summaryrefslogtreecommitdiffstats
path: root/src/bdd/reo/reoSwap.c
blob: 7894735d210e0e637bd3e461195238c30154cf0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/**CFile****************************************************************

  FileName    [reoSwap.c]

  PackageName [REO: A specialized DD reordering engine.]

  Synopsis    [Implementation of the two-variable swap.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - October 15, 2002.]

  Revision    [$Id: reoSwap.c,v 1.0 2002/15/10 03:00:00 alanmi Exp $]

***********************************************************************/

#include "reo.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define AddToLinkedList( ppList, pLink )   (((pLink)->Next = *(ppList)), (*(ppList) = (pLink)))

////////////////////////////////////////////////////////////////////////
///                    FUNCTION DEFINITIONS                          ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description [Takes the level (lev0) of the plane, which should be swapped 
  with the next plane. Returns the gain using the current cost function.]

  SideEffects []

  SeeAlso     []

***********************************************************************/
double reoReorderSwapAdjacentVars( reo_man * p, int lev0, int fMovingUp )
{
    // the levels in the decision diagram
    int lev1 = lev0 + 1, lev2 = lev0 + 2;
    // the new nodes on lev0
    reo_unit * pLoop, * pUnit;
    // the new nodes on lev1
    reo_unit * pNewPlane20 = NULL, * pNewPlane21 = NULL; // Suppress "might be used uninitialized"
        reo_unit * pNewPlane20R;
    reo_unit * pUnitE, * pUnitER, * pUnitT;
    // the nodes below lev1
    reo_unit * pNew1E = NULL, * pNew1T = NULL, * pNew2E = NULL, * pNew2T = NULL;
    reo_unit * pNew1ER = NULL, * pNew2ER = NULL;
    // the old linked lists
    reo_unit * pListOld0 = p->pPlanes[lev0].pHead;
    reo_unit * pListOld1 = p->pPlanes[lev1].pHead;
    // working planes and one more temporary plane
    reo_unit * pListNew0 = NULL, ** ppListNew0 = &pListNew0;
    reo_unit * pListNew1 = NULL, ** ppListNew1 = &pListNew1; 
    reo_unit * pListTemp = NULL, ** ppListTemp = &pListTemp; 
    // various integer variables
    int fComp, fCompT, fFound, HKey, fInteract, temp, c;
        int nWidthCofs = -1; // Suppress "might be used uninitialized"
    // statistical variables
    int nNodesUpMovedDown  = 0;
    int nNodesDownMovedUp  = 0;
    int nNodesUnrefRemoved = 0;
    int nNodesUnrefAdded   = 0;
    int nWidthReduction    = 0;
    double AplWeightTotalLev0 = 0.0; // Suppress "might be used uninitialized"
    double AplWeightTotalLev1 = 0.0; // Suppress "might be used uninitialized"
    double AplWeightHalf      = 0.0; // Suppress "might be used uninitialized"
    double AplWeightPrev      = 0.0; // Suppress "might be used uninitialized"
    double AplWeightAfter     = 0.0; // Suppress "might be used uninitialized"
    double nCostGain;     

    // set the old lists
    assert( lev0 >= 0 && lev1 < p->nSupp );
    pListOld0 = p->pPlanes[lev0].pHead;
    pListOld1 = p->pPlanes[lev1].pHead;

    // make sure the planes have nodes
    assert( p->pPlanes[lev0].statsNodes && p->pPlanes[lev1].statsNodes );
    assert( pListOld0 && pListOld1 );

    if ( p->fMinWidth )
    {
        // verify that the width parameters are set correctly
        reoProfileWidthVerifyLevel( p->pPlanes + lev0, lev0 );
        reoProfileWidthVerifyLevel( p->pPlanes + lev1, lev1 );
        // start the storage for cofactors
        nWidthCofs = 0;
    }
    else if ( p->fMinApl )
    {
        AplWeightPrev      = p->nAplCur;
        AplWeightAfter     = p->nAplCur;
        AplWeightTotalLev0 = 0.0;
        AplWeightTotalLev1 = 0.0;
    }

    // check if the planes interact
    fInteract = 0; // assume that they do not interact
    for ( pUnit = pListOld0; pUnit; pUnit = pUnit->Next )
    {
        if ( pUnit->pT->lev == lev1 || Unit_Regular(pUnit->pE)->lev == lev1 )
        {
            fInteract = 1;
            break;
        }
        // change the level now, this is done for efficiency reasons
        pUnit->lev = lev1;
    }

    // set the new signature for hashing
    p->nSwaps++;
    if ( !fInteract )
//    if ( 0 )
    {
        // perform the swap without interaction
        p->nNISwaps++;

        // change the levels
        if ( p->fMinWidth )
        {
            // go through the current lower level, which will become upper
            for ( pUnit = pListOld1; pUnit; pUnit = pUnit->Next )
            {
                pUnit->lev = lev0;

                pUnitER = Unit_Regular(pUnit->pE);
                if ( pUnitER->TopRef > lev0 )
                {
                    if ( pUnitER->Sign != p->nSwaps )
                    {
                        if ( pUnitER->TopRef == lev2 )
                        {
                            pUnitER->TopRef = lev1;
                            nWidthReduction--;
                        }
                        else
                        {
                            assert( pUnitER->TopRef == lev1 );
                        }
                        pUnitER->Sign   = p->nSwaps;
                    }
                }

                pUnitT  = pUnit->pT;
                if ( pUnitT->TopRef > lev0 )
                {
                    if ( pUnitT->Sign != p->nSwaps )
                    {
                        if ( pUnitT->TopRef == lev2 )
                        {
                            pUnitT->TopRef = lev1;
                            nWidthReduction--;
                        }
                        else
                        {
                            assert( pUnitT->TopRef == lev1 );
                        }
                        pUnitT->Sign   = p->nSwaps;
                    }
                }

            }

            // go through the current upper level, which will become lower
            for ( pUnit = pListOld0; pUnit; pUnit = pUnit->Next )
            {
                pUnit->lev = lev1;

                pUnitER = Unit_Regular(pUnit->pE);
                if ( pUnitER->TopRef > lev0 )
                {
                    if ( pUnitER->Sign != p->nSwaps )
                    {
                        assert( pUnitER->TopRef == lev1 );
                        pUnitER->TopRef = lev2;
                        pUnitER->Sign   = p->nSwaps;
                        nWidthReduction++;
                    }
                }

                pUnitT  = pUnit->pT;
                if ( pUnitT->TopRef > lev0 )
                {
                    if ( pUnitT->Sign != p->nSwaps )
                    {
                        assert( pUnitT->TopRef == lev1 );
                        pUnitT->TopRef = lev2;
                        pUnitT->Sign   = p->nSwaps;
                        nWidthReduction++;
                    }
                }
            }
        }
        else
        {
//            for ( pUnit = pListOld0; pUnit; pUnit = pUnit->Next )
//                pUnit->lev = lev1;
            for ( pUnit = pListOld1; pUnit; pUnit = pUnit->Next )
                pUnit->lev = lev0;
        }

        // set the new linked lists, which will be attached to the planes
        pListNew0 = pListOld1;
        pListNew1 = pListOld0;

        if ( p->fMinApl )
        {
            AplWeightTotalLev0 = p->pPlanes[lev1].statsCost;
            AplWeightTotalLev1 = p->pPlanes[lev0].statsCost;
        }
        
        // set the changes in terms of nodes
        nNodesUpMovedDown = p->pPlanes[lev0].statsNodes; 
        nNodesDownMovedUp = p->pPlanes[lev1].statsNodes; 
        goto finish;
    }
    p->Signature++;


    // two-variable swap is done in three easy steps
    // previously I thought that steps (1) and (2) can be merged into one step
    // now it is clear that this cannot be done without changing a lot of other stuff...

    // (1) walk through the upper level, find units without cofactors in the lower level 
    //     and move them to the new lower level (while adding to the cache)
    // (2) walk through the uppoer level, and tranform all the remaning nodes 
    //     while employing cache for the new lower level
    // (3) walk through the old lower level, find those nodes whose ref counters are not zero, 
    //     and move them to the new uppoer level, free other nodes

    // (1) walk through the upper level, find units without cofactors in the lower level 
    //     and move them to the new lower level (while adding to the cache)
    for ( pLoop = pListOld0; pLoop; )
    {
        pUnit = pLoop;
        pLoop = pLoop->Next;

        pUnitE  = pUnit->pE;
        pUnitER = Unit_Regular(pUnitE);
        pUnitT  = pUnit->pT;

        if ( pUnitER->lev != lev1 && pUnitT->lev != lev1 )
        {
            //                before                        after
            //
            //                 <p1>                                 .
            //              0 /    \ 1                              .
            //               /      \                               .
            //              /        \                              .
            //             /          \                     <p2n>   .
            //            /            \                  0 /  \ 1  .
            //           /              \                  /    \   .
            //          /                \                /      \  .
            //         F0                F1              F0      F1

            // move to plane-2-new
            // nothing changes in the process (cofactors, ref counter, APL weight)
            pUnit->lev = lev1;
            AddToLinkedList( ppListNew1, pUnit );
            if ( p->fMinApl )
                AplWeightTotalLev1 += pUnit->Weight;

            // add to cache - find the cell with different signature (not the current one!)
            for (  HKey = hashKey3(p->Signature, pUnitE, pUnitT, p->nTableSize);
                   p->HTable[HKey].Sign == p->Signature;
                   HKey = (HKey+1) % p->nTableSize );
            assert( p->HTable[HKey].Sign != p->Signature );
            p->HTable[HKey].Sign = p->Signature;
            p->HTable[HKey].Arg1 = pUnitE;
            p->HTable[HKey].Arg2 = pUnitT;
            p->HTable[HKey].Arg3 = pUnit;

            nNodesUpMovedDown++;

            if ( p->fMinWidth )
            {
                // update the cofactors's top ref
                if ( pUnitER->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    assert( pUnitER->TopRef == lev1 );
                    pUnitER->TopRefNew = lev2;
                    if ( pUnitER->Sign != p->nSwaps )
                    {
                        pUnitER->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pUnitER;
                    }
                }
                if ( pUnitT->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    assert( pUnitT->TopRef == lev1 );
                    pUnitT->TopRefNew = lev2;
                    if ( pUnitT->Sign != p->nSwaps )
                    {
                        pUnitT->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pUnitT;
                    }
                }
            }
        }
        else
        {
            // add to the temporary plane
            AddToLinkedList( ppListTemp, pUnit );
        }
    }


    // (2) walk through the uppoer level, and tranform all the remaning nodes 
    //     while employing cache for the new lower level
    for ( pLoop = pListTemp; pLoop; )
    {
        pUnit = pLoop;
        pLoop = pLoop->Next;

        pUnitE  = pUnit->pE;
        pUnitER = Unit_Regular(pUnitE);
        pUnitT  = pUnit->pT;
        fComp   = (int)(pUnitER != pUnitE);

        // count the amount of weight to reduce the APL of the children of this node
        if ( p->fMinApl )
            AplWeightHalf = 0.5 * pUnit->Weight;

        // determine what situation is this
        if ( pUnitER->lev == lev1 && pUnitT->lev == lev1 )
        {
            if ( fComp == 0 )
            {
                //                before                        after
                //
                //                 <p1>                          <p1n>              .
                //              0 /    \ 1                    0 /    \ 1            .
                //               /      \                      /      \             .
                //              /        \                    /        \            .
                //           <p2>        <p2>              <p2n>       <p2n>        .
                //        0 /   \ 1    0 /  \ 1          0 /  \ 1    0 /   \ 1      .
                //         /     \      /    \            /    \      /     \       .
                //        /       \    /      \          /      \    /       \      .
                //       F0       F1  F2      F3        F0      F2  F1       F3     .
                //                                 pNew1E   pNew1T  pNew2E   pNew2T
                //
                pNew1E = pUnitE->pE;   // F0
                pNew1T = pUnitT->pE;   // F2

                pNew2E = pUnitE->pT;   // F1
                pNew2T = pUnitT->pT;   // F3
            }
            else
            {
                //                before                        after
                //
                //                 <p1>                          <p1n>           .
                //              0 .    \ 1                    0 /    \ 1         .
                //               .      \                      /      \          .
                //              .        \                    /        \         .
                //           <p2>        <p2>              <p2n>       <p2n>     .
                //        0 /   \ 1    0 /  \ 1          0 .  \ 1    0 .   \ 1   .
                //         /     \      /    \            .    \      .     \    .
                //        /       \    /      \          .      \    .       \   .
                //       F0       F1  F2      F3        F0      F2  F1       F3  .
                //                                 pNew1E   pNew1T  pNew2E   pNew2T
                //
                pNew1E = Unit_Not(pUnitER->pE);  // F0
                pNew1T =          pUnitT->pE;    // F2

                pNew2E = Unit_Not(pUnitER->pT);  // F1
                pNew2T =          pUnitT->pT;    // F3
            }
            // subtract ref counters - on the level P2
            pUnitER->n--;
            pUnitT->n--;

            // mark the change in the APL weights
            if ( p->fMinApl )
            {
                pUnitER->Weight -= AplWeightHalf;
                pUnitT->Weight  -= AplWeightHalf;
                AplWeightAfter  -= pUnit->Weight;
            }
        }
        else if ( pUnitER->lev == lev1 )
        {
            if ( fComp == 0 )
            {
                //                before                        after
                //
                //                 <p1>                          <p1n>          .
                //              0 /    \ 1                    0 /    \ 1        .
                //               /      \                      /      \         .
                //              /        \                    /        \        .
                //           <p2>         \               <p2n>       <p2n>     .
                //        0 /   \ 1        \            0 /  \ 1    0 /   \ 1   .
                //         /     \          \            /    \      /     \    .
                //        /       \          \          /      \    /       \   .
                //       F0       F1         F3        F0      F3  F1       F3  .
                //                                 pNew1E   pNew1T  pNew2E   pNew2T
                //
                pNew1E = pUnitER->pE;      // F0
                pNew1T = pUnitT;          // F3

                pNew2E = pUnitER->pT;     // F1
                pNew2T = pUnitT;          // F3
            }
            else
            {
                //                before                        after
                //
                //                 <p1>                          <p1n>          .
                //              0 .    \ 1                    0 /    \ 1        .
                //               .      \                      /      \         .
                //              .        \                    /        \        .
                //           <p2>         \                <p2n>       <p2n>    .
                //        0 /   \ 1        \            0 .  \ 1    0 .   \ 1   .
                //         /     \          \            .    \      .     \    .
                //        /       \          \          .      \    .       \   .
                //       F0       F1         F3        F0      F3  F1       F3  .
                //                                 pNew1E   pNew1T  pNew2E   pNew2T
                //
                pNew1E = Unit_Not(pUnitER->pE);  // F0
                pNew1T =          pUnitT;        // F3

                pNew2E = Unit_Not(pUnitER->pT);  // F1
                pNew2T =          pUnitT;        // F3
            }
            // subtract ref counter - on the level P2
            pUnitER->n--;
            // subtract ref counter - on other levels
            pUnitT->n--;  ///

            // mark the change in the APL weights
            if ( p->fMinApl )
            {
                pUnitER->Weight -= AplWeightHalf;
                AplWeightAfter  -= AplWeightHalf;
            }
        }
        else if ( pUnitT->lev == lev1 )
        {
            //                before                        after
            //
            //                 <p1>                          <p1n>           .
            //              0 /    \ 1                    0 /    \ 1         .
            //               /      \                      /      \          .
            //              /        \                    /        \         .
            //             /         <p2>              <p2n>       <p2n>     .
            //            /       0 /   \ 1          0 /  \ 1    0 /   \ 1   .
            //           /         /     \            /    \      /     \    .
            //          /         /       \          /      \    /       \   .
            //         F0        F2       F3        F0      F2  F0       F3  .
            //                                 pNew1E   pNew1T  pNew2E   pNew2T
            //
            pNew1E =     pUnitE;    // F0
            pNew1T = pUnitT->pE;    // F2

            pNew2E =     pUnitE;    // F0
            pNew2T = pUnitT->pT;    // F3

            // subtract incoming edge counter - on the level P2
            pUnitT->n--;
            // subtract ref counter - on other levels
            pUnitER->n--;  ///

            // mark the change in the APL weights
            if ( p->fMinApl )
            {
                pUnitT->Weight  -= AplWeightHalf;
                AplWeightAfter  -= AplWeightHalf;
            }
        }
        else 
        {
            assert( 0 ); // should never happen
        }


        // consider all the cases except the last one
        if ( pNew1E == pNew1T )
        {
            pNewPlane20 = pNew1T;
            
            if ( p->fMinWidth )
            {
                // update the cofactors's top ref
                if ( pNew1T->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    pNew1T->TopRefNew = lev1;
                    if ( pNew1T->Sign  != p->nSwaps )
                    {
                        pNew1T->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pNew1T;
                    }
                }
            }
        }
        else
        {
            // pNew1T can be complemented
            fCompT = Cudd_IsComplement(pNew1T);
            if ( fCompT )
            {
                pNew1E = Unit_Not(pNew1E);
                pNew1T = Unit_Not(pNew1T);
            }

            // check the hash-table 
            fFound = 0;
            for (  HKey = hashKey3(p->Signature, pNew1E, pNew1T, p->nTableSize);
                   p->HTable[HKey].Sign == p->Signature;
                   HKey = (HKey+1) % p->nTableSize )
            if ( p->HTable[HKey].Arg1 == pNew1E && p->HTable[HKey].Arg2 == pNew1T )
            { // the entry is present 
                // assign this entry
                pNewPlane20 = p->HTable[HKey].Arg3;
                assert( pNewPlane20->lev == lev1 );
                fFound = 1;
                p->HashSuccess++;
                break;
            }

            if ( !fFound )
            { // create the new entry
                pNewPlane20 = reoUnitsGetNextUnit( p ); // increments the unit counter
                pNewPlane20->pE  = pNew1E;
                pNewPlane20->pT  = pNew1T;
                pNewPlane20->n   = 0;       // ref will be added later
                pNewPlane20->lev = lev1; 
                if ( p->fMinWidth )
                {
                    pNewPlane20->TopRef = lev1;
                    pNewPlane20->Sign   = 0;
                }
                // set the weight of this node
                if ( p->fMinApl )
                    pNewPlane20->Weight = 0.0;

                // increment ref counters of children
                pNew1ER = Unit_Regular(pNew1E);
                pNew1ER->n++;  //
                pNew1T->n++;   //

                // insert into the data structure
                AddToLinkedList( ppListNew1, pNewPlane20 );

                // add this entry to cache
                assert( p->HTable[HKey].Sign != p->Signature );
                p->HTable[HKey].Sign = p->Signature;
                p->HTable[HKey].Arg1 = pNew1E;
                p->HTable[HKey].Arg2 = pNew1T;
                p->HTable[HKey].Arg3 = pNewPlane20;

                nNodesUnrefAdded++;
                        
                if ( p->fMinWidth )
                {
                    // update the cofactors's top ref
                    if ( pNew1ER->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                    {
                        if ( pNew1ER->Sign != p->nSwaps )
                        {
                            pNew1ER->TopRefNew = lev2;
                            if ( pNew1ER->Sign != p->nSwaps )
                            {
                                pNew1ER->Sign      = p->nSwaps;  // set the current signature
                                p->pWidthCofs[ nWidthCofs++ ] = pNew1ER;
                            }
                        }
                        // otherwise the level is already set correctly
                        else
                        {
                            assert( pNew1ER->TopRefNew == lev1 || pNew1ER->TopRefNew == lev2 );
                        }
                    }
                    // update the cofactors's top ref
                    if ( pNew1T->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                    {
                        if ( pNew1T->Sign != p->nSwaps )
                        {
                            pNew1T->TopRefNew = lev2;
                            if ( pNew1T->Sign  != p->nSwaps )
                            {
                                pNew1T->Sign      = p->nSwaps;  // set the current signature
                                p->pWidthCofs[ nWidthCofs++ ] = pNew1T;
                            }
                        }
                        // otherwise the level is already set correctly
                        else
                        {
                            assert( pNew1T->TopRefNew == lev1 || pNew1T->TopRefNew == lev2 );
                        }
                    }
                }
            }

            if ( p->fMinApl )
            {
                // increment the weight of this node
                pNewPlane20->Weight += AplWeightHalf;
                // mark the change in the APL weight
                AplWeightAfter      += AplWeightHalf;
                // update the total weight of this level
                AplWeightTotalLev1  += AplWeightHalf;
            }

            if ( fCompT )
                pNewPlane20 = Unit_Not(pNewPlane20);
        }

        if ( pNew2E == pNew2T )
        {
            pNewPlane21 = pNew2T;
            
            if ( p->fMinWidth )
            {
                // update the cofactors's top ref
                if ( pNew2T->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    pNew2T->TopRefNew = lev1;
                    if ( pNew2T->Sign != p->nSwaps )
                    {
                        pNew2T->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pNew2T;
                    }
                }
            }
        }
        else
        {
            assert( !Cudd_IsComplement(pNew2T) );

            // check the hash-table
            fFound = 0;
            for (  HKey = hashKey3(p->Signature, pNew2E, pNew2T, p->nTableSize);
                   p->HTable[HKey].Sign == p->Signature;
                   HKey = (HKey+1) % p->nTableSize )
            if ( p->HTable[HKey].Arg1 == pNew2E && p->HTable[HKey].Arg2 == pNew2T )
            { // the entry is present 
                // assign this entry
                pNewPlane21 = p->HTable[HKey].Arg3;
                assert( pNewPlane21->lev == lev1 );
                fFound = 1;
                p->HashSuccess++;
                break;
            }

            if ( !fFound )
            { // create the new entry
                pNewPlane21 = reoUnitsGetNextUnit( p ); // increments the unit counter
                pNewPlane21->pE  = pNew2E;
                pNewPlane21->pT  = pNew2T;
                pNewPlane21->n   = 0;       // ref will be added later
                pNewPlane21->lev = lev1; 
                if ( p->fMinWidth )
                {
                    pNewPlane21->TopRef = lev1;
                    pNewPlane21->Sign   = 0;
                }
                // set the weight of this node
                if ( p->fMinApl )
                    pNewPlane21->Weight = 0.0;

                // increment ref counters of children
                pNew2ER = Unit_Regular(pNew2E);
                pNew2ER->n++; //
                pNew2T->n++;  //

                // insert into the data structure
//                reoUnitsAddUnitToPlane( &P2new, pNewPlane21 );
                AddToLinkedList( ppListNew1, pNewPlane21 );

                // add this entry to cache
                assert( p->HTable[HKey].Sign != p->Signature );
                p->HTable[HKey].Sign = p->Signature;
                p->HTable[HKey].Arg1 = pNew2E;
                p->HTable[HKey].Arg2 = pNew2T;
                p->HTable[HKey].Arg3 = pNewPlane21;

                nNodesUnrefAdded++;

                        
                if ( p->fMinWidth )
                {
                    // update the cofactors's top ref
                    if ( pNew2ER->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                    {
                        if ( pNew2ER->Sign != p->nSwaps )
                        {
                            pNew2ER->TopRefNew = lev2;
                            if ( pNew2ER->Sign != p->nSwaps )
                            {
                                pNew2ER->Sign      = p->nSwaps;  // set the current signature
                                p->pWidthCofs[ nWidthCofs++ ] = pNew2ER;
                            }
                        }
                        // otherwise the level is already set correctly
                        else
                        {
                            assert( pNew2ER->TopRefNew == lev1 || pNew2ER->TopRefNew == lev2 );
                        }
                    }
                    // update the cofactors's top ref
                    if ( pNew2T->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                    {
                        if ( pNew2T->Sign != p->nSwaps )
                        {
                            pNew2T->TopRefNew = lev2;
                            if ( pNew2T->Sign != p->nSwaps )
                            {
                                pNew2T->Sign      = p->nSwaps;  // set the current signature
                                p->pWidthCofs[ nWidthCofs++ ] = pNew2T;
                            }
                        }
                        // otherwise the level is already set correctly
                        else
                        {
                            assert( pNew2T->TopRefNew == lev1 || pNew2T->TopRefNew == lev2 );
                        }
                    }
                }
            }

            if ( p->fMinApl )
            {
                // increment the weight of this node
                pNewPlane21->Weight += AplWeightHalf;
                // mark the change in the APL weight
                AplWeightAfter      += AplWeightHalf;
                // update the total weight of this level
                AplWeightTotalLev1  += AplWeightHalf;
            }
        }
        // in all cases, the node will be added to the plane-1
        // this should be the same node (pUnit) as was originally there
        // because it is referenced by the above nodes

        assert( !Cudd_IsComplement(pNewPlane21) );
        // should be the case; otherwise reordering is not a local operation

        pUnit->pE  = pNewPlane20;
        pUnit->pT  = pNewPlane21;
        assert( pUnit->lev == lev0 ); 
        // reference counter remains the same; the APL weight remains the same

        // increment ref counters of children
        pNewPlane20R = Unit_Regular(pNewPlane20);
        pNewPlane20R->n++; ///
        pNewPlane21->n++;  ///

        // insert into the data structure
        AddToLinkedList( ppListNew0, pUnit );
        if ( p->fMinApl )
            AplWeightTotalLev0 += pUnit->Weight;
    }

    // (3) walk through the old lower level, find those nodes whose ref counters are not zero, 
    //     and move them to the new uppoer level, free other nodes
    for ( pLoop = pListOld1; pLoop; )
    {
        pUnit = pLoop;
        pLoop = pLoop->Next;
        if ( pUnit->n )
        { 
            assert( !p->fMinApl || pUnit->Weight > 0.0 );
            // the node should be added to the new level
            // no need to check the hash table
            pUnit->lev = lev0;
            AddToLinkedList( ppListNew0, pUnit );
            if ( p->fMinApl )
                AplWeightTotalLev0 += pUnit->Weight;

            nNodesDownMovedUp++;

            if ( p->fMinWidth )
            {
                pUnitER = Unit_Regular(pUnit->pE);
                pUnitT  = pUnit->pT;

                // update the cofactors's top ref
                if ( pUnitER->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    pUnitER->TopRefNew = lev1;
                    if ( pUnitER->Sign != p->nSwaps )
                    {
                        pUnitER->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pUnitER;
                    }
                }
                if ( pUnitT->TopRef > lev0 ) // the cofactor's top ref level is one of the current two levels
                {
                    pUnitT->TopRefNew = lev1;
                    if ( pUnitT->Sign != p->nSwaps )
                    {
                        pUnitT->Sign      = p->nSwaps;  // set the current signature
                        p->pWidthCofs[ nWidthCofs++ ] = pUnitT;
                    }
                }
            }
        }
        else
        {
            assert( !p->fMinApl || pUnit->Weight == 0.0 );
            // decrement reference counters of children
            pUnitER = Unit_Regular(pUnit->pE);
            pUnitT  = pUnit->pT;
            pUnitER->n--;  ///
            pUnitT->n--;   ///
            // the node should be thrown away
            reoUnitsRecycleUnit( p, pUnit );
            nNodesUnrefRemoved++;
        }
    }

finish:

    // attach the new levels to the planes
    p->pPlanes[lev0].pHead = pListNew0;
    p->pPlanes[lev1].pHead = pListNew1;

    // swap the sift status
    temp                     = p->pPlanes[lev0].fSifted;
    p->pPlanes[lev0].fSifted = p->pPlanes[lev1].fSifted;
    p->pPlanes[lev1].fSifted = temp;

    // swap variables in the variable map
    if ( p->pOrderInt )
    {
        temp               = p->pOrderInt[lev0];
        p->pOrderInt[lev0] = p->pOrderInt[lev1];
        p->pOrderInt[lev1] = temp;
    }

    // adjust the node profile
    p->pPlanes[lev0].statsNodes  -= (nNodesUpMovedDown - nNodesDownMovedUp);
    p->pPlanes[lev1].statsNodes  -= (nNodesDownMovedUp - nNodesUpMovedDown) + nNodesUnrefRemoved - nNodesUnrefAdded;
    p->nNodesCur                 -=  nNodesUnrefRemoved - nNodesUnrefAdded;

    // adjust the node profile on this level
    if ( p->fMinWidth )
    {
        for ( c = 0; c < nWidthCofs; c++ )
        {
            if ( p->pWidthCofs[c]->TopRefNew < p->pWidthCofs[c]->TopRef )
            {
                p->pWidthCofs[c]->TopRef = p->pWidthCofs[c]->TopRefNew;
                nWidthReduction--;
            }
            else if ( p->pWidthCofs[c]->TopRefNew > p->pWidthCofs[c]->TopRef )
            {
                p->pWidthCofs[c]->TopRef = p->pWidthCofs[c]->TopRefNew;
                nWidthReduction++;
            }
        }
        // verify that the profile is okay
        reoProfileWidthVerifyLevel( p->pPlanes + lev0, lev0 );
        reoProfileWidthVerifyLevel( p->pPlanes + lev1, lev1 );

        // compute the total gain in terms of width
        nCostGain = (nNodesDownMovedUp - nNodesUpMovedDown + nNodesUnrefRemoved - nNodesUnrefAdded) + nWidthReduction;
        // adjust the width on this level
        p->pPlanes[lev1].statsWidth -= (int)nCostGain; 
        // set the cost
        p->pPlanes[lev1].statsCost   = p->pPlanes[lev1].statsWidth;
    }
    else if ( p->fMinApl )
    {
        // compute the total gain in terms of APL
        nCostGain = AplWeightPrev - AplWeightAfter;
        // make sure that the ALP is updated correctly
//        assert( p->pPlanes[lev0].statsCost + p->pPlanes[lev1].statsCost - nCostGain ==
//                AplWeightTotalLev0 + AplWeightTotalLev1 );                
        // adjust the profile 
        p->pPlanes[lev0].statsApl  = AplWeightTotalLev0;
        p->pPlanes[lev1].statsApl  = AplWeightTotalLev1;
        // set the cost
        p->pPlanes[lev0].statsCost = p->pPlanes[lev0].statsApl;
        p->pPlanes[lev1].statsCost = p->pPlanes[lev1].statsApl;
    }
    else
    {
        // compute the total gain in terms of the number of nodes
        nCostGain = nNodesUnrefRemoved - nNodesUnrefAdded;
        // adjust the profile (adjusted above)
        // set the cost
        p->pPlanes[lev0].statsCost   = p->pPlanes[lev0].statsNodes;
        p->pPlanes[lev1].statsCost   = p->pPlanes[lev1].statsNodes;
    }

    return nCostGain;
}

////////////////////////////////////////////////////////////////////////
///                         END OF FILE                              ///
////////////////////////////////////////////////////////////////////////

ABC_NAMESPACE_IMPL_END