1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/**CFile****************************************************************
FileName [dsdCheck.c]
PackageName [DSD: Disjoint-support decomposition package.]
Synopsis [Procedures to check the identity of root functions.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 8.0. Started - September 22, 2003.]
Revision [$Id: dsdCheck.c,v 1.0 2002/22/09 00:00:00 alanmi Exp $]
***********************************************************************/
#include "dsdInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Dsd_Cache_t_ Dds_Cache_t;
typedef struct Dsd_Entry_t_ Dsd_Entry_t;
struct Dsd_Cache_t_
{
Dsd_Entry_t * pTable;
int nTableSize;
int nSuccess;
int nFailure;
};
struct Dsd_Entry_t_
{
DdNode * bX[5];
};
static Dds_Cache_t * pCache;
static int Dsd_CheckRootFunctionIdentity_rec( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function********************************************************************
Synopsis [(Re)allocates the local cache.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
void Dsd_CheckCacheAllocate( int nEntries )
{
int nRequested;
pCache = ABC_ALLOC( Dds_Cache_t, 1 );
memset( pCache, 0, sizeof(Dds_Cache_t) );
// check what is the size of the current cache
nRequested = Cudd_Prime( nEntries );
if ( pCache->nTableSize != nRequested )
{ // the current size is different
// deallocate the old, allocate the new
if ( pCache->nTableSize )
Dsd_CheckCacheDeallocate();
// allocate memory for the hash table
pCache->nTableSize = nRequested;
pCache->pTable = ABC_ALLOC( Dsd_Entry_t, nRequested );
}
// otherwise, there is no need to allocate, just clean
Dsd_CheckCacheClear();
// printf( "\nThe number of allocated cache entries = %d.\n\n", pCache->nTableSize );
}
/**Function********************************************************************
Synopsis [Deallocates the local cache.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
void Dsd_CheckCacheDeallocate()
{
ABC_FREE( pCache->pTable );
ABC_FREE( pCache );
}
/**Function********************************************************************
Synopsis [Clears the local cache.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
void Dsd_CheckCacheClear()
{
int i;
for ( i = 0; i < pCache->nTableSize; i++ )
pCache->pTable[0].bX[0] = NULL;
}
/**Function********************************************************************
Synopsis [Checks whether it is true that bF1(bC1=0) == bF2(bC2=0).]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
int Dsd_CheckRootFunctionIdentity( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 )
{
int RetValue;
// pCache->nSuccess = 0;
// pCache->nFailure = 0;
RetValue = Dsd_CheckRootFunctionIdentity_rec(dd, bF1, bF2, bC1, bC2);
// printf( "Cache success = %d. Cache failure = %d.\n", pCache->nSuccess, pCache->nFailure );
return RetValue;
}
/**Function********************************************************************
Synopsis [Performs the recursive step of Dsd_CheckRootFunctionIdentity().]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
int Dsd_CheckRootFunctionIdentity_rec( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 )
{
unsigned HKey;
// if either bC1 or bC2 is zero, the test is true
// if ( bC1 == b0 || bC2 == b0 ) return 1;
assert( bC1 != b0 );
assert( bC2 != b0 );
// if both bC1 and bC2 are one - perform comparison
if ( bC1 == b1 && bC2 == b1 ) return (int)( bF1 == bF2 );
if ( bF1 == b0 )
return Cudd_bddLeq( dd, bC2, Cudd_Not(bF2) );
if ( bF1 == b1 )
return Cudd_bddLeq( dd, bC2, bF2 );
if ( bF2 == b0 )
return Cudd_bddLeq( dd, bC1, Cudd_Not(bF1) );
if ( bF2 == b1 )
return Cudd_bddLeq( dd, bC1, bF1 );
// otherwise, keep expanding
// check cache
// HKey = _Hash( ((unsigned)bF1), ((unsigned)bF2), ((unsigned)bC1), ((unsigned)bC2) );
HKey = hashKey4( bF1, bF2, bC1, bC2, pCache->nTableSize );
if ( pCache->pTable[HKey].bX[0] == bF1 &&
pCache->pTable[HKey].bX[1] == bF2 &&
pCache->pTable[HKey].bX[2] == bC1 &&
pCache->pTable[HKey].bX[3] == bC2 )
{
pCache->nSuccess++;
return (int)(ABC_PTRUINT_T)pCache->pTable[HKey].bX[4]; // the last bit records the result (yes/no)
}
else
{
// determine the top variables
int RetValue;
DdNode * bA[4] = { bF1, bF2, bC1, bC2 }; // arguments
DdNode * bAR[4] = { Cudd_Regular(bF1), Cudd_Regular(bF2), Cudd_Regular(bC1), Cudd_Regular(bC2) }; // regular arguments
int CurLevel[4] = { cuddI(dd,bAR[0]->index), cuddI(dd,bAR[1]->index), cuddI(dd,bAR[2]->index), cuddI(dd,bAR[3]->index) };
int TopLevel = CUDD_CONST_INDEX;
int i;
DdNode * bE[4], * bT[4];
DdNode * bF1next, * bF2next, * bC1next, * bC2next;
pCache->nFailure++;
// determine the top level
for ( i = 0; i < 4; i++ )
if ( TopLevel > CurLevel[i] )
TopLevel = CurLevel[i];
// compute the cofactors
for ( i = 0; i < 4; i++ )
if ( TopLevel == CurLevel[i] )
{
if ( bA[i] != bAR[i] ) // complemented
{
bE[i] = Cudd_Not(cuddE(bAR[i]));
bT[i] = Cudd_Not(cuddT(bAR[i]));
}
else
{
bE[i] = cuddE(bAR[i]);
bT[i] = cuddT(bAR[i]);
}
}
else
bE[i] = bT[i] = bA[i];
// solve subproblems
// three cases are possible
// (1) the top var belongs to both C1 and C2
// in this case, any cofactor of F1 and F2 will do,
// as long as the corresponding cofactor of C1 and C2 is not equal to 0
if ( TopLevel == CurLevel[2] && TopLevel == CurLevel[3] )
{
if ( bE[2] != b0 ) // C1
{
bF1next = bE[0];
bC1next = bE[2];
}
else
{
bF1next = bT[0];
bC1next = bT[2];
}
if ( bE[3] != b0 ) // C2
{
bF2next = bE[1];
bC2next = bE[3];
}
else
{
bF2next = bT[1];
bC2next = bT[3];
}
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bF2next, bC1next, bC2next );
}
// (2) the top var belongs to either C1 or C2
// in this case normal splitting of cofactors
else if ( TopLevel == CurLevel[2] && TopLevel != CurLevel[3] )
{
if ( bE[2] != b0 ) // C1
{
bF1next = bE[0];
bC1next = bE[2];
}
else
{
bF1next = bT[0];
bC1next = bT[2];
}
// split around this variable
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bE[1], bC1next, bE[3] );
if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bT[1], bC1next, bT[3] );
}
else if ( TopLevel != CurLevel[2] && TopLevel == CurLevel[3] )
{
if ( bE[3] != b0 ) // C2
{
bF2next = bE[1];
bC2next = bE[3];
}
else
{
bF2next = bT[1];
bC2next = bT[3];
}
// split around this variable
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bE[0], bF2next, bE[2], bC2next );
if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bT[0], bF2next, bT[2], bC2next );
}
// (3) the top var does not belong to C1 and C2
// in this case normal splitting of cofactors
else // if ( TopLevel != CurLevel[2] && TopLevel != CurLevel[3] )
{
// split around this variable
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bE[0], bE[1], bE[2], bE[3] );
if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bT[0], bT[1], bT[2], bT[3] );
}
// set cache
for ( i = 0; i < 4; i++ )
pCache->pTable[HKey].bX[i] = bA[i];
pCache->pTable[HKey].bX[4] = (DdNode*)(ABC_PTRUINT_T)RetValue;
return RetValue;
}
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|