summaryrefslogtreecommitdiffstats
path: root/src/bdd/cudd/cuddSat.c
blob: c3a161b4b064f2a3b591ed42c0c68b205e857b4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
/**CFile***********************************************************************

  FileName    [cuddSat.c]

  PackageName [cudd]

  Synopsis    [Functions for the solution of satisfiability related
  problems.]

  Description [External procedures included in this file:
                <ul>
                <li> Cudd_Eval()
                <li> Cudd_ShortestPath()
                <li> Cudd_LargestCube()
                <li> Cudd_ShortestLength()
                <li> Cudd_Decreasing()
                <li> Cudd_Increasing()
                <li> Cudd_EquivDC()
                <li> Cudd_bddLeqUnless()
                <li> Cudd_EqualSupNorm()
                <li> Cudd_bddMakePrime()
                </ul>
        Internal procedures included in this module:
                <ul>
                <li> cuddBddMakePrime()
                </ul>
        Static procedures included in this module:
                <ul>
                <li> freePathPair()
                <li> getShortest()
                <li> getPath()
                <li> getLargest()
                <li> getCube()
                </ul>]

  Author      [Seh-Woong Jeong, Fabio Somenzi]

  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]

******************************************************************************/

#include "util_hack.h"
#include "cuddInt.h"

ABC_NAMESPACE_IMPL_START



/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

#define DD_BIGGY        1000000

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

typedef struct cuddPathPair {
    int pos;
    int neg;
} cuddPathPair;

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddSat.c,v 1.36 2009/03/08 02:49:02 fabio Exp $";
#endif

static  DdNode  *one, *zero;

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

#define WEIGHT(weight, col)     ((weight) == NULL ? 1 : weight[col])

#ifdef __cplusplus
extern "C" {
#endif

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static enum st_retval freePathPair (char *key, char *value, char *arg);
static cuddPathPair getShortest (DdNode *root, int *cost, int *support, st_table *visited);
static DdNode * getPath (DdManager *manager, st_table *visited, DdNode *f, int *weight, int cost);
static cuddPathPair getLargest (DdNode *root, st_table *visited);
static DdNode * getCube (DdManager *manager, st_table *visited, DdNode *f, int cost);

/**AutomaticEnd***************************************************************/

#ifdef __cplusplus
}
#endif

/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Returns the value of a DD for a given variable assignment.]

  Description [Finds the value of a DD for a given variable
  assignment. The variable assignment is passed in an array of int's,
  that should specify a zero or a one for each variable in the support
  of the function. Returns a pointer to a constant node. No new nodes
  are produced.]

  SideEffects [None]

  SeeAlso     [Cudd_bddLeq Cudd_addEvalConst]

******************************************************************************/
DdNode *
Cudd_Eval(
  DdManager * dd,
  DdNode * f,
  int * inputs)
{
    int comple;
    DdNode *ptr;

    comple = Cudd_IsComplement(f);
    ptr = Cudd_Regular(f);

    while (!cuddIsConstant(ptr)) {
        if (inputs[ptr->index] == 1) {
            ptr = cuddT(ptr);
        } else {
            comple ^= Cudd_IsComplement(cuddE(ptr));
            ptr = Cudd_Regular(cuddE(ptr));
        }
    }
    return(Cudd_NotCond(ptr,comple));

} /* end of Cudd_Eval */


/**Function********************************************************************

  Synopsis    [Finds a shortest path in a DD.]

  Description [Finds a shortest path in a DD. f is the DD we want to
  get the shortest path for; weight\[i\] is the weight of the THEN arc
  coming from the node whose index is i. If weight is NULL, then unit
  weights are assumed for all THEN arcs. All ELSE arcs have 0 weight.
  If non-NULL, both weight and support should point to arrays with at
  least as many entries as there are variables in the manager.
  Returns the shortest path as the BDD of a cube.]

  SideEffects [support contains on return the true support of f.
  If support is NULL on entry, then Cudd_ShortestPath does not compute
  the true support info. length contains the length of the path.]

  SeeAlso     [Cudd_ShortestLength Cudd_LargestCube]

******************************************************************************/
DdNode *
Cudd_ShortestPath(
  DdManager * manager,
  DdNode * f,
  int * weight,
  int * support,
  int * length)
{
    DdNode      *F;
    st_table    *visited;
    DdNode      *sol;
    cuddPathPair *rootPair;
    int         complement, cost;
    int         i;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    /* Initialize support. Support does not depend on variable order.
    ** Hence, it does not need to be reinitialized if reordering occurs.
    */
    if (support) {
      for (i = 0; i < manager->size; i++) {
        support[i] = 0;
      }
    }

    if (f == Cudd_Not(one) || f == zero) {
      *length = DD_BIGGY;
      return(Cudd_Not(one));
    }
    /* From this point on, a path exists. */

    do {
        manager->reordered = 0;

        /* Initialize visited table. */
        visited = st_init_table(st_ptrcmp, st_ptrhash);

        /* Now get the length of the shortest path(s) from f to 1. */
        (void) getShortest(f, weight, support, visited);

        complement = Cudd_IsComplement(f);

        F = Cudd_Regular(f);

        if (!st_lookup(visited, (const char *)F, (char **)&rootPair)) return(NULL);

        if (complement) {
          cost = rootPair->neg;
        } else {
          cost = rootPair->pos;
        }

        /* Recover an actual shortest path. */
        sol = getPath(manager,visited,f,weight,cost);

        st_foreach(visited, freePathPair, NULL);
        st_free_table(visited);

    } while (manager->reordered == 1);

    *length = cost;
    return(sol);

} /* end of Cudd_ShortestPath */


/**Function********************************************************************

  Synopsis    [Finds a largest cube in a DD.]

  Description [Finds a largest cube in a DD. f is the DD we want to
  get the largest cube for. The problem is translated into the one of
  finding a shortest path in f, when both THEN and ELSE arcs are assumed to
  have unit length. This yields a largest cube in the disjoint cover
  corresponding to the DD. Therefore, it is not necessarily the largest
  implicant of f.  Returns the largest cube as a BDD.]

  SideEffects [The number of literals of the cube is returned in length.]

  SeeAlso     [Cudd_ShortestPath]

******************************************************************************/
DdNode *
Cudd_LargestCube(
  DdManager * manager,
  DdNode * f,
  int * length)
{
    register    DdNode  *F;
    st_table    *visited;
    DdNode      *sol;
    cuddPathPair *rootPair;
    int         complement, cost;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    if (f == Cudd_Not(one) || f == zero) {
        *length = DD_BIGGY;
        return(Cudd_Not(one));
    }
    /* From this point on, a path exists. */

    do {
        manager->reordered = 0;

        /* Initialize visited table. */
        visited = st_init_table(st_ptrcmp, st_ptrhash);

        /* Now get the length of the shortest path(s) from f to 1. */
        (void) getLargest(f, visited);

        complement = Cudd_IsComplement(f);

        F = Cudd_Regular(f);

        if (!st_lookup(visited, (const char *)F, (char **)&rootPair)) return(NULL);

        if (complement) {
          cost = rootPair->neg;
        } else {
          cost = rootPair->pos;
        }

        /* Recover an actual shortest path. */
        sol = getCube(manager,visited,f,cost);

        st_foreach(visited, freePathPair, NULL);
        st_free_table(visited);

    } while (manager->reordered == 1);

    *length = cost;
    return(sol);

} /* end of Cudd_LargestCube */


/**Function********************************************************************

  Synopsis    [Find the length of the shortest path(s) in a DD.]

  Description [Find the length of the shortest path(s) in a DD. f is
  the DD we want to get the shortest path for; weight\[i\] is the
  weight of the THEN edge coming from the node whose index is i. All
  ELSE edges have 0 weight. Returns the length of the shortest
  path(s) if such a path is found; a large number if the function is
  identically 0, and CUDD_OUT_OF_MEM in case of failure.]

  SideEffects [None]

  SeeAlso     [Cudd_ShortestPath]

******************************************************************************/
int
Cudd_ShortestLength(
  DdManager * manager,
  DdNode * f,
  int * weight)
{
    register    DdNode  *F;
    st_table    *visited;
    cuddPathPair *my_pair;
    int         complement, cost;

    one = DD_ONE(manager);
    zero = DD_ZERO(manager);

    if (f == Cudd_Not(one) || f == zero) {
        return(DD_BIGGY);
    }

    /* From this point on, a path exists. */
    /* Initialize visited table and support. */
    visited = st_init_table(st_ptrcmp, st_ptrhash);

    /* Now get the length of the shortest path(s) from f to 1. */
    (void) getShortest(f, weight, NULL, visited);

    complement = Cudd_IsComplement(f);

    F = Cudd_Regular(f);

    if (!st_lookup(visited, (const char *)F, (char **)&my_pair)) return(CUDD_OUT_OF_MEM);
    
    if (complement) {
        cost = my_pair->neg;
    } else {
        cost = my_pair->pos;
    }

    st_foreach(visited, freePathPair, NULL);
    st_free_table(visited);

    return(cost);

} /* end of Cudd_ShortestLength */


/**Function********************************************************************

  Synopsis    [Determines whether a BDD is negative unate in a
  variable.]

  Description [Determines whether the function represented by BDD f is
  negative unate (monotonic decreasing) in variable i. Returns the
  constant one is f is unate and the (logical) constant zero if it is not.
  This function does not generate any new nodes.]

  SideEffects [None]

  SeeAlso     [Cudd_Increasing]

******************************************************************************/
DdNode *
Cudd_Decreasing(
  DdManager * dd,
  DdNode * f,
  int  i)
{
    unsigned int topf, level;
    DdNode *F, *fv, *fvn, *res;
    DD_CTFP cacheOp;

    statLine(dd);
#ifdef DD_DEBUG
    assert(0 <= i && i < dd->size);
#endif

    F = Cudd_Regular(f);
    topf = cuddI(dd,F->index);

    /* Check terminal case. If topf > i, f does not depend on var.
    ** Therefore, f is unate in i.
    */
    level = (unsigned) dd->perm[i];
    if (topf > level) {
        return(DD_ONE(dd));
    }

    /* From now on, f is not constant. */

    /* Check cache. */
    cacheOp = (DD_CTFP) Cudd_Decreasing;
    res = cuddCacheLookup2(dd,cacheOp,f,dd->vars[i]);
    if (res != NULL) {
        return(res);
    }

    /* Compute cofactors. */
    fv = cuddT(F); fvn = cuddE(F);
    if (F != f) {
        fv = Cudd_Not(fv);
        fvn = Cudd_Not(fvn);
    }

    if (topf == (unsigned) level) {
        /* Special case: if fv is regular, fv(1,...,1) = 1;
        ** If in addition fvn is complemented, fvn(1,...,1) = 0.
        ** But then f(1,1,...,1) > f(0,1,...,1). Hence f is not
        ** monotonic decreasing in i.
        */
        if (!Cudd_IsComplement(fv) && Cudd_IsComplement(fvn)) {
            return(Cudd_Not(DD_ONE(dd)));
        }
        res = Cudd_bddLeq(dd,fv,fvn) ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd));
    } else {
        res = Cudd_Decreasing(dd,fv,i);
        if (res == DD_ONE(dd)) {
            res = Cudd_Decreasing(dd,fvn,i);
        }
    }

    cuddCacheInsert2(dd,cacheOp,f,dd->vars[i],res);
    return(res);

} /* end of Cudd_Decreasing */


/**Function********************************************************************

  Synopsis    [Determines whether a BDD is positive unate in a
  variable.]

  Description [Determines whether the function represented by BDD f is
  positive unate (monotonic increasing) in variable i. It is based on
  Cudd_Decreasing and the fact that f is monotonic increasing in i if
  and only if its complement is monotonic decreasing in i.]

  SideEffects [None]

  SeeAlso     [Cudd_Decreasing]

******************************************************************************/
DdNode *
Cudd_Increasing(
  DdManager * dd,
  DdNode * f,
  int  i)
{
    return(Cudd_Decreasing(dd,Cudd_Not(f),i));

} /* end of Cudd_Increasing */


/**Function********************************************************************

  Synopsis    [Tells whether F and G are identical wherever D is 0.]

  Description [Tells whether F and G are identical wherever D is 0.  F
  and G are either two ADDs or two BDDs.  D is either a 0-1 ADD or a
  BDD.  The function returns 1 if F and G are equivalent, and 0
  otherwise.  No new nodes are created.]

  SideEffects [None]

  SeeAlso     [Cudd_bddLeqUnless]

******************************************************************************/
int
Cudd_EquivDC(
  DdManager * dd,
  DdNode * F,
  DdNode * G,
  DdNode * D)
{
    DdNode *tmp, *One, *Gr, *Dr;
    DdNode *Fv, *Fvn, *Gv, *Gvn, *Dv, *Dvn;
    int res;
    unsigned int flevel, glevel, dlevel, top;

    One = DD_ONE(dd);

    statLine(dd);
    /* Check terminal cases. */
    if (D == One || F == G) return(1);
    if (D == Cudd_Not(One) || D == DD_ZERO(dd) || F == Cudd_Not(G)) return(0);

    /* From now on, D is non-constant. */

    /* Normalize call to increase cache efficiency. */
    if (F > G) {
        tmp = F;
        F = G;
        G = tmp;
    }
    if (Cudd_IsComplement(F)) {
        F = Cudd_Not(F);
        G = Cudd_Not(G);
    }

    /* From now on, F is regular. */

    /* Check cache. */
    tmp = cuddCacheLookup(dd,DD_EQUIV_DC_TAG,F,G,D);
    if (tmp != NULL) return(tmp == One);

    /* Find splitting variable. */
    flevel = cuddI(dd,F->index);
    Gr = Cudd_Regular(G);
    glevel = cuddI(dd,Gr->index);
    top = ddMin(flevel,glevel);
    Dr = Cudd_Regular(D);
    dlevel = dd->perm[Dr->index];
    top = ddMin(top,dlevel);

    /* Compute cofactors. */
    if (top == flevel) {
        Fv = cuddT(F);
        Fvn = cuddE(F);
    } else {
        Fv = Fvn = F;
    }
    if (top == glevel) {
        Gv = cuddT(Gr);
        Gvn = cuddE(Gr);
        if (G != Gr) {
            Gv = Cudd_Not(Gv);
            Gvn = Cudd_Not(Gvn);
        }
    } else {
        Gv = Gvn = G;
    }
    if (top == dlevel) {
        Dv = cuddT(Dr);
        Dvn = cuddE(Dr);
        if (D != Dr) {
            Dv = Cudd_Not(Dv);
            Dvn = Cudd_Not(Dvn);
        }
    } else {
        Dv = Dvn = D;
    }

    /* Solve recursively. */
    res = Cudd_EquivDC(dd,Fv,Gv,Dv);
    if (res != 0) {
        res = Cudd_EquivDC(dd,Fvn,Gvn,Dvn);
    }
    cuddCacheInsert(dd,DD_EQUIV_DC_TAG,F,G,D,(res) ? One : Cudd_Not(One));

    return(res);

} /* end of Cudd_EquivDC */


/**Function********************************************************************

  Synopsis    [Tells whether f is less than of equal to G unless D is 1.]

  Description [Tells whether f is less than of equal to G unless D is
  1.  f, g, and D are BDDs.  The function returns 1 if f is less than
  of equal to G, and 0 otherwise.  No new nodes are created.]

  SideEffects [None]

  SeeAlso     [Cudd_EquivDC Cudd_bddLeq Cudd_bddIteConstant]

******************************************************************************/
int
Cudd_bddLeqUnless(
  DdManager *dd,
  DdNode *f,
  DdNode *g,
  DdNode *D)
{
    DdNode *tmp, *One, *F, *G;
    DdNode *Ft, *Fe, *Gt, *Ge, *Dt, *De;
    int res;
    unsigned int flevel, glevel, dlevel, top;

    statLine(dd);

    One = DD_ONE(dd);

    /* Check terminal cases. */
    if (f == g || g == One || f == Cudd_Not(One) || D == One ||
        D == f || D == Cudd_Not(g)) return(1);
    /* Check for two-operand cases. */
    if (D == Cudd_Not(One) || D == g || D == Cudd_Not(f))
        return(Cudd_bddLeq(dd,f,g));
    if (g == Cudd_Not(One) || g == Cudd_Not(f)) return(Cudd_bddLeq(dd,f,D));
    if (f == One) return(Cudd_bddLeq(dd,Cudd_Not(g),D));

    /* From now on, f, g, and D are non-constant, distinct, and
    ** non-complementary. */

    /* Normalize call to increase cache efficiency.  We rely on the
    ** fact that f <= g unless D is equivalent to not(g) <= not(f)
    ** unless D and to f <= D unless g.  We make sure that D is
    ** regular, and that at most one of f and g is complemented.  We also
    ** ensure that when two operands can be swapped, the one with the
    ** lowest address comes first. */

    if (Cudd_IsComplement(D)) {
        if (Cudd_IsComplement(g)) {
            /* Special case: if f is regular and g is complemented,
            ** f(1,...,1) = 1 > 0 = g(1,...,1).  If D(1,...,1) = 0, return 0.
            */
            if (!Cudd_IsComplement(f)) return(0);
            /* !g <= D unless !f  or  !D <= g unless !f */
            tmp = D;
            D = Cudd_Not(f);
            if (g < tmp) {
                f = Cudd_Not(g);
                g = tmp;
            } else {
                f = Cudd_Not(tmp);
            }
        } else {
            if (Cudd_IsComplement(f)) {
                /* !D <= !f unless g  or  !D <= g unless !f */
                tmp = f;
                f = Cudd_Not(D);
                if (tmp < g) {
                    D = g;
                    g = Cudd_Not(tmp);
                } else {
                    D = Cudd_Not(tmp);
                }
            } else {
                /* f <= D unless g  or  !D <= !f unless g */
                tmp = D;
                D = g;
                if (tmp < f) {
                    g = Cudd_Not(f);
                    f = Cudd_Not(tmp);
                } else {
                    g = tmp;
                }
            }
        }
    } else {
        if (Cudd_IsComplement(g)) {
            if (Cudd_IsComplement(f)) {
                /* !g <= !f unless D  or  !g <= D unless !f */
                tmp = f;
                f = Cudd_Not(g);
                if (D < tmp) {
                    g = D;
                    D = Cudd_Not(tmp);
                } else {
                    g = Cudd_Not(tmp);
                }
            } else {
                /* f <= g unless D  or  !g <= !f unless D */
                if (g < f) {
                    tmp = g;
                    g = Cudd_Not(f);
                    f = Cudd_Not(tmp);
                }
            }
        } else {
            /* f <= g unless D  or  f <= D unless g */
            if (D < g) {
                tmp = D;
                D = g;
                g = tmp;
            }
        }
    }

    /* From now on, D is regular. */

    /* Check cache. */
    tmp = cuddCacheLookup(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D);
    if (tmp != NULL) return(tmp == One);

    /* Find splitting variable. */
    F = Cudd_Regular(f);
    flevel = dd->perm[F->index];
    G = Cudd_Regular(g);
    glevel = dd->perm[G->index];
    top = ddMin(flevel,glevel);
    dlevel = dd->perm[D->index];
    top = ddMin(top,dlevel);

    /* Compute cofactors. */
    if (top == flevel) {
        Ft = cuddT(F);
        Fe = cuddE(F);
        if (F != f) {
            Ft = Cudd_Not(Ft);
            Fe = Cudd_Not(Fe);
        }
    } else {
        Ft = Fe = f;
    }
    if (top == glevel) {
        Gt = cuddT(G);
        Ge = cuddE(G);
        if (G != g) {
            Gt = Cudd_Not(Gt);
            Ge = Cudd_Not(Ge);
        }
    } else {
        Gt = Ge = g;
    }
    if (top == dlevel) {
        Dt = cuddT(D);
        De = cuddE(D);
    } else {
        Dt = De = D;
    }

    /* Solve recursively. */
    res = Cudd_bddLeqUnless(dd,Ft,Gt,Dt);
    if (res != 0) {
        res = Cudd_bddLeqUnless(dd,Fe,Ge,De);
    }
    cuddCacheInsert(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D,Cudd_NotCond(One,!res));

    return(res);

} /* end of Cudd_bddLeqUnless */


/**Function********************************************************************

  Synopsis    [Compares two ADDs for equality within tolerance.]

  Description [Compares two ADDs for equality within tolerance. Two
  ADDs are reported to be equal if the maximum difference between them
  (the sup norm of their difference) is less than or equal to the
  tolerance parameter. Returns 1 if the two ADDs are equal (within
  tolerance); 0 otherwise. If parameter <code>pr</code> is positive
  the first failure is reported to the standard output.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
int
Cudd_EqualSupNorm(
  DdManager * dd /* manager */,
  DdNode * f /* first ADD */,
  DdNode * g /* second ADD */,
  CUDD_VALUE_TYPE  tolerance /* maximum allowed difference */,
  int  pr /* verbosity level */)
{
    DdNode *fv, *fvn, *gv, *gvn, *r;
    unsigned int topf, topg;

    statLine(dd);
    /* Check terminal cases. */
    if (f == g) return(1);
    if (Cudd_IsConstant(f) && Cudd_IsConstant(g)) {
        if (ddEqualVal(cuddV(f),cuddV(g),tolerance)) {
            return(1);
        } else {
            if (pr>0) {
                (void) fprintf(dd->out,"Offending nodes:\n");
                (void) fprintf(dd->out,
                               "f: address = %p\t value = %40.30f\n",
                               (void *) f, cuddV(f));
                (void) fprintf(dd->out,
                               "g: address = %p\t value = %40.30f\n",
                               (void *) g, cuddV(g));
            }
            return(0);
        }
    }

    /* We only insert the result in the cache if the comparison is
    ** successful. Therefore, if we hit we return 1. */
    r = cuddCacheLookup2(dd,(DD_CTFP)Cudd_EqualSupNorm,f,g);
    if (r != NULL) {
        return(1);
    }

    /* Compute the cofactors and solve the recursive subproblems. */
    topf = cuddI(dd,f->index);
    topg = cuddI(dd,g->index);

    if (topf <= topg) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
    if (topg <= topf) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}

    if (!Cudd_EqualSupNorm(dd,fv,gv,tolerance,pr)) return(0);
    if (!Cudd_EqualSupNorm(dd,fvn,gvn,tolerance,pr)) return(0);

    cuddCacheInsert2(dd,(DD_CTFP)Cudd_EqualSupNorm,f,g,DD_ONE(dd));

    return(1);

} /* end of Cudd_EqualSupNorm */


/**Function********************************************************************

  Synopsis    [Expands cube to a prime implicant of f.]

  Description [Expands cube to a prime implicant of f. Returns the prime
  if successful; NULL otherwise.  In particular, NULL is returned if cube
  is not a real cube or is not an implicant of f.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
Cudd_bddMakePrime(
  DdManager *dd /* manager */,
  DdNode *cube /* cube to be expanded */,
  DdNode *f /* function of which the cube is to be made a prime */)
{
    DdNode *res;

    if (!Cudd_bddLeq(dd,cube,f)) return(NULL);

    do {
        dd->reordered = 0;
        res = cuddBddMakePrime(dd,cube,f);
    } while (dd->reordered == 1);
    return(res);

} /* end of Cudd_bddMakePrime */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_bddMakePrime.]

  Description [Performs the recursive step of Cudd_bddMakePrime.
  Returns the prime if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
cuddBddMakePrime(
  DdManager *dd /* manager */,
  DdNode *cube /* cube to be expanded */,
  DdNode *f /* function of which the cube is to be made a prime */)
{
    DdNode *scan;
    DdNode *t, *e;
    DdNode *res = cube;
    DdNode *zero = Cudd_Not(DD_ONE(dd));

    Cudd_Ref(res);
    scan = cube;
    while (!Cudd_IsConstant(scan)) {
        DdNode *reg = Cudd_Regular(scan);
        DdNode *var = dd->vars[reg->index];
        DdNode *expanded = Cudd_bddExistAbstract(dd,res,var);
        if (expanded == NULL) {
            return(NULL);
        }
        Cudd_Ref(expanded);
        if (Cudd_bddLeq(dd,expanded,f)) {
            Cudd_RecursiveDeref(dd,res);
            res = expanded;
        } else {
            Cudd_RecursiveDeref(dd,expanded);
        }
        cuddGetBranches(scan,&t,&e);
        if (t == zero) {
            scan = e;
        } else if (e == zero) {
            scan = t;
        } else {
            Cudd_RecursiveDeref(dd,res);
            return(NULL);       /* cube is not a cube */
        }
    }

    if (scan == DD_ONE(dd)) {
        Cudd_Deref(res);
        return(res);
    } else {
        Cudd_RecursiveDeref(dd,res);
        return(NULL);
    }

} /* end of cuddBddMakePrime */


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Frees the entries of the visited symbol table.]

  Description [Frees the entries of the visited symbol table. Returns
  ST_CONTINUE.]

  SideEffects [None]

******************************************************************************/
static enum st_retval
freePathPair(
  char * key,
  char * value,
  char * arg)
{
    cuddPathPair *pair;

    pair = (cuddPathPair *) value;
        ABC_FREE(pair);
    return(ST_CONTINUE);

} /* end of freePathPair */


/**Function********************************************************************

  Synopsis    [Finds the length of the shortest path(s) in a DD.]

  Description [Finds the length of the shortest path(s) in a DD.
  Uses a local symbol table to store the lengths for each
  node. Only the lengths for the regular nodes are entered in the table,
  because those for the complement nodes are simply obtained by swapping
  the two lenghts.
  Returns a pair of lengths: the length of the shortest path to 1;
  and the length of the shortest path to 0. This is done so as to take
  complement arcs into account.]

  SideEffects [Accumulates the support of the DD in support.]

  SeeAlso     []

******************************************************************************/
static cuddPathPair
getShortest(
  DdNode * root,
  int * cost,
  int * support,
  st_table * visited)
{
    cuddPathPair *my_pair, res_pair, pair_T, pair_E;
    DdNode      *my_root, *T, *E;
    int         weight;

    my_root = Cudd_Regular(root);

    if (st_lookup(visited, (const char *)my_root, (char **)&my_pair)) {
        if (Cudd_IsComplement(root)) {
            res_pair.pos = my_pair->neg;
            res_pair.neg = my_pair->pos;
        } else {
            res_pair.pos = my_pair->pos;
            res_pair.neg = my_pair->neg;
        }
        return(res_pair);
    }

    /* In the case of a BDD the following test is equivalent to
    ** testing whether the BDD is the constant 1. This formulation,
    ** however, works for ADDs as well, by assuming the usual
    ** dichotomy of 0 and != 0.
    */
    if (cuddIsConstant(my_root)) {
        if (my_root != zero) {
            res_pair.pos = 0;
            res_pair.neg = DD_BIGGY;
        } else {
            res_pair.pos = DD_BIGGY;
            res_pair.neg = 0;
        }
    } else {
        T = cuddT(my_root);
        E = cuddE(my_root);

        pair_T = getShortest(T, cost, support, visited);
        pair_E = getShortest(E, cost, support, visited);
        weight = WEIGHT(cost, my_root->index);
        res_pair.pos = ddMin(pair_T.pos+weight, pair_E.pos);
        res_pair.neg = ddMin(pair_T.neg+weight, pair_E.neg);

        /* Update support. */
        if (support != NULL) {
            support[my_root->index] = 1;
        }
    }

    my_pair = ABC_ALLOC(cuddPathPair, 1);
    if (my_pair == NULL) {
        if (Cudd_IsComplement(root)) {
            int tmp = res_pair.pos;
            res_pair.pos = res_pair.neg;
            res_pair.neg = tmp;
        }
        return(res_pair);
    }
    my_pair->pos = res_pair.pos;
    my_pair->neg = res_pair.neg;

    st_insert(visited, (char *)my_root, (char *)my_pair);
    if (Cudd_IsComplement(root)) {
        res_pair.pos = my_pair->neg;
        res_pair.neg = my_pair->pos;
    } else {
        res_pair.pos = my_pair->pos;
        res_pair.neg = my_pair->neg;
    }
    return(res_pair);

} /* end of getShortest */


/**Function********************************************************************

  Synopsis    [Build a BDD for a shortest path of f.]

  Description [Build a BDD for a shortest path of f.
  Given the minimum length from the root, and the minimum
  lengths for each node (in visited), apply triangulation at each node.
  Of the two children of each node on a shortest path, at least one is
  on a shortest path. In case of ties the procedure chooses the THEN
  children.
  Returns a pointer to the cube BDD representing the path if
  successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
getPath(
  DdManager * manager,
  st_table * visited,
  DdNode * f,
  int * weight,
  int  cost)
{
    DdNode      *sol, *tmp;
    DdNode      *my_dd, *T, *E;
    cuddPathPair *T_pair, *E_pair;
    int         Tcost, Ecost;
    int         complement;

    my_dd = Cudd_Regular(f);
    complement = Cudd_IsComplement(f);

    sol = one;
    cuddRef(sol);

    while (!cuddIsConstant(my_dd)) {
        Tcost = cost - WEIGHT(weight, my_dd->index);
        Ecost = cost;

        T = cuddT(my_dd);
        E = cuddE(my_dd);

        if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);}

        st_lookup(visited, (const char *)Cudd_Regular(T), (char **)&T_pair);
        if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) ||
        (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) {
            tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol);
            if (tmp == NULL) {
                Cudd_RecursiveDeref(manager,sol);
                return(NULL);
            }
            cuddRef(tmp);
            Cudd_RecursiveDeref(manager,sol);
            sol = tmp;

            complement =  Cudd_IsComplement(T);
            my_dd = Cudd_Regular(T);
            cost = Tcost;
            continue;
        }
        st_lookup(visited, (const char *)Cudd_Regular(E), (char **)&E_pair);
        if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) ||
        (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) {
            tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol);
            if (tmp == NULL) {
                Cudd_RecursiveDeref(manager,sol);
                return(NULL);
            }
            cuddRef(tmp);
            Cudd_RecursiveDeref(manager,sol);
            sol = tmp;
            complement = Cudd_IsComplement(E);
            my_dd = Cudd_Regular(E);
            cost = Ecost;
            continue;
        }
        (void) fprintf(manager->err,"We shouldn't be here!!\n");
        manager->errorCode = CUDD_INTERNAL_ERROR;
        return(NULL);
    }

    cuddDeref(sol);
    return(sol);

} /* end of getPath */


/**Function********************************************************************

  Synopsis    [Finds the size of the largest cube(s) in a DD.]

  Description [Finds the size of the largest cube(s) in a DD.
  This problem is translated into finding the shortest paths from a node
  when both THEN and ELSE arcs have unit lengths.
  Uses a local symbol table to store the lengths for each
  node. Only the lengths for the regular nodes are entered in the table,
  because those for the complement nodes are simply obtained by swapping
  the two lenghts.
  Returns a pair of lengths: the length of the shortest path to 1;
  and the length of the shortest path to 0. This is done so as to take
  complement arcs into account.]

  SideEffects [none]

  SeeAlso     []

******************************************************************************/
static cuddPathPair
getLargest(
  DdNode * root,
  st_table * visited)
{
    cuddPathPair *my_pair, res_pair, pair_T, pair_E;
    DdNode      *my_root, *T, *E;

    my_root = Cudd_Regular(root);

    if (st_lookup(visited, (const char *)my_root, (char **)&my_pair)) {
        if (Cudd_IsComplement(root)) {
            res_pair.pos = my_pair->neg;
            res_pair.neg = my_pair->pos;
        } else {
            res_pair.pos = my_pair->pos;
            res_pair.neg = my_pair->neg;
        }
        return(res_pair);
    }

    /* In the case of a BDD the following test is equivalent to
    ** testing whether the BDD is the constant 1. This formulation,
    ** however, works for ADDs as well, by assuming the usual
    ** dichotomy of 0 and != 0.
    */
    if (cuddIsConstant(my_root)) {
        if (my_root != zero) {
            res_pair.pos = 0;
            res_pair.neg = DD_BIGGY;
        } else {
            res_pair.pos = DD_BIGGY;
            res_pair.neg = 0;
        }
    } else {
        T = cuddT(my_root);
        E = cuddE(my_root);

        pair_T = getLargest(T, visited);
        pair_E = getLargest(E, visited);
        res_pair.pos = ddMin(pair_T.pos, pair_E.pos) + 1;
        res_pair.neg = ddMin(pair_T.neg, pair_E.neg) + 1;
    }

    my_pair = ABC_ALLOC(cuddPathPair, 1);
    if (my_pair == NULL) {      /* simply do not cache this result */
        if (Cudd_IsComplement(root)) {
            int tmp = res_pair.pos;
            res_pair.pos = res_pair.neg;
            res_pair.neg = tmp;
        }
        return(res_pair);
    }
    my_pair->pos = res_pair.pos;
    my_pair->neg = res_pair.neg;

    /* Caching may fail without affecting correctness. */
    st_insert(visited, (char *)my_root, (char *)my_pair);
    if (Cudd_IsComplement(root)) {
        res_pair.pos = my_pair->neg;
        res_pair.neg = my_pair->pos;
    } else {
        res_pair.pos = my_pair->pos;
        res_pair.neg = my_pair->neg;
    }
    return(res_pair);

} /* end of getLargest */


/**Function********************************************************************

  Synopsis    [Build a BDD for a largest cube of f.]

  Description [Build a BDD for a largest cube of f.
  Given the minimum length from the root, and the minimum
  lengths for each node (in visited), apply triangulation at each node.
  Of the two children of each node on a shortest path, at least one is
  on a shortest path. In case of ties the procedure chooses the THEN
  children.
  Returns a pointer to the cube BDD representing the path if
  successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
getCube(
  DdManager * manager,
  st_table * visited,
  DdNode * f,
  int  cost)
{
    DdNode      *sol, *tmp;
    DdNode      *my_dd, *T, *E;
    cuddPathPair *T_pair, *E_pair;
    int         Tcost, Ecost;
    int         complement;

    my_dd = Cudd_Regular(f);
    complement = Cudd_IsComplement(f);

    sol = one;
    cuddRef(sol);

    while (!cuddIsConstant(my_dd)) {
        Tcost = cost - 1;
        Ecost = cost - 1;

        T = cuddT(my_dd);
        E = cuddE(my_dd);

        if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);}

        if (!st_lookup(visited, (const char *)Cudd_Regular(T), (char **)&T_pair)) return(NULL);
        if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) ||
        (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) {
            tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol);
            if (tmp == NULL) {
                Cudd_RecursiveDeref(manager,sol);
                return(NULL);
            }
            cuddRef(tmp);
            Cudd_RecursiveDeref(manager,sol);
            sol = tmp;

            complement =  Cudd_IsComplement(T);
            my_dd = Cudd_Regular(T);
            cost = Tcost;
            continue;
        }
        if (!st_lookup(visited, (const char *)Cudd_Regular(E), (char **)&E_pair)) return(NULL);
        if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) ||
        (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) {
            tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol);
            if (tmp == NULL) {
                Cudd_RecursiveDeref(manager,sol);
                return(NULL);
            }
            cuddRef(tmp);
            Cudd_RecursiveDeref(manager,sol);
            sol = tmp;
            complement = Cudd_IsComplement(E);
            my_dd = Cudd_Regular(E);
            cost = Ecost;
            continue;
        }
        (void) fprintf(manager->err,"We shouldn't be here!\n");
        manager->errorCode = CUDD_INTERNAL_ERROR;
        return(NULL);
    }

    cuddDeref(sol);
    return(sol);

} /* end of getCube */


ABC_NAMESPACE_IMPL_END