summaryrefslogtreecommitdiffstats
path: root/src/bdd/cudd/cuddReorder.c
blob: f9c087725cab4de3dea061b71f53fef1d2d79e18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
/**CFile***********************************************************************

  FileName    [cuddReorder.c]

  PackageName [cudd]

  Synopsis    [Functions for dynamic variable reordering.]

  Description [External procedures included in this file:
                <ul>
                <li> Cudd_ReduceHeap()
                <li> Cudd_ShuffleHeap()
                </ul>
        Internal procedures included in this module:
                <ul>
                <li> cuddDynamicAllocNode()
                <li> cuddSifting()
                <li> cuddSwapping()
                <li> cuddNextHigh()
                <li> cuddNextLow()
                <li> cuddSwapInPlace()
                <li> cuddBddAlignToZdd()
                </ul>
        Static procedures included in this module:
                <ul>
                <li> ddUniqueCompare()
                <li> ddSwapAny()
                <li> ddSiftingAux()
                <li> ddSiftingUp()
                <li> ddSiftingDown()
                <li> ddSiftingBackward()
                <li> ddReorderPreprocess()
                <li> ddReorderPostprocess()
                <li> ddShuffle()
                <li> ddSiftUp()
                <li> bddFixTree()
                </ul>]

  Author      [Shipra Panda, Bernard Plessier, Fabio Somenzi]

  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]

******************************************************************************/

#include "util_hack.h"
#include "cuddInt.h"

ABC_NAMESPACE_IMPL_START



/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

#define DD_MAX_SUBTABLE_SPARSITY 8
#define DD_SHRINK_FACTOR 2

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddReorder.c,v 1.69 2009/02/21 18:24:10 fabio Exp $";
#endif

static  int     *entry;

int     ddTotalNumberSwapping;
#ifdef DD_STATS
int     ddTotalNISwaps;
#endif

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static int ddUniqueCompare (int *ptrX, int *ptrY);
static Move * ddSwapAny (DdManager *table, int x, int y);
static int ddSiftingAux (DdManager *table, int x, int xLow, int xHigh);
static Move * ddSiftingUp (DdManager *table, int y, int xLow);
static Move * ddSiftingDown (DdManager *table, int x, int xHigh);
static int ddSiftingBackward (DdManager *table, int size, Move *moves);
static int ddReorderPreprocess (DdManager *table);
static int ddReorderPostprocess (DdManager *table);
static int ddShuffle (DdManager *table, int *permutation);
static int ddSiftUp (DdManager *table, int x, int xLow);
static void bddFixTree (DdManager *table, MtrNode *treenode);
static int ddUpdateMtrTree (DdManager *table, MtrNode *treenode, int *perm, int *invperm);
static int ddCheckPermuation (DdManager *table, MtrNode *treenode, int *perm, int *invperm);

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Main dynamic reordering routine.]

  Description [Main dynamic reordering routine.
  Calls one of the possible reordering procedures:
  <ul>
  <li>Swapping
  <li>Sifting
  <li>Symmetric Sifting
  <li>Group Sifting
  <li>Window Permutation
  <li>Simulated Annealing
  <li>Genetic Algorithm
  <li>Dynamic Programming (exact)
  </ul>

  For sifting, symmetric sifting, group sifting, and window
  permutation it is possible to request reordering to convergence.<p>

  The core of all methods is the reordering procedure
  cuddSwapInPlace() which swaps two adjacent variables and is based
  on Rudell's paper.
  Returns 1 in case of success; 0 otherwise. In the case of symmetric
  sifting (with and without convergence) returns 1 plus the number of
  symmetric variables, in case of success.]

  SideEffects [Changes the variable order for all diagrams and clears
  the cache.]

******************************************************************************/
int
Cudd_ReduceHeap(
  DdManager * table /* DD manager */,
  Cudd_ReorderingType heuristic /* method used for reordering */,
  int  minsize /* bound below which no reordering occurs */)
{
    DdHook *hook;
    int result;
    unsigned int nextDyn;
#ifdef DD_STATS
    unsigned int initialSize;
    unsigned int finalSize;
#endif
    long localTime;

    /* Don't reorder if there are too many dead nodes. */
    if (table->keys - table->dead < (unsigned) minsize)
        return(1);

    if (heuristic == CUDD_REORDER_SAME) {
        heuristic = table->autoMethod;
    }
    if (heuristic == CUDD_REORDER_NONE) {
        return(1);
    }

    /* This call to Cudd_ReduceHeap does initiate reordering. Therefore
    ** we count it.
    */
    table->reorderings++;

    localTime = util_cpu_time();

    /* Run the hook functions. */
    hook = table->preReorderingHook;
    while (hook != NULL) {
        int res = (hook->f)(table, "BDD", (void *)heuristic);
        if (res == 0) return(0);
        hook = hook->next;
    }

    if (!ddReorderPreprocess(table)) return(0);
    ddTotalNumberSwapping = 0;

    if (table->keys > table->peakLiveNodes) {
        table->peakLiveNodes = table->keys;
    }
#ifdef DD_STATS
    initialSize = table->keys - table->isolated;
    ddTotalNISwaps = 0;

    switch(heuristic) {
    case CUDD_REORDER_RANDOM:
    case CUDD_REORDER_RANDOM_PIVOT:
        (void) fprintf(table->out,"#:I_RANDOM  ");
        break;
    case CUDD_REORDER_SIFT:
    case CUDD_REORDER_SIFT_CONVERGE:
    case CUDD_REORDER_SYMM_SIFT:
    case CUDD_REORDER_SYMM_SIFT_CONV:
    case CUDD_REORDER_GROUP_SIFT:
    case CUDD_REORDER_GROUP_SIFT_CONV:
        (void) fprintf(table->out,"#:I_SIFTING ");
        break;
    case CUDD_REORDER_WINDOW2:
    case CUDD_REORDER_WINDOW3:
    case CUDD_REORDER_WINDOW4:
    case CUDD_REORDER_WINDOW2_CONV:
    case CUDD_REORDER_WINDOW3_CONV:
    case CUDD_REORDER_WINDOW4_CONV:
        (void) fprintf(table->out,"#:I_WINDOW  ");
        break;
    case CUDD_REORDER_ANNEALING:
        (void) fprintf(table->out,"#:I_ANNEAL  ");
        break;
    case CUDD_REORDER_GENETIC:
        (void) fprintf(table->out,"#:I_GENETIC ");
        break;
    case CUDD_REORDER_LINEAR:
    case CUDD_REORDER_LINEAR_CONVERGE:
        (void) fprintf(table->out,"#:I_LINSIFT ");
        break;
    case CUDD_REORDER_EXACT:
        (void) fprintf(table->out,"#:I_EXACT   ");
        break;
    default:
        return(0);
    }
    (void) fprintf(table->out,"%8d: initial size",initialSize);
#endif

    /* See if we should use alternate threshold for maximum growth. */
    if (table->reordCycle && table->reorderings % table->reordCycle == 0) {
        double saveGrowth = table->maxGrowth;
        table->maxGrowth = table->maxGrowthAlt;
        result = cuddTreeSifting(table,heuristic);
        table->maxGrowth = saveGrowth;
    } else {
        result = cuddTreeSifting(table,heuristic);
    }

#ifdef DD_STATS
    (void) fprintf(table->out,"\n");
    finalSize = table->keys - table->isolated;
    (void) fprintf(table->out,"#:F_REORDER %8d: final size\n",finalSize);
    (void) fprintf(table->out,"#:T_REORDER %8g: total time (sec)\n",
                   ((double)(util_cpu_time() - localTime)/1000.0));
    (void) fprintf(table->out,"#:N_REORDER %8d: total swaps\n",
                   ddTotalNumberSwapping);
    (void) fprintf(table->out,"#:M_REORDER %8d: NI swaps\n",ddTotalNISwaps);
#endif

    if (result == 0)
        return(0);

    if (!ddReorderPostprocess(table))
        return(0);

    if (table->realign) {
        if (!cuddZddAlignToBdd(table))
            return(0);
    }

    nextDyn = (table->keys - table->constants.keys + 1) *
              DD_DYN_RATIO + table->constants.keys;
    if (table->reorderings < 20 || nextDyn > table->nextDyn)
        table->nextDyn = nextDyn;
    else
        table->nextDyn += 20;
    table->reordered = 1;

    /* Run hook functions. */
    hook = table->postReorderingHook;
    while (hook != NULL) {
        int res = (hook->f)(table, "BDD", (void *)localTime);
        if (res == 0) return(0);
        hook = hook->next;
    }
    /* Update cumulative reordering time. */
    table->reordTime += util_cpu_time() - localTime;

    return(result);

} /* end of Cudd_ReduceHeap */


/**Function********************************************************************

  Synopsis    [Reorders variables according to given permutation.]

  Description [Reorders variables according to given permutation.
  The i-th entry of the permutation array contains the index of the variable
  that should be brought to the i-th level.  The size of the array should be
  equal or greater to the number of variables currently in use.
  Returns 1 in case of success; 0 otherwise.]

  SideEffects [Changes the variable order for all diagrams and clears
  the cache.]

  SeeAlso [Cudd_ReduceHeap]

******************************************************************************/
int
Cudd_ShuffleHeap(
  DdManager * table /* DD manager */,
  int * permutation /* required variable permutation */)
{

    int result;
    int i;
    int identity = 1;
    int *perm;

    /* Don't waste time in case of identity permutation. */
    for (i = 0; i < table->size; i++) {
        if (permutation[i] != table->invperm[i]) {
            identity = 0;
            break;
        }
    }
    if (identity == 1) {
        return(1);
    }
    if (!ddReorderPreprocess(table)) return(0);
    if (table->keys > table->peakLiveNodes) {
        table->peakLiveNodes = table->keys;
    }

    perm = ABC_ALLOC(int, table->size);
    for (i = 0; i < table->size; i++)
        perm[permutation[i]] = i;
    if (!ddCheckPermuation(table,table->tree,perm,permutation)) {
        ABC_FREE(perm);
        return(0);
    }
    if (!ddUpdateMtrTree(table,table->tree,perm,permutation)) {
        ABC_FREE(perm);
        return(0);
    }
    ABC_FREE(perm);

    result = ddShuffle(table,permutation);

    if (!ddReorderPostprocess(table)) return(0);

    return(result);

} /* end of Cudd_ShuffleHeap */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Dynamically allocates a Node.]

  Description [Dynamically allocates a Node. This procedure is similar
  to cuddAllocNode in Cudd_Table.c, but it does not attempt garbage
  collection, because during reordering there are no dead nodes.
  Returns a pointer to a new node if successful; NULL is memory is
  full.]

  SideEffects [None]

  SeeAlso     [cuddAllocNode]

******************************************************************************/
DdNode *
cuddDynamicAllocNode(
  DdManager * table)
{
    int     i;
    DdNodePtr *mem;
    DdNode *list, *node;
    extern DD_OOMFP MMoutOfMemory;
    DD_OOMFP saveHandler;

    if (table->nextFree == NULL) {        /* free list is empty */
        /* Try to allocate a new block. */
        saveHandler = MMoutOfMemory;
        MMoutOfMemory = Cudd_OutOfMem;
//        mem = (DdNodePtr *) ABC_ALLOC(DdNode, DD_MEM_CHUNK + 1);
        mem = (DdNodePtr *) ABC_ALLOC(DdNode, DD_MEM_CHUNK + 2);
        MMoutOfMemory = saveHandler;
        if (mem == NULL && table->stash != NULL) {
            ABC_FREE(table->stash);
            table->stash = NULL;
            /* Inhibit resizing of tables. */
            table->maxCacheHard = table->cacheSlots - 1;
            table->cacheSlack = - (int) (table->cacheSlots + 1);
            for (i = 0; i < table->size; i++) {
                table->subtables[i].maxKeys <<= 2;
            }
//            mem = (DdNodePtr *) ABC_ALLOC(DdNode,DD_MEM_CHUNK + 1);
            mem = (DdNodePtr *) ABC_ALLOC(DdNode,DD_MEM_CHUNK + 2);
        }
        if (mem == NULL) {
            /* Out of luck. Call the default handler to do
            ** whatever it specifies for a failed malloc.  If this
            ** handler returns, then set error code, print
            ** warning, and return. */
            (*MMoutOfMemory)(sizeof(DdNode)*(DD_MEM_CHUNK + 1));
            table->errorCode = CUDD_MEMORY_OUT;
#ifdef DD_VERBOSE
            (void) fprintf(table->err,
                           "cuddDynamicAllocNode: out of memory");
            (void) fprintf(table->err,"Memory in use = %lu\n",
                           table->memused);
#endif
            return(NULL);
        } else {        /* successful allocation; slice memory */
            unsigned long offset;
            table->memused += (DD_MEM_CHUNK + 1) * sizeof(DdNode);
            mem[0] = (DdNode *) table->memoryList;
            table->memoryList = mem;

            /* Here we rely on the fact that the size of a DdNode is a
            ** power of 2 and a multiple of the size of a pointer.
            ** If we align one node, all the others will be aligned
            ** as well. */
//            offset = (unsigned long) mem & (sizeof(DdNode) - 1);
//            mem += (sizeof(DdNode) - offset) / sizeof(DdNodePtr);
            offset = (unsigned long) mem & (32 - 1);
            mem += (32 - offset) / sizeof(DdNodePtr);
#ifdef DD_DEBUG
//            assert(((unsigned long) mem & (sizeof(DdNode) - 1)) == 0);
            assert(((unsigned long) mem & (32 - 1)) == 0);
#endif
            list = (DdNode *) mem;

            i = 1;
            do {
                list[i - 1].ref = 0;
                list[i - 1].next = &list[i];
            } while (++i < DD_MEM_CHUNK);

            list[DD_MEM_CHUNK-1].ref = 0;
            list[DD_MEM_CHUNK - 1].next = NULL;

            table->nextFree = &list[0];
        }
    } /* if free list empty */

    node = table->nextFree;
    table->nextFree = node->next;
    return (node);

} /* end of cuddDynamicAllocNode */


/**Function********************************************************************

  Synopsis    [Implementation of Rudell's sifting algorithm.]

  Description [Implementation of Rudell's sifting algorithm.
  Assumes that no dead nodes are present.
    <ol>
    <li> Order all the variables according to the number of entries
    in each unique table.
    <li> Sift the variable up and down, remembering each time the
    total size of the DD heap.
    <li> Select the best permutation.
    <li> Repeat 3 and 4 for all variables.
    </ol>
  Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
int
cuddSifting(
  DdManager * table,
  int  lower,
  int  upper)
{
    int i;
    int *var;
    int size;
    int x;
    int result;
#ifdef DD_STATS
    int previousSize;
#endif

    size = table->size;

    /* Find order in which to sift variables. */
    var = NULL;
    entry = ABC_ALLOC(int,size);
    if (entry == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        goto cuddSiftingOutOfMem;
    }
    var = ABC_ALLOC(int,size);
    if (var == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        goto cuddSiftingOutOfMem;
    }

    for (i = 0; i < size; i++) {
        x = table->perm[i];
        entry[i] = table->subtables[x].keys;
        var[i] = i;
    }

    qsort((void *)var,size,sizeof(int),(DD_QSFP)ddUniqueCompare);

    /* Now sift. */
    for (i = 0; i < ddMin(table->siftMaxVar,size); i++) {
        if (ddTotalNumberSwapping >= table->siftMaxSwap)
            break;
        x = table->perm[var[i]];

        if (x < lower || x > upper || table->subtables[x].bindVar == 1)
            continue;
#ifdef DD_STATS
        previousSize = table->keys - table->isolated;
#endif
        result = ddSiftingAux(table, x, lower, upper);
        if (!result) goto cuddSiftingOutOfMem;
#ifdef DD_STATS
        if (table->keys < (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"-");
        } else if (table->keys > (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"+");     /* should never happen */
            (void) fprintf(table->err,"\nSize increased from %d to %d while sifting variable %d\n", previousSize, table->keys - table->isolated, var[i]);
        } else {
            (void) fprintf(table->out,"=");
        }
        fflush(table->out);
#endif
    }

    ABC_FREE(var);
    ABC_FREE(entry);

    return(1);

cuddSiftingOutOfMem:

    if (entry != NULL) ABC_FREE(entry);
    if (var != NULL) ABC_FREE(var);

    return(0);

} /* end of cuddSifting */


/**Function********************************************************************

  Synopsis    [Reorders variables by a sequence of (non-adjacent) swaps.]

  Description [Implementation of Plessier's algorithm that reorders
  variables by a sequence of (non-adjacent) swaps.
    <ol>
    <li> Select two variables (RANDOM or HEURISTIC).
    <li> Permute these variables.
    <li> If the nodes have decreased accept the permutation.
    <li> Otherwise reconstruct the original heap.
    <li> Loop.
    </ol>
  Returns 1 in case of success; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
int
cuddSwapping(
  DdManager * table,
  int lower,
  int upper,
  Cudd_ReorderingType heuristic)
{
    int i, j;
    int max, keys;
    int nvars;
    int x, y;
    int iterate;
    int previousSize;
    Move *moves, *move;
    int pivot;
    int modulo;
    int result;

#ifdef DD_DEBUG
    /* Sanity check */
    assert(lower >= 0 && upper < table->size && lower <= upper);
#endif

    nvars = upper - lower + 1;
    iterate = nvars;

    for (i = 0; i < iterate; i++) {
        if (ddTotalNumberSwapping >= table->siftMaxSwap)
            break;
        if (heuristic == CUDD_REORDER_RANDOM_PIVOT) {
            max = -1;
            for (j = lower; j <= upper; j++) {
                if ((keys = table->subtables[j].keys) > max) {
                    max = keys;
                    pivot = j;
                }
            }

            modulo = upper - pivot;
            if (modulo == 0) {
                y = pivot;
            } else{
                y = pivot + 1 + ((int) Cudd_Random() % modulo);
            }

            modulo = pivot - lower - 1;
            if (modulo < 1) {
                x = lower;
            } else{
                do {
                    x = (int) Cudd_Random() % modulo;
                } while (x == y);
            }
        } else {
            x = ((int) Cudd_Random() % nvars) + lower;
            do {
                y = ((int) Cudd_Random() % nvars) + lower;
            } while (x == y);
        }
        previousSize = table->keys - table->isolated;
        moves = ddSwapAny(table,x,y);
        if (moves == NULL) goto cuddSwappingOutOfMem;
        result = ddSiftingBackward(table,previousSize,moves);
        if (!result) goto cuddSwappingOutOfMem;
        while (moves != NULL) {
            move = moves->next;
            cuddDeallocMove(table, moves);
            moves = move;
        }
#ifdef DD_STATS
        if (table->keys < (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"-");
        } else if (table->keys > (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"+");     /* should never happen */
        } else {
            (void) fprintf(table->out,"=");
        }
        fflush(table->out);
#endif
#if 0
        (void) fprintf(table->out,"#:t_SWAPPING %8d: tmp size\n",
                       table->keys - table->isolated);
#endif
    }

    return(1);

cuddSwappingOutOfMem:
    while (moves != NULL) {
        move = moves->next;
        cuddDeallocMove(table, moves);
        moves = move;
    }

    return(0);

} /* end of cuddSwapping */


/**Function********************************************************************

  Synopsis    [Finds the next subtable with a larger index.]

  Description [Finds the next subtable with a larger index. Returns the
  index.]

  SideEffects [None]

  SeeAlso     [cuddNextLow]

******************************************************************************/
int
cuddNextHigh(
  DdManager * table,
  int  x)
{
    return(x+1);

} /* end of cuddNextHigh */


/**Function********************************************************************

  Synopsis    [Finds the next subtable with a smaller index.]

  Description [Finds the next subtable with a smaller index. Returns the
  index.]

  SideEffects [None]

  SeeAlso     [cuddNextHigh]

******************************************************************************/
int
cuddNextLow(
  DdManager * table,
  int  x)
{
    return(x-1);

} /* end of cuddNextLow */


/**Function********************************************************************

  Synopsis    [Swaps two adjacent variables.]

  Description [Swaps two adjacent variables. It assumes that no dead
  nodes are present on entry to this procedure.  The procedure then
  guarantees that no dead nodes will be present when it terminates.
  cuddSwapInPlace assumes that x &lt; y.  Returns the number of keys in
  the table if successful; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
int
cuddSwapInPlace(
  DdManager * table,
  int  x,
  int  y)
{
    DdNodePtr *xlist, *ylist;
    int    xindex, yindex;
    int    xslots, yslots;
    int    xshift, yshift;
    int    oldxkeys, oldykeys;
    int    newxkeys, newykeys;
    int    comple, newcomplement;
    int    i;
    Cudd_VariableType varType;
    Cudd_LazyGroupType groupType;
    int    posn;
    int    isolated;
    DdNode *f,*f0,*f1,*f01,*f00,*f11,*f10,*newf1,*newf0;
    DdNode *g,*next;
    DdNodePtr *previousP;
    DdNode *tmp;
    DdNode *sentinel = &(table->sentinel);
    extern DD_OOMFP MMoutOfMemory;
    DD_OOMFP saveHandler;

#ifdef DD_DEBUG
    int    count,idcheck;
#endif

#ifdef DD_DEBUG
    assert(x < y);
    assert(cuddNextHigh(table,x) == y);
    assert(table->subtables[x].keys != 0);
    assert(table->subtables[y].keys != 0);
    assert(table->subtables[x].dead == 0);
    assert(table->subtables[y].dead == 0);
#endif

    ddTotalNumberSwapping++;

    /* Get parameters of x subtable. */
    xindex = table->invperm[x];
    xlist = table->subtables[x].nodelist;
    oldxkeys = table->subtables[x].keys;
    xslots = table->subtables[x].slots;
    xshift = table->subtables[x].shift;

    /* Get parameters of y subtable. */
    yindex = table->invperm[y];
    ylist = table->subtables[y].nodelist;
    oldykeys = table->subtables[y].keys;
    yslots = table->subtables[y].slots;
    yshift = table->subtables[y].shift;

    if (!cuddTestInteract(table,xindex,yindex)) {
#ifdef DD_STATS
        ddTotalNISwaps++;
#endif
        newxkeys = oldxkeys;
        newykeys = oldykeys;
    } else {
        newxkeys = 0;
        newykeys = oldykeys;

        /* Check whether the two projection functions involved in this
        ** swap are isolated. At the end, we'll be able to tell how many
        ** isolated projection functions are there by checking only these
        ** two functions again. This is done to eliminate the isolated
        ** projection functions from the node count.
        */
        isolated = - ((table->vars[xindex]->ref == 1) +
                     (table->vars[yindex]->ref == 1));

        /* The nodes in the x layer that do not depend on
        ** y will stay there; the others are put in a chain.
        ** The chain is handled as a LIFO; g points to the beginning.
        */
        g = NULL;
        if ((oldxkeys >= xslots || (unsigned) xslots == table->initSlots) &&
            oldxkeys <= DD_MAX_SUBTABLE_DENSITY * xslots) {
            for (i = 0; i < xslots; i++) {
                previousP = &(xlist[i]);
                f = *previousP;
                while (f != sentinel) {
                    next = f->next;
                    f1 = cuddT(f); f0 = cuddE(f);
                    if (f1->index != (DdHalfWord) yindex &&
                        Cudd_Regular(f0)->index != (DdHalfWord) yindex) {
                        /* stays */
                        newxkeys++;
                        *previousP = f;
                        previousP = &(f->next);
                    } else {
                        f->index = yindex;
                        f->next = g;
                        g = f;
                    }
                    f = next;
                } /* while there are elements in the collision chain */
                *previousP = sentinel;
            } /* for each slot of the x subtable */
        } else {                /* resize xlist */
            DdNode *h = NULL;
            DdNodePtr *newxlist;
            unsigned int newxslots;
            int newxshift;
            /* Empty current xlist. Nodes that stay go to list h;
            ** nodes that move go to list g. */
            for (i = 0; i < xslots; i++) {
                f = xlist[i];
                while (f != sentinel) {
                    next = f->next;
                    f1 = cuddT(f); f0 = cuddE(f);
                    if (f1->index != (DdHalfWord) yindex &&
                        Cudd_Regular(f0)->index != (DdHalfWord) yindex) {
                        /* stays */
                        f->next = h;
                        h = f;
                        newxkeys++;
                    } else {
                        f->index = yindex;
                        f->next = g;
                        g = f;
                    }
                    f = next;
                } /* while there are elements in the collision chain */
            } /* for each slot of the x subtable */
            /* Decide size of new subtable. */
            newxshift = xshift;
            newxslots = xslots;
            while ((unsigned) oldxkeys > DD_MAX_SUBTABLE_DENSITY * newxslots) {
                newxshift--;
                newxslots <<= 1;
            }
            while ((unsigned) oldxkeys < newxslots &&
                   newxslots > table->initSlots) {
                newxshift++;
                newxslots >>= 1;
            }
            /* Try to allocate new table. Be ready to back off. */
            saveHandler = MMoutOfMemory;
            MMoutOfMemory = Cudd_OutOfMem;
            newxlist = ABC_ALLOC(DdNodePtr, newxslots);
            MMoutOfMemory = saveHandler;
            if (newxlist == NULL) {
                (void) fprintf(table->err, "Unable to resize subtable %d for lack of memory\n", i);
                newxlist = xlist;
                newxslots = xslots;
                newxshift = xshift;
            } else {
                table->slots += ((int) newxslots - xslots);
                table->minDead = (unsigned)
                    (table->gcFrac * (double) table->slots);
                table->cacheSlack = (int)
                    ddMin(table->maxCacheHard, DD_MAX_CACHE_TO_SLOTS_RATIO
                          * table->slots) - 2 * (int) table->cacheSlots;
                table->memused +=
                    ((int) newxslots - xslots) * sizeof(DdNodePtr);
                ABC_FREE(xlist);
                xslots =  newxslots;
                xshift = newxshift;
                xlist = newxlist;
            }
            /* Initialize new subtable. */
            for (i = 0; i < xslots; i++) {
                xlist[i] = sentinel;
            }
            /* Move nodes that were parked in list h to their new home. */
            f = h;
            while (f != NULL) {
                next = f->next;
                f1 = cuddT(f);
                f0 = cuddE(f);
                /* Check xlist for pair (f11,f01). */
                posn = ddHash(cuddF2L(f1), cuddF2L(f0), xshift);
                /* For each element tmp in collision list xlist[posn]. */
                previousP = &(xlist[posn]);
                tmp = *previousP;
                while (f1 < cuddT(tmp)) {
                    previousP = &(tmp->next);
                    tmp = *previousP;
                }
                while (f1 == cuddT(tmp) && f0 < cuddE(tmp)) {
                    previousP = &(tmp->next);
                    tmp = *previousP;
                }
                f->next = *previousP;
                *previousP = f;
                f = next;
            }
        }

#ifdef DD_COUNT
        table->swapSteps += oldxkeys - newxkeys;
#endif
        /* Take care of the x nodes that must be re-expressed.
        ** They form a linked list pointed by g. Their index has been
        ** already changed to yindex.
        */
        f = g;
        while (f != NULL) {
            next = f->next;
            /* Find f1, f0, f11, f10, f01, f00. */
            f1 = cuddT(f);
#ifdef DD_DEBUG
            assert(!(Cudd_IsComplement(f1)));
#endif
            if ((int) f1->index == yindex) {
                f11 = cuddT(f1); f10 = cuddE(f1);
            } else {
                f11 = f10 = f1;
            }
#ifdef DD_DEBUG
            assert(!(Cudd_IsComplement(f11)));
#endif
            f0 = cuddE(f);
            comple = Cudd_IsComplement(f0);
            f0 = Cudd_Regular(f0);
            if ((int) f0->index == yindex) {
                f01 = cuddT(f0); f00 = cuddE(f0);
            } else {
                f01 = f00 = f0;
            }
            if (comple) {
                f01 = Cudd_Not(f01);
                f00 = Cudd_Not(f00);
            }
            /* Decrease ref count of f1. */
            cuddSatDec(f1->ref);
            /* Create the new T child. */
            if (f11 == f01) {
                newf1 = f11;
                cuddSatInc(newf1->ref);
            } else {
                /* Check xlist for triple (xindex,f11,f01). */
                posn = ddHash(cuddF2L(f11), cuddF2L(f01), xshift);
                /* For each element newf1 in collision list xlist[posn]. */
                previousP = &(xlist[posn]);
                newf1 = *previousP;
                while (f11 < cuddT(newf1)) {
                    previousP = &(newf1->next);
                    newf1 = *previousP;
                }
                while (f11 == cuddT(newf1) && f01 < cuddE(newf1)) {
                    previousP = &(newf1->next);
                    newf1 = *previousP;
                }
                if (cuddT(newf1) == f11 && cuddE(newf1) == f01) {
                    cuddSatInc(newf1->ref);
                } else { /* no match */
                    newf1 = cuddDynamicAllocNode(table);
                    if (newf1 == NULL)
                        goto cuddSwapOutOfMem;
                    newf1->index = xindex; newf1->ref = 1;
                    cuddT(newf1) = f11;
                    cuddE(newf1) = f01;
                    /* Insert newf1 in the collision list xlist[posn];
                    ** increase the ref counts of f11 and f01.
                    */
                    newxkeys++;
                    newf1->next = *previousP;
                    *previousP = newf1;
                    cuddSatInc(f11->ref);
                    tmp = Cudd_Regular(f01);
                    cuddSatInc(tmp->ref);
                }
            }
            cuddT(f) = newf1;
#ifdef DD_DEBUG
            assert(!(Cudd_IsComplement(newf1)));
#endif

            /* Do the same for f0, keeping complement dots into account. */
            /* Decrease ref count of f0. */
            tmp = Cudd_Regular(f0);
            cuddSatDec(tmp->ref);
            /* Create the new E child. */
            if (f10 == f00) {
                newf0 = f00;
                tmp = Cudd_Regular(newf0);
                cuddSatInc(tmp->ref);
            } else {
                /* make sure f10 is regular */
                newcomplement = Cudd_IsComplement(f10);
                if (newcomplement) {
                    f10 = Cudd_Not(f10);
                    f00 = Cudd_Not(f00);
                }
                /* Check xlist for triple (xindex,f10,f00). */
                posn = ddHash(cuddF2L(f10), cuddF2L(f00), xshift);
                /* For each element newf0 in collision list xlist[posn]. */
                previousP = &(xlist[posn]);
                newf0 = *previousP;
                while (f10 < cuddT(newf0)) {
                    previousP = &(newf0->next);
                    newf0 = *previousP;
                }
                while (f10 == cuddT(newf0) && f00 < cuddE(newf0)) {
                    previousP = &(newf0->next);
                    newf0 = *previousP;
                }
                if (cuddT(newf0) == f10 && cuddE(newf0) == f00) {
                    cuddSatInc(newf0->ref);
                } else { /* no match */
                    newf0 = cuddDynamicAllocNode(table);
                    if (newf0 == NULL)
                        goto cuddSwapOutOfMem;
                    newf0->index = xindex; newf0->ref = 1;
                    cuddT(newf0) = f10;
                    cuddE(newf0) = f00;
                    /* Insert newf0 in the collision list xlist[posn];
                    ** increase the ref counts of f10 and f00.
                    */
                    newxkeys++;
                    newf0->next = *previousP;
                    *previousP = newf0;
                    cuddSatInc(f10->ref);
                    tmp = Cudd_Regular(f00);
                    cuddSatInc(tmp->ref);
                }
                if (newcomplement) {
                    newf0 = Cudd_Not(newf0);
                }
            }
            cuddE(f) = newf0;

            /* Insert the modified f in ylist.
            ** The modified f does not already exists in ylist.
            ** (Because of the uniqueness of the cofactors.)
            */
            posn = ddHash(cuddF2L(newf1), cuddF2L(newf0), yshift);
            newykeys++;
            previousP = &(ylist[posn]);
            tmp = *previousP;
            while (newf1 < cuddT(tmp)) {
                previousP = &(tmp->next);
                tmp = *previousP;
            }
            while (newf1 == cuddT(tmp) && newf0 < cuddE(tmp)) {
                previousP = &(tmp->next);
                tmp = *previousP;
            }
            f->next = *previousP;
            *previousP = f;
            f = next;
        } /* while f != NULL */

        /* GC the y layer. */

        /* For each node f in ylist. */
        for (i = 0; i < yslots; i++) {
            previousP = &(ylist[i]);
            f = *previousP;
            while (f != sentinel) {
                next = f->next;
                if (f->ref == 0) {
                    tmp = cuddT(f);
                    cuddSatDec(tmp->ref);
                    tmp = Cudd_Regular(cuddE(f));
                    cuddSatDec(tmp->ref);
                    cuddDeallocNode(table,f);
                    newykeys--;
                } else {
                    *previousP = f;
                    previousP = &(f->next);
                }
                f = next;
            } /* while f */
            *previousP = sentinel;
        } /* for i */

#ifdef DD_DEBUG
#if 0
        (void) fprintf(table->out,"Swapping %d and %d\n",x,y);
#endif
        count = 0;
        idcheck = 0;
        for (i = 0; i < yslots; i++) {
            f = ylist[i];
            while (f != sentinel) {
                count++;
                if (f->index != (DdHalfWord) yindex)
                    idcheck++;
                f = f->next;
            }
        }
        if (count != newykeys) {
            (void) fprintf(table->out,
                           "Error in finding newykeys\toldykeys = %d\tnewykeys = %d\tactual = %d\n",
                           oldykeys,newykeys,count);
        }
        if (idcheck != 0)
            (void) fprintf(table->out,
                           "Error in id's of ylist\twrong id's = %d\n",
                           idcheck);
        count = 0;
        idcheck = 0;
        for (i = 0; i < xslots; i++) {
            f = xlist[i];
            while (f != sentinel) {
                count++;
                if (f->index != (DdHalfWord) xindex)
                    idcheck++;
                f = f->next;
            }
        }
        if (count != newxkeys) {
            (void) fprintf(table->out,
                           "Error in finding newxkeys\toldxkeys = %d \tnewxkeys = %d \tactual = %d\n",
                           oldxkeys,newxkeys,count);
        }
        if (idcheck != 0)
            (void) fprintf(table->out,
                           "Error in id's of xlist\twrong id's = %d\n",
                           idcheck);
#endif

        isolated += (table->vars[xindex]->ref == 1) +
                    (table->vars[yindex]->ref == 1);
        table->isolated += isolated;
    }

    /* Set the appropriate fields in table. */
    table->subtables[x].nodelist = ylist;
    table->subtables[x].slots = yslots;
    table->subtables[x].shift = yshift;
    table->subtables[x].keys = newykeys;
    table->subtables[x].maxKeys = yslots * DD_MAX_SUBTABLE_DENSITY;
    i = table->subtables[x].bindVar;
    table->subtables[x].bindVar = table->subtables[y].bindVar;
    table->subtables[y].bindVar = i;
    /* Adjust filds for lazy sifting. */
    varType = table->subtables[x].varType;
    table->subtables[x].varType = table->subtables[y].varType;
    table->subtables[y].varType = varType;
    i = table->subtables[x].pairIndex;
    table->subtables[x].pairIndex = table->subtables[y].pairIndex;
    table->subtables[y].pairIndex = i;
    i = table->subtables[x].varHandled;
    table->subtables[x].varHandled = table->subtables[y].varHandled;
    table->subtables[y].varHandled = i;
    groupType = table->subtables[x].varToBeGrouped;
    table->subtables[x].varToBeGrouped = table->subtables[y].varToBeGrouped;
    table->subtables[y].varToBeGrouped = groupType;

    table->subtables[y].nodelist = xlist;
    table->subtables[y].slots = xslots;
    table->subtables[y].shift = xshift;
    table->subtables[y].keys = newxkeys;
    table->subtables[y].maxKeys = xslots * DD_MAX_SUBTABLE_DENSITY;

    table->perm[xindex] = y; table->perm[yindex] = x;
    table->invperm[x] = yindex; table->invperm[y] = xindex;

    table->keys += newxkeys + newykeys - oldxkeys - oldykeys;

    return(table->keys - table->isolated);

cuddSwapOutOfMem:
    (void) fprintf(table->err,"Error: cuddSwapInPlace out of memory\n");

    return (0);

} /* end of cuddSwapInPlace */


/**Function********************************************************************

  Synopsis    [Reorders BDD variables according to the order of the ZDD
  variables.]

  Description [Reorders BDD variables according to the order of the
  ZDD variables. This function can be called at the end of ZDD
  reordering to insure that the order of the BDD variables is
  consistent with the order of the ZDD variables. The number of ZDD
  variables must be a multiple of the number of BDD variables. Let
  <code>M</code> be the ratio of the two numbers. cuddBddAlignToZdd
  then considers the ZDD variables from <code>M*i</code> to
  <code>(M+1)*i-1</code> as corresponding to BDD variable
  <code>i</code>.  This function should be normally called from
  Cudd_zddReduceHeap, which clears the cache.  Returns 1 in case of
  success; 0 otherwise.]

  SideEffects [Changes the BDD variable order for all diagrams and performs
  garbage collection of the BDD unique table.]

  SeeAlso [Cudd_ShuffleHeap Cudd_zddReduceHeap]

******************************************************************************/
int
cuddBddAlignToZdd(
  DdManager * table /* DD manager */)
{
    int *invperm;               /* permutation array */
    int M;                      /* ratio of ZDD variables to BDD variables */
    int i;                      /* loop index */
    int result;                 /* return value */

    /* We assume that a ratio of 0 is OK. */
    if (table->size == 0)
        return(1);

    M = table->sizeZ / table->size;
    /* Check whether the number of ZDD variables is a multiple of the
    ** number of BDD variables.
    */
    if (M * table->size != table->sizeZ)
        return(0);
    /* Create and initialize the inverse permutation array. */
    invperm = ABC_ALLOC(int,table->size);
    if (invperm == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
    for (i = 0; i < table->sizeZ; i += M) {
        int indexZ = table->invpermZ[i];
        int index  = indexZ / M;
        invperm[i / M] = index;
    }
    /* Eliminate dead nodes. Do not scan the cache again, because we
    ** assume that Cudd_zddReduceHeap has already cleared it.
    */
    cuddGarbageCollect(table,0);

    /* Initialize number of isolated projection functions. */
    table->isolated = 0;
    for (i = 0; i < table->size; i++) {
        if (table->vars[i]->ref == 1) table->isolated++;
    }

    /* Initialize the interaction matrix. */
    result = cuddInitInteract(table);
    if (result == 0) return(0);

    result = ddShuffle(table, invperm);
    ABC_FREE(invperm);
    /* Free interaction matrix. */
    ABC_FREE(table->interact);
    /* Fix the BDD variable group tree. */
    bddFixTree(table,table->tree);
    return(result);

} /* end of cuddBddAlignToZdd */

/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Comparison function used by qsort.]

  Description [Comparison function used by qsort to order the
  variables according to the number of keys in the subtables.
  Returns the difference in number of keys between the two
  variables being compared.]

  SideEffects [None]

******************************************************************************/
static int
ddUniqueCompare(
  int * ptrX,
  int * ptrY)
{
#if 0
    if (entry[*ptrY] == entry[*ptrX]) {
        return((*ptrX) - (*ptrY));
    }
#endif
    return(entry[*ptrY] - entry[*ptrX]);

} /* end of ddUniqueCompare */


/**Function********************************************************************

  Synopsis    [Swaps any two variables.]

  Description [Swaps any two variables. Returns the set of moves.]

  SideEffects [None]

******************************************************************************/
static Move *
ddSwapAny(
  DdManager * table,
  int  x,
  int  y)
{
    Move        *move, *moves;
    int         xRef,yRef;
    int         xNext,yNext;
    int         size;
    int         limitSize;
    int         tmp;

    if (x >y) {
        tmp = x; x = y; y = tmp;
    }

    xRef = x; yRef = y;

    xNext = cuddNextHigh(table,x);
    yNext = cuddNextLow(table,y);
    moves = NULL;
    limitSize = table->keys - table->isolated;

    for (;;) {
        if ( xNext == yNext) {
            size = cuddSwapInPlace(table,x,xNext);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = x;
            move->y = xNext;
            move->size = size;
            move->next = moves;
            moves = move;

            size = cuddSwapInPlace(table,yNext,y);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = yNext;
            move->y = y;
            move->size = size;
            move->next = moves;
            moves = move;

            size = cuddSwapInPlace(table,x,xNext);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = x;
            move->y = xNext;
            move->size = size;
            move->next = moves;
            moves = move;

            tmp = x; x = y; y = tmp;

        } else if (x == yNext) {

            size = cuddSwapInPlace(table,x,xNext);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = x;
            move->y = xNext;
            move->size = size;
            move->next = moves;
            moves = move;

            tmp = x; x = y; y = tmp;

        } else {
            size = cuddSwapInPlace(table,x,xNext);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = x;
            move->y = xNext;
            move->size = size;
            move->next = moves;
            moves = move;

            size = cuddSwapInPlace(table,yNext,y);
            if (size == 0) goto ddSwapAnyOutOfMem;
            move = (Move *) cuddDynamicAllocNode(table);
            if (move == NULL) goto ddSwapAnyOutOfMem;
            move->x = yNext;
            move->y = y;
            move->size = size;
            move->next = moves;
            moves = move;

            x = xNext;
            y = yNext;
        }

        xNext = cuddNextHigh(table,x);
        yNext = cuddNextLow(table,y);
        if (xNext > yRef) break;

        if ((double) size > table->maxGrowth * (double) limitSize) break;
        if (size < limitSize) limitSize = size;
    }
    if (yNext>=xRef) {
        size = cuddSwapInPlace(table,yNext,y);
        if (size == 0) goto ddSwapAnyOutOfMem;
        move = (Move *) cuddDynamicAllocNode(table);
        if (move == NULL) goto ddSwapAnyOutOfMem;
        move->x = yNext;
        move->y = y;
        move->size = size;
        move->next = moves;
        moves = move;
    }

    return(moves);

ddSwapAnyOutOfMem:
    while (moves != NULL) {
        move = moves->next;
        cuddDeallocMove(table, moves);
        moves = move;
    }
    return(NULL);

} /* end of ddSwapAny */


/**Function********************************************************************

  Synopsis    [Given xLow <= x <= xHigh moves x up and down between the
  boundaries.]

  Description [Given xLow <= x <= xHigh moves x up and down between the
  boundaries. Finds the best position and does the required changes.
  Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
static int
ddSiftingAux(
  DdManager * table,
  int  x,
  int  xLow,
  int  xHigh)
{

    Move        *move;
    Move        *moveUp;                /* list of up moves */
    Move        *moveDown;              /* list of down moves */
    int         initialSize;
    int         result;

    initialSize = table->keys - table->isolated;

    moveDown = NULL;
    moveUp = NULL;

    if (x == xLow) {
        moveDown = ddSiftingDown(table,x,xHigh);
        /* At this point x --> xHigh unless bounding occurred. */
        if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        /* Move backward and stop at best position. */
        result = ddSiftingBackward(table,initialSize,moveDown);
        if (!result) goto ddSiftingAuxOutOfMem;

    } else if (x == xHigh) {
        moveUp = ddSiftingUp(table,x,xLow);
        /* At this point x --> xLow unless bounding occurred. */
        if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        /* Move backward and stop at best position. */
        result = ddSiftingBackward(table,initialSize,moveUp);
        if (!result) goto ddSiftingAuxOutOfMem;

    } else if ((x - xLow) > (xHigh - x)) { /* must go down first: shorter */
        moveDown = ddSiftingDown(table,x,xHigh);
        /* At this point x --> xHigh unless bounding occurred. */
        if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        if (moveDown != NULL) {
            x = moveDown->y;
        }
        moveUp = ddSiftingUp(table,x,xLow);
        if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        /* Move backward and stop at best position */
        result = ddSiftingBackward(table,initialSize,moveUp);
        if (!result) goto ddSiftingAuxOutOfMem;

    } else { /* must go up first: shorter */
        moveUp = ddSiftingUp(table,x,xLow);
        /* At this point x --> xLow unless bounding occurred. */
        if (moveUp == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        if (moveUp != NULL) {
            x = moveUp->x;
        }
        moveDown = ddSiftingDown(table,x,xHigh);
        if (moveDown == (Move *) CUDD_OUT_OF_MEM) goto ddSiftingAuxOutOfMem;
        /* Move backward and stop at best position. */
        result = ddSiftingBackward(table,initialSize,moveDown);
        if (!result) goto ddSiftingAuxOutOfMem;
    }

    while (moveDown != NULL) {
        move = moveDown->next;
        cuddDeallocMove(table, moveDown);
        moveDown = move;
    }
    while (moveUp != NULL) {
        move = moveUp->next;
        cuddDeallocMove(table, moveUp);
        moveUp = move;
    }

    return(1);

ddSiftingAuxOutOfMem:
    if (moveDown != (Move *) CUDD_OUT_OF_MEM) {
        while (moveDown != NULL) {
            move = moveDown->next;
            cuddDeallocMove(table, moveDown);
            moveDown = move;
        }
    }
    if (moveUp != (Move *) CUDD_OUT_OF_MEM) {
        while (moveUp != NULL) {
            move = moveUp->next;
            cuddDeallocMove(table, moveUp);
            moveUp = move;
        }
    }

    return(0);

} /* end of ddSiftingAux */


/**Function********************************************************************

  Synopsis    [Sifts a variable up.]

  Description [Sifts a variable up. Moves y up until either it reaches
  the bound (xLow) or the size of the DD heap increases too much.
  Returns the set of moves in case of success; NULL if memory is full.]

  SideEffects [None]

******************************************************************************/
static Move *
ddSiftingUp(
  DdManager * table,
  int  y,
  int  xLow)
{
    Move        *moves;
    Move        *move;
    int         x;
    int         size;
    int         limitSize;
    int         xindex, yindex;
    int         isolated;
    int         L;      /* lower bound on DD size */
#ifdef DD_DEBUG
    int checkL;
    int z;
    int zindex;
#endif

    moves = NULL;
    yindex = table->invperm[y];

    /* Initialize the lower bound.
    ** The part of the DD below y will not change.
    ** The part of the DD above y that does not interact with y will not
    ** change. The rest may vanish in the best case, except for
    ** the nodes at level xLow, which will not vanish, regardless.
    */
    limitSize = L = table->keys - table->isolated;
    for (x = xLow + 1; x < y; x++) {
        xindex = table->invperm[x];
        if (cuddTestInteract(table,xindex,yindex)) {
            isolated = table->vars[xindex]->ref == 1;
            L -= table->subtables[x].keys - isolated;
        }
    }
    isolated = table->vars[yindex]->ref == 1;
    L -= table->subtables[y].keys - isolated;

    x = cuddNextLow(table,y);
    while (x >= xLow && L <= limitSize) {
        xindex = table->invperm[x];
#ifdef DD_DEBUG
        checkL = table->keys - table->isolated;
        for (z = xLow + 1; z < y; z++) {
            zindex = table->invperm[z];
            if (cuddTestInteract(table,zindex,yindex)) {
                isolated = table->vars[zindex]->ref == 1;
                checkL -= table->subtables[z].keys - isolated;
            }
        }
        isolated = table->vars[yindex]->ref == 1;
        checkL -= table->subtables[y].keys - isolated;
        assert(L == checkL);
#endif
        size = cuddSwapInPlace(table,x,y);
        if (size == 0) goto ddSiftingUpOutOfMem;
        /* Update the lower bound. */
        if (cuddTestInteract(table,xindex,yindex)) {
            isolated = table->vars[xindex]->ref == 1;
            L += table->subtables[y].keys - isolated;
        }
        move = (Move *) cuddDynamicAllocNode(table);
        if (move == NULL) goto ddSiftingUpOutOfMem;
        move->x = x;
        move->y = y;
        move->size = size;
        move->next = moves;
        moves = move;
        if ((double) size > (double) limitSize * table->maxGrowth) break;
        if (size < limitSize) limitSize = size;
        y = x;
        x = cuddNextLow(table,y);
    }
    return(moves);

ddSiftingUpOutOfMem:
    while (moves != NULL) {
        move = moves->next;
        cuddDeallocMove(table, moves);
        moves = move;
    }
    return((Move *) CUDD_OUT_OF_MEM);

} /* end of ddSiftingUp */


/**Function********************************************************************

  Synopsis    [Sifts a variable down.]

  Description [Sifts a variable down. Moves x down until either it
  reaches the bound (xHigh) or the size of the DD heap increases too
  much. Returns the set of moves in case of success; NULL if memory is
  full.]

  SideEffects [None]

******************************************************************************/
static Move *
ddSiftingDown(
  DdManager * table,
  int  x,
  int  xHigh)
{
    Move        *moves;
    Move        *move;
    int         y;
    int         size;
    int         R;      /* upper bound on node decrease */
    int         limitSize;
    int         xindex, yindex;
    int         isolated;
#ifdef DD_DEBUG
    int         checkR;
    int         z;
    int         zindex;
#endif

    moves = NULL;
    /* Initialize R */
    xindex = table->invperm[x];
    limitSize = size = table->keys - table->isolated;
    R = 0;
    for (y = xHigh; y > x; y--) {
        yindex = table->invperm[y];
        if (cuddTestInteract(table,xindex,yindex)) {
            isolated = table->vars[yindex]->ref == 1;
            R += table->subtables[y].keys - isolated;
        }
    }

    y = cuddNextHigh(table,x);
    while (y <= xHigh && size - R < limitSize) {
#ifdef DD_DEBUG
        checkR = 0;
        for (z = xHigh; z > x; z--) {
            zindex = table->invperm[z];
            if (cuddTestInteract(table,xindex,zindex)) {
                isolated = table->vars[zindex]->ref == 1;
                checkR += table->subtables[z].keys - isolated;
            }
        }
        assert(R == checkR);
#endif
        /* Update upper bound on node decrease. */
        yindex = table->invperm[y];
        if (cuddTestInteract(table,xindex,yindex)) {
            isolated = table->vars[yindex]->ref == 1;
            R -= table->subtables[y].keys - isolated;
        }
        size = cuddSwapInPlace(table,x,y);
        if (size == 0) goto ddSiftingDownOutOfMem;
        move = (Move *) cuddDynamicAllocNode(table);
        if (move == NULL) goto ddSiftingDownOutOfMem;
        move->x = x;
        move->y = y;
        move->size = size;
        move->next = moves;
        moves = move;
        if ((double) size > (double) limitSize * table->maxGrowth) break;
        if (size < limitSize) limitSize = size;
        x = y;
        y = cuddNextHigh(table,x);
    }
    return(moves);

ddSiftingDownOutOfMem:
    while (moves != NULL) {
        move = moves->next;
        cuddDeallocMove(table, moves);
        moves = move;
    }
    return((Move *) CUDD_OUT_OF_MEM);

} /* end of ddSiftingDown */


/**Function********************************************************************

  Synopsis    [Given a set of moves, returns the DD heap to the position
  giving the minimum size.]

  Description [Given a set of moves, returns the DD heap to the
  position giving the minimum size. In case of ties, returns to the
  closest position giving the minimum size. Returns 1 in case of
  success; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
static int
ddSiftingBackward(
  DdManager * table,
  int  size,
  Move * moves)
{
    Move *move;
    int res;

    for (move = moves; move != NULL; move = move->next) {
        if (move->size < size) {
            size = move->size;
        }
    }

    for (move = moves; move != NULL; move = move->next) {
        if (move->size == size) return(1);
        res = cuddSwapInPlace(table,(int)move->x,(int)move->y);
        if (!res) return(0);
    }

    return(1);

} /* end of ddSiftingBackward */


/**Function********************************************************************

  Synopsis    [Prepares the DD heap for dynamic reordering.]

  Description [Prepares the DD heap for dynamic reordering. Does
  garbage collection, to guarantee that there are no dead nodes;
  clears the cache, which is invalidated by dynamic reordering; initializes
  the number of isolated projection functions; and initializes the
  interaction matrix.  Returns 1 in case of success; 0 otherwise.]

  SideEffects [None]

******************************************************************************/
static int
ddReorderPreprocess(
  DdManager * table)
{
    int i;
    int res;

    /* Clear the cache. */
    cuddCacheFlush(table);
    cuddLocalCacheClearAll(table);

    /* Eliminate dead nodes. Do not scan the cache again. */
    cuddGarbageCollect(table,0);

    /* Initialize number of isolated projection functions. */
    table->isolated = 0;
    for (i = 0; i < table->size; i++) {
        if (table->vars[i]->ref == 1) table->isolated++;
    }

    /* Initialize the interaction matrix. */
    res = cuddInitInteract(table);
    if (res == 0) return(0);

    return(1);

} /* end of ddReorderPreprocess */


/**Function********************************************************************

  Synopsis    [Cleans up at the end of reordering.]

  Description []

  SideEffects [None]

******************************************************************************/
static int
ddReorderPostprocess(
  DdManager * table)
{

#ifdef DD_VERBOSE
    (void) fflush(table->out);
#endif

    /* Free interaction matrix. */
    ABC_FREE(table->interact);

    return(1);

} /* end of ddReorderPostprocess */


/**Function********************************************************************

  Synopsis    [Reorders variables according to a given permutation.]

  Description [Reorders variables according to a given permutation.
  The i-th permutation array contains the index of the variable that
  should be brought to the i-th level. ddShuffle assumes that no
  dead nodes are present and that the interaction matrix is properly
  initialized.  The reordering is achieved by a series of upward sifts.
  Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

  SeeAlso []

******************************************************************************/
static int
ddShuffle(
  DdManager * table,
  int * permutation)
{
    int         index;
    int         level;
    int         position;
    int         numvars;
    int         result;
#ifdef DD_STATS
    long        localTime;
    int         initialSize;
    int         finalSize;
    int         previousSize;
#endif

    ddTotalNumberSwapping = 0;
#ifdef DD_STATS
    localTime = util_cpu_time();
    initialSize = table->keys - table->isolated;
    (void) fprintf(table->out,"#:I_SHUFFLE %8d: initial size\n",
                   initialSize);
    ddTotalNISwaps = 0;
#endif

    numvars = table->size;

    for (level = 0; level < numvars; level++) {
        index = permutation[level];
        position = table->perm[index];
#ifdef DD_STATS
        previousSize = table->keys - table->isolated;
#endif
        result = ddSiftUp(table,position,level);
        if (!result) return(0);
#ifdef DD_STATS
        if (table->keys < (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"-");
        } else if (table->keys > (unsigned) previousSize + table->isolated) {
            (void) fprintf(table->out,"+");     /* should never happen */
        } else {
            (void) fprintf(table->out,"=");
        }
        fflush(table->out);
#endif
    }

#ifdef DD_STATS
    (void) fprintf(table->out,"\n");
    finalSize = table->keys - table->isolated;
    (void) fprintf(table->out,"#:F_SHUFFLE %8d: final size\n",finalSize);
    (void) fprintf(table->out,"#:T_SHUFFLE %8g: total time (sec)\n",
        ((double)(util_cpu_time() - localTime)/1000.0));
    (void) fprintf(table->out,"#:N_SHUFFLE %8d: total swaps\n",
                   ddTotalNumberSwapping);
    (void) fprintf(table->out,"#:M_SHUFFLE %8d: NI swaps\n",ddTotalNISwaps);
#endif

    return(1);

} /* end of ddShuffle */


/**Function********************************************************************

  Synopsis    [Moves one variable up.]

  Description [Takes a variable from position x and sifts it up to
  position xLow;  xLow should be less than or equal to x.
  Returns 1 if successful; 0 otherwise]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
ddSiftUp(
  DdManager * table,
  int  x,
  int  xLow)
{
    int        y;
    int        size;

    y = cuddNextLow(table,x);
    while (y >= xLow) {
        size = cuddSwapInPlace(table,y,x);
        if (size == 0) {
            return(0);
        }
        x = y;
        y = cuddNextLow(table,x);
    }
    return(1);

} /* end of ddSiftUp */


/**Function********************************************************************

  Synopsis    [Fixes the BDD variable group tree after a shuffle.]

  Description [Fixes the BDD variable group tree after a
  shuffle. Assumes that the order of the variables in a terminal node
  has not been changed.]

  SideEffects [Changes the BDD variable group tree.]

  SeeAlso     []

******************************************************************************/
static void
bddFixTree(
  DdManager * table,
  MtrNode * treenode)
{
    if (treenode == NULL) return;
    treenode->low = ((int) treenode->index < table->size) ?
        table->perm[treenode->index] : treenode->index;
    if (treenode->child != NULL) {
        bddFixTree(table, treenode->child);
    }
    if (treenode->younger != NULL)
        bddFixTree(table, treenode->younger);
    if (treenode->parent != NULL && treenode->low < treenode->parent->low) {
        treenode->parent->low = treenode->low;
        treenode->parent->index = treenode->index;
    }
    return;

} /* end of bddFixTree */


/**Function********************************************************************

  Synopsis    [Updates the BDD variable group tree before a shuffle.]

  Description [Updates the BDD variable group tree before a shuffle.
  Returns 1 if successful; 0 otherwise.]

  SideEffects [Changes the BDD variable group tree.]

  SeeAlso     []

******************************************************************************/
static int
ddUpdateMtrTree(
  DdManager * table,
  MtrNode * treenode,
  int * perm,
  int * invperm)
{
    int i, size;
    int index, level, minLevel, maxLevel, minIndex;

    if (treenode == NULL) return(1);

    minLevel = CUDD_MAXINDEX;
    maxLevel = 0;
    minIndex = -1;
    /* i : level */
    for (i = treenode->low; i < treenode->low + treenode->size; i++) {
        index = table->invperm[i];
        level = perm[index];
        if (level < minLevel) {
            minLevel = level;
            minIndex = index;
        }
        if (level > maxLevel)
            maxLevel = level;
    }
    size = maxLevel - minLevel + 1;
    if (minIndex == -1) return(0);
    if (size == treenode->size) {
        treenode->low = minLevel;
        treenode->index = minIndex;
    } else {
        return(0);
    }

    if (treenode->child != NULL) {
        if (!ddUpdateMtrTree(table, treenode->child, perm, invperm))
            return(0);
    }
    if (treenode->younger != NULL) {
        if (!ddUpdateMtrTree(table, treenode->younger, perm, invperm))
            return(0);
    }
    return(1);
}


/**Function********************************************************************

  Synopsis    [Checks the BDD variable group tree before a shuffle.]

  Description [Checks the BDD variable group tree before a shuffle.
  Returns 1 if successful; 0 otherwise.]

  SideEffects [Changes the BDD variable group tree.]

  SeeAlso     []

******************************************************************************/
static int
ddCheckPermuation(
  DdManager * table,
  MtrNode * treenode,
  int * perm,
  int * invperm)
{
    int i, size;
    int index, level, minLevel, maxLevel;

    if (treenode == NULL) return(1);

    minLevel = table->size;
    maxLevel = 0;
    /* i : level */
    for (i = treenode->low; i < treenode->low + treenode->size; i++) {
        index = table->invperm[i];
        level = perm[index];
        if (level < minLevel)
            minLevel = level;
        if (level > maxLevel)
            maxLevel = level;
    }
    size = maxLevel - minLevel + 1;
    if (size != treenode->size)
        return(0);

    if (treenode->child != NULL) {
        if (!ddCheckPermuation(table, treenode->child, perm, invperm))
            return(0);
    }
    if (treenode->younger != NULL) {
        if (!ddCheckPermuation(table, treenode->younger, perm, invperm))
            return(0);
    }
    return(1);
}


ABC_NAMESPACE_IMPL_END