( vValues, 0 );
    }
    if ( fMet1 )
    {
        Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
        Vec_IntPush( vValues, 1 );
    }

    // make sure the label is clean
    Abc_ObjForEachFanout( pObj, pFanout, i )
        assert( pFanout->fMarkC == 0 );
    // perform the changes
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        if ( pFanout->fMarkC )
            continue;
        pFanout->fMarkC = 1;
        if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
        {
            Edge = 0;
            Value = Seq_NodeDeleteLast( pFanout, Edge );
            if ( Value == ABC_INIT_NONE )
            {
                // value is unknown, remove it from the table
                RetEdge.iNode  = pFanout->Id;
                RetEdge.iEdge  = Edge;
                RetEdge.iLatch = Seq_ObjFaninL( pFanout, Edge ); // after edge is removed
                if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
                    assert( 0 );
                // create the fanout of the AND gate
                Abc_ObjAddFanin( pFanoutNew, pNodeNew );
            }
        }
        if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
        {
            Edge = 1;
            Value = Seq_NodeDeleteLast( pFanout, Edge );
            if ( Value == ABC_INIT_NONE )
            {
                // value is unknown, remove it from the table
                RetEdge.iNode  = pFanout->Id;
                RetEdge.iEdge  = Edge;
                RetEdge.iLatch = Seq_ObjFaninL( pFanout, Edge ); // after edge is removed
                if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
                    assert( 0 );
                // create the fanout of the AND gate
                Abc_ObjAddFanin( pFanoutNew, pNodeNew );
            }
        }
    }
    // clean the label
    Abc_ObjForEachFanout( pObj, pFanout, i )
        pFanout->fMarkC = 0;

    // update the fanin edges
    Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
    Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
    Seq_NodeInsertFirst( pObj, 0, ABC_INIT_NONE );
    Seq_NodeInsertFirst( pObj, 1, ABC_INIT_NONE );

    // add the buffer
    pBuffer = Abc_NtkCreateNode( pNtkNew );
    pBuffer->pData = Abc_SopCreateBuf( (Extra_MmFlex_t *)pNtkNew->pManFunc );
    Abc_ObjAddFanin( pNodeNew, pBuffer );
    // point to it from the table
    RetEdge.iNode  = pObj->Id;
    RetEdge.iEdge  = 0;
    RetEdge.iLatch = 0;
    if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pBuffer ) )
        assert( 0 );

    // add the buffer
    pBuffer = Abc_NtkCreateNode( pNtkNew );
    pBuffer->pData = Abc_SopCreateBuf( (Extra_MmFlex_t *)pNtkNew->pManFunc );
    Abc_ObjAddFanin( pNodeNew, pBuffer );
    // point to it from the table
    RetEdge.iNode  = pObj->Id;
    RetEdge.iEdge  = 1;
    RetEdge.iLatch = 0;
    if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pBuffer ) )
        assert( 0 );

    // report conflict is found
    return fMet0 && fMet1;
}

/**Function*************************************************************

  Synopsis    [Generates the printable edge label with the initial state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable )
{
    Abc_Obj_t * pFanoutNew;
    Seq_RetEdge_t RetEdge;
    Abc_InitType_t Init;
    int nLatches, i;

    // get the number of latches on the edge
    nLatches = Seq_ObjFaninL( pObj, Edge );
    for ( i = nLatches - 1; i >= 0; i-- )
    {
        // get the value of this latch
        Init = Seq_NodeGetInitOne( pObj, Edge, i );
        if ( Init != ABC_INIT_NONE )
            continue;
        // get the retiming edge
        RetEdge.iNode  = pObj->Id;
        RetEdge.iEdge  = Edge;
        RetEdge.iLatch = i;
        // remove entry from table and add it with a different key
        if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
            assert( 0 );
        RetEdge.iLatch++;
        if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pFanoutNew ) )
            assert( 0 );
    }
}

/**Function*************************************************************

  Synopsis    [Sets the initial values.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel )
{
    Abc_Obj_t * pNode;
    stmm_generator * gen;
    Seq_RetEdge_t RetEdge;
    Abc_InitType_t Init;
    int i;

    i = 0;
    stmm_foreach_item( tTable, gen, (char **)&RetEdge, NULL )
    {
        pNode = Abc_NtkObj( pNtk, RetEdge.iNode );
        Init = pModel? (pModel[i]? ABC_INIT_ONE : ABC_INIT_ZERO) : ABC_INIT_DC;
        Seq_NodeSetInitOne( pNode, RetEdge.iEdge, RetEdge.iLatch, Init );
        i++;
    }
}



/**Function*************************************************************

  Synopsis    [Performs forward retiming of the sequential AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NtkUtilRetimingTry( Abc_Ntk_t * pNtk, int fForward )
{
    Vec_Ptr_t * vNodes, * vMoves;
    Abc_Obj_t * pNode, * pFanout, * pFanin;
    int i, k, nLatches;
    assert( Abc_NtkIsSeq( pNtk ) );
    // assume that all nodes can be retimed
    vNodes = Vec_PtrAlloc( 100 );
    Abc_AigForEachAnd( pNtk, pNode, i )
    {
        Vec_PtrPush( vNodes, pNode );
        pNode->fMarkA = 1;
    }
    // process the nodes
    vMoves = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
    {
//        printf( "(%d,%d) ", Seq_ObjFaninL0(pNode), Seq_ObjFaninL0(pNode) );
        // unmark the node as processed
        pNode->fMarkA = 0;
        // get the number of latches to retime
        if ( fForward )
            nLatches = Seq_ObjFaninLMin(pNode);
        else
            nLatches = Seq_ObjFanoutLMin(pNode);
        if ( nLatches == 0 )
            continue;
        assert( nLatches > 0 );
        // retime the latches forward
        if ( fForward )
            Abc_ObjRetimeForwardTry( pNode, nLatches );
        else
            Abc_ObjRetimeBackwardTry( pNode, nLatches );
        // write the moves
        for ( k = 0; k < nLatches; k++ )
            Vec_PtrPush( vMoves, pNode );
        // schedule fanouts for updating
        if ( fForward )
        {
            Abc_ObjForEachFanout( pNode, pFanout, k )
            {
                if ( Abc_ObjFaninNum(pFanout) != 2 || pFanout->fMarkA )
                    continue;
                pFanout->fMarkA = 1;
                Vec_PtrPush( vNodes, pFanout );
            }
        }
        else
        {
            Abc_ObjForEachFanin( pNode, pFanin, k )
            {
                if ( Abc_ObjFaninNum(pFanin) != 2 || pFanin->fMarkA )
                    continue;
                pFanin->fMarkA = 1;
                Vec_PtrPush( vNodes, pFanin );
            }
        }
    }
    Vec_PtrFree( vNodes );
    // make sure the marks are clean the the retiming is final
    Abc_AigForEachAnd( pNtk, pNode, i )
    {
        assert( pNode->fMarkA == 0 );
        if ( fForward ) 
            assert( Seq_ObjFaninLMin(pNode) == 0 );
        else
            assert( Seq_ObjFanoutLMin(pNode) == 0 );
    }
    return vMoves;
}

/**Function*************************************************************

  Synopsis    [Translates retiming steps into retiming moves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NtkUtilRetimingGetMoves( Abc_Ntk_t * pNtk, Vec_Int_t * vSteps, int fForward )
{
    Seq_RetStep_t RetStep;
    Vec_Ptr_t * vMoves;
    Abc_Obj_t * pNode;
    int i, k, iNode, nLatches, Number;
    int fChange;
    assert( Abc_NtkIsSeq( pNtk ) );

/*
    // try implementing all the moves at once
    Vec_IntForEachEntry( vSteps, Number, i )
    {
        // get the retiming step
        RetStep = Seq_Int2RetStep( Number );
        // get the node to be retimed
        pNode = Abc_NtkObj( pNtk, RetStep.iNode );
        assert( RetStep.nLatches > 0 );
        nLatches = RetStep.nLatches;

        if ( fForward )
            Abc_ObjRetimeForwardTry( pNode, nLatches );
        else
            Abc_ObjRetimeBackwardTry( pNode, nLatches );
    }
    // now look if any node has wrong number of latches
    Abc_AigForEachAnd( pNtk, pNode, i )
    {
        if ( Seq_ObjFaninL0(pNode) < 0 )
            printf( "Wrong 0node %d.\n", pNode->Id );
        if ( Seq_ObjFaninL1(pNode) < 0 )
            printf( "Wrong 1node %d.\n", pNode->Id );
    }
    // try implementing all the moves at once
    Vec_IntForEachEntry( vSteps, Number, i )
    {
        // get the retiming step
        RetStep = Seq_Int2RetStep( Number );
        // get the node to be retimed
        pNode = Abc_NtkObj( pNtk, RetStep.iNode );
        assert( RetStep.nLatches > 0 );
        nLatches = RetStep.nLatches;

        if ( !fForward )
            Abc_ObjRetimeForwardTry( pNode, nLatches );
        else
            Abc_ObjRetimeBackwardTry( pNode, nLatches );
    }
*/

    // process the nodes
    vMoves = Vec_PtrAlloc( 100 );
    while ( Vec_IntSize(vSteps) > 0 )
    {
        iNode = 0;
        fChange = 0;
        Vec_IntForEachEntry( vSteps, Number, i )
        {
            // get the retiming step
            RetStep = Seq_Int2RetStep( Number );
            // get the node to be retimed
            pNode = Abc_NtkObj( pNtk, RetStep.iNode );
            assert( RetStep.nLatches > 0 );
            // get the number of latches that can be retimed
            if ( fForward )
                nLatches = Seq_ObjFaninLMin(pNode);
            else
                nLatches = Seq_ObjFanoutLMin(pNode);
            if ( nLatches == 0 )
            {
                Vec_IntWriteEntry( vSteps, iNode++, Seq_RetStep2Int(RetStep) );
                continue;
            }
            assert( nLatches > 0 );
            fChange = 1;
            // get the number of latches to be retimed over this node
            nLatches = ABC_MIN( nLatches, (int)RetStep.nLatches );
            // retime the latches forward
            if ( fForward )
                Abc_ObjRetimeForwardTry( pNode, nLatches );
            else
                Abc_ObjRetimeBackwardTry( pNode, nLatches );
            // write the moves
            for ( k = 0; k < nLatches; k++ )
                Vec_PtrPush( vMoves, pNode );
            // subtract the retiming performed
            RetStep.nLatches -= nLatches;
            // store the node if it is not retimed completely
            if ( RetStep.nLatches > 0 )
                Vec_IntWriteEntry( vSteps, iNode++, Seq_RetStep2Int(RetStep) );
        }
        // reduce the array
        Vec_IntShrink( vSteps, iNode );
        if ( !fChange )
        {
            printf( "Warning: %d strange steps (a minor bug to be fixed later).\n", Vec_IntSize(vSteps) );
/*
            Vec_IntForEachEntry( vSteps, Number, i )
            {
                RetStep = Seq_Int2RetStep( Number );
                printf( "%d(%d) ", RetStep.iNode, RetStep.nLatches );
            }
            printf( "\n" );
*/
            break;
        }
    }
    // undo the tentative retiming
    if ( fForward )
    {
        Vec_PtrForEachEntryReverse( Abc_Obj_t *, vMoves, pNode, i )
            Abc_ObjRetimeBackwardTry( pNode, 1 );
    }
    else
    {
        Vec_PtrForEachEntryReverse( Abc_Obj_t *, vMoves, pNode, i )
            Abc_ObjRetimeForwardTry( pNode, 1 );
    }
    return vMoves;
}


/**Function*************************************************************

  Synopsis    [Splits retiming into forward and backward.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Abc_NtkUtilRetimingSplit( Vec_Str_t * vLags, int fForward )
{
    Vec_Int_t * vNodes;
    Seq_RetStep_t RetStep;
    int Value, i;
    vNodes = Vec_IntAlloc( 100 );
    Vec_StrForEachEntry( vLags, Value, i )
    {
        if ( Value < 0 && fForward )
        {
            RetStep.iNode = i;
            RetStep.nLatches = -Value;
            Vec_IntPush( vNodes, Seq_RetStep2Int(RetStep) );
        }
        else if ( Value > 0 && !fForward )
        {
            RetStep.iNode = i;
            RetStep.nLatches = Value;
            Vec_IntPush( vNodes, Seq_RetStep2Int(RetStep) );
        }
    }
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Retime node forward without initial states.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeForwardTry( Abc_Obj_t * pObj, int nLatches )  
{
    Abc_Obj_t * pFanout;
    int i;
    // make sure it is an AND gate
    assert( Abc_ObjFaninNum(pObj) == 2 );
    // make sure it has enough latches
//    assert( Seq_ObjFaninL0(pObj) >= nLatches );
//    assert( Seq_ObjFaninL1(pObj) >= nLatches );
    // subtract these latches on the fanin side
    Seq_ObjAddFaninL0( pObj, -nLatches );
    Seq_ObjAddFaninL1( pObj, -nLatches );
    // make sure the label is clean
    Abc_ObjForEachFanout( pObj, pFanout, i )
        assert( pFanout->fMarkC == 0 );
    // add these latches on the fanout side
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        if ( pFanout->fMarkC )
            continue;
        pFanout->fMarkC = 1;
        if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
            Seq_ObjAddFanoutL( pObj, pFanout, nLatches );
        else
        {
            assert( Abc_ObjFanin0(pFanout) == pObj );
            Seq_ObjAddFaninL0( pFanout, nLatches );
            Seq_ObjAddFaninL1( pFanout, nLatches );
        }
    }
    // clean the label
    Abc_ObjForEachFanout( pObj, pFanout, i )
        pFanout->fMarkC = 0;
}

/**Function*************************************************************

  Synopsis    [Retime node backward without initial states.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeBackwardTry( Abc_Obj_t * pObj, int nLatches )  
{
    Abc_Obj_t * pFanout;
    int i;
    // make sure it is an AND gate
    assert( Abc_ObjFaninNum(pObj) == 2 );
    // make sure the label is clean
    Abc_ObjForEachFanout( pObj, pFanout, i )
        assert( pFanout->fMarkC == 0 );
    // subtract these latches on the fanout side
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        if ( pFanout->fMarkC )
            continue;
        pFanout->fMarkC = 1;
//        assert( Abc_ObjFanoutL(pObj, pFanout) >= nLatches );
        if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
            Seq_ObjAddFanoutL( pObj, pFanout, -nLatches );
        else
        {
            assert( Abc_ObjFanin0(pFanout) == pObj );
            Seq_ObjAddFaninL0( pFanout, -nLatches );
            Seq_ObjAddFaninL1( pFanout, -nLatches );
        }
    }
    // clean the label
    Abc_ObjForEachFanout( pObj, pFanout, i )
        pFanout->fMarkC = 0;
    // add these latches on the fanin side
    Seq_ObjAddFaninL0( pObj, nLatches );
    Seq_ObjAddFaninL1( pObj, nLatches );
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END