summaryrefslogtreecommitdiffstats
path: root/src/bdd/reo/reoTransfer.c
blob: 65d31d01407c056a7197f51ebc5d1f88a8cd882d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/**CFile****************************************************************

  FileName    [reoTransfer.c]

  PackageName [REO: A specialized DD reordering engine.]

  Synopsis    [Transfering a DD from the CUDD manager into REO"s internal data structures and back.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - October 15, 2002.]

  Revision    [$Id: reoTransfer.c,v 1.0 2002/15/10 03:00:00 alanmi Exp $]

***********************************************************************/

#include "reo.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                    FUNCTION DEFINITIONS                          ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Transfers the DD into the internal reordering data structure.]

  Description [It is important that the hash table is lossless.]

  SideEffects []

  SeeAlso     []

***********************************************************************/
reo_unit * reoTransferNodesToUnits_rec( reo_man * p, DdNode * F )
{
    DdManager * dd = p->dd;
    reo_unit * pUnit;
    int HKey, fComp;
    
    fComp = Cudd_IsComplement(F);
    F = Cudd_Regular(F);

    // check the hash-table
    if ( F->ref != 1 )
    {
        // search cache - use linear probing
        for ( HKey = hashKey2(p->Signature,F,p->nTableSize); p->HTable[HKey].Sign == p->Signature; HKey = (HKey+1) % p->nTableSize )
            if ( p->HTable[HKey].Arg1 == (reo_unit *)F )
            {
                pUnit = p->HTable[HKey].Arg2;  
                assert( pUnit );
                // increment the edge counter
                pUnit->n++;
                return Unit_NotCond( pUnit, fComp );
            }
    }
    // the entry in not found in the cache
    
    // create a new entry
    pUnit         = reoUnitsGetNextUnit( p );
    pUnit->n      = 1;
    if ( cuddIsConstant(F) )
    {
        pUnit->lev    = REO_CONST_LEVEL;
        pUnit->pE     = (reo_unit*)((int)(cuddV(F)));
        pUnit->pT     = NULL;
        // check if the diagram that is being reordering has complement edges
        if ( F != dd->one )
            p->fThisIsAdd = 1;
        // insert the unit into the corresponding plane
        reoUnitsAddUnitToPlane( &(p->pPlanes[p->nSupp]), pUnit ); // increments the unit counter
    }
    else
    {
        pUnit->lev    = p->pMapToPlanes[F->index];
        pUnit->pE     = reoTransferNodesToUnits_rec( p, cuddE(F) );
        pUnit->pT     = reoTransferNodesToUnits_rec( p, cuddT(F) );
        // insert the unit into the corresponding plane
        reoUnitsAddUnitToPlane( &(p->pPlanes[pUnit->lev]), pUnit ); // increments the unit counter
    }

    // add to the hash table
    if ( F->ref != 1 )
    {
        // the next free entry is already found - it is pointed to by HKey
        // while we traversed the diagram, the hash entry to which HKey points,
        // might have been used. Make sure that its signature is different.
        for ( ; p->HTable[HKey].Sign == p->Signature; HKey = (HKey+1) % p->nTableSize );
        p->HTable[HKey].Sign = p->Signature;
        p->HTable[HKey].Arg1 = (reo_unit *)F;
        p->HTable[HKey].Arg2 = pUnit;
    }

    // increment the counter of nodes
    p->nNodesCur++;
    return Unit_NotCond( pUnit, fComp );
}

/**Function*************************************************************

  Synopsis    [Creates the DD from the internal reordering data structure.]

  Description [It is important that the hash table is lossless.]

  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * reoTransferUnitsToNodes_rec( reo_man * p, reo_unit * pUnit )
{
    DdManager * dd = p->dd;
    DdNode * bRes, * E, * T;
    int HKey, fComp;

    fComp = Cudd_IsComplement(pUnit);
    pUnit = Unit_Regular(pUnit);

    // check the hash-table
    if ( pUnit->n != 1 )
    {
        for ( HKey = hashKey2(p->Signature,pUnit,p->nTableSize); p->HTable[HKey].Sign == p->Signature; HKey = (HKey+1) % p->nTableSize )
            if ( p->HTable[HKey].Arg1 == pUnit )
            {
                bRes = (DdNode*) p->HTable[HKey].Arg2;  
                assert( bRes );
                return Cudd_NotCond( bRes, fComp );
            }
    }

    // treat the case of constants
    if ( Unit_IsConstant(pUnit) )
    {
        bRes = cuddUniqueConst( dd, ((double)((int)(pUnit->pE))) );
        cuddRef( bRes );
    }
    else
    {
        // split and recur on children of this node
        E = reoTransferUnitsToNodes_rec( p, pUnit->pE );
        if ( E == NULL )
            return NULL;
        cuddRef(E);

        T = reoTransferUnitsToNodes_rec( p, pUnit->pT );
        if ( T == NULL )
        {
            Cudd_RecursiveDeref(dd, E);
            return NULL;
        }
        cuddRef(T);
        
        // consider the case when Res0 and Res1 are the same node
        assert( E != T );
        assert( !Cudd_IsComplement(T) );

        bRes = cuddUniqueInter( dd, p->pMapToDdVarsFinal[pUnit->lev], T, E );
        if ( bRes == NULL ) 
        {
            Cudd_RecursiveDeref(dd,E);
            Cudd_RecursiveDeref(dd,T);
            return NULL;
        }
        cuddRef( bRes );
        cuddDeref( E );
        cuddDeref( T );
    }

    // do not keep the result if the ref count is only 1, since it will not be visited again
    if ( pUnit->n != 1 )
    {
         // while we traversed the diagram, the hash entry to which HKey points,
         // might have been used. Make sure that its signature is different.
         for ( ; p->HTable[HKey].Sign == p->Signature; HKey = (HKey+1) % p->nTableSize );
         p->HTable[HKey].Sign = p->Signature;
         p->HTable[HKey].Arg1 = pUnit;
         p->HTable[HKey].Arg2 = (reo_unit *)bRes;  

         // add the DD to the referenced DD list in order to be able to store it in cache
         p->pRefNodes[p->nRefNodes++] = bRes;  Cudd_Ref( bRes ); 
         // no need to do this, because the garbage collection will not take bRes away
         // it is held by the diagram in the making
    }
    // increment the counter of nodes
    p->nNodesCur++;
    cuddDeref( bRes );
    return Cudd_NotCond( bRes, fComp );
}

////////////////////////////////////////////////////////////////////////
///                         END OF FILE                              ///
////////////////////////////////////////////////////////////////////////