1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
/**CFile****************************************************************
FileName [fpgaUtils.c]
PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]
Synopsis [Technology mapping for variable-size-LUT FPGAs.]
Author [MVSIS Group]
Affiliation [UC Berkeley]
Date [Ver. 2.0. Started - August 18, 2004.]
Revision [$Id: fpgaUtils.c,v 1.3 2004/07/06 04:55:58 alanmi Exp $]
***********************************************************************/
#include "fpgaInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define FPGA_CO_LIST_SIZE 5
static void Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv );
static void Fpga_MappingDfsCuts_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes );
static int Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 );
static void Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax );
static void Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes );
static int Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo );
static Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfs( Fpga_Man_t * pMan, int fCollectEquiv )
{
Fpga_NodeVec_t * vNodes;//, * vNodesCo;
Fpga_Node_t * pNode;
int i;
// collect the CO nodes by level
// vNodesCo = Fpga_MappingOrderCosByLevel( pMan );
// start the array
vNodes = Fpga_NodeVecAlloc( 100 );
// collect the PIs
for ( i = 0; i < pMan->nInputs; i++ )
{
pNode = pMan->pInputs[i];
Fpga_NodeVecPush( vNodes, pNode );
pNode->fMark0 = 1;
}
// perform the traversal
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingDfs_rec( Fpga_Regular(pMan->pOutputs[i]), vNodes, fCollectEquiv );
// for ( i = vNodesCo->nSize - 1; i >= 0 ; i-- )
// for ( pNode = vNodesCo->pArray[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
// Fpga_MappingDfs_rec( pNode, vNodes, fCollectEquiv );
// clean the node marks
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
// for ( i = 0; i < pMan->nOutputs; i++ )
// Fpga_MappingUnmark_rec( Fpga_Regular(pMan->pOutputs[i]) );
// Fpga_NodeVecFree( vNodesCo );
return vNodes;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv )
{
assert( !Fpga_IsComplement(pNode) );
if ( pNode->fMark0 )
return;
// visit the transitive fanin
if ( Fpga_NodeIsAnd(pNode) )
{
Fpga_MappingDfs_rec( Fpga_Regular(pNode->p1), vNodes, fCollectEquiv );
Fpga_MappingDfs_rec( Fpga_Regular(pNode->p2), vNodes, fCollectEquiv );
}
// visit the equivalent nodes
if ( fCollectEquiv && pNode->pNextE )
Fpga_MappingDfs_rec( pNode->pNextE, vNodes, fCollectEquiv );
// make sure the node is not visited through the equivalent nodes
assert( pNode->fMark0 == 0 );
// mark the node as visited
pNode->fMark0 = 1;
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfsNodes( Fpga_Man_t * pMan, Fpga_Node_t ** ppNodes, int nNodes, int fEquiv )
{
Fpga_NodeVec_t * vNodes;
int i;
// perform the traversal
vNodes = Fpga_NodeVecAlloc( 200 );
for ( i = 0; i < nNodes; i++ )
Fpga_MappingDfs_rec( ppNodes[i], vNodes, fEquiv );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingGetAreaFlow( Fpga_Man_t * p )
{
float aFlowFlowTotal = 0;
int i;
for ( i = 0; i < p->nOutputs; i++ )
{
if ( Fpga_NodeIsConst(p->pOutputs[i]) )
continue;
aFlowFlowTotal += Fpga_Regular(p->pOutputs[i])->pCutBest->aFlow;
}
return aFlowFlowTotal;
}
/**Function*************************************************************
Synopsis [Computes the area of the current mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingArea( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode;
float aTotal;
int i;
// perform the traversal
aTotal = 0;
for ( i = 0; i < pMan->vMapping->nSize; i++ )
{
pNode = pMan->vMapping->pArray[i];
aTotal += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
}
return aTotal;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes )
{
float aArea;
int i;
assert( !Fpga_IsComplement(pNode) );
if ( !Fpga_NodeIsAnd(pNode) )
return 0;
if ( pNode->fMark0 )
return 0;
assert( pNode->pCutBest != NULL );
// visit the transitive fanin of the selected cut
aArea = 0;
for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
aArea += Fpga_MappingArea_rec( pMan, pNode->pCutBest->ppLeaves[i], vNodes );
// make sure the node is not visited through the fanin nodes
assert( pNode->fMark0 == 0 );
// mark the node as visited
pNode->fMark0 = 1;
// add the node to the list
aArea += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
return aArea;
}
/**Function*************************************************************
Synopsis [Computes the area of the current mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingAreaTrav( Fpga_Man_t * pMan )
{
Fpga_NodeVec_t * vNodes;
float aTotal;
int i;
// perform the traversal
aTotal = 0;
vNodes = Fpga_NodeVecAlloc( 100 );
for ( i = 0; i < pMan->nOutputs; i++ )
aTotal += Fpga_MappingArea_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), vNodes );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
Fpga_NodeVecFree( vNodes );
return aTotal;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingSetRefsAndArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_Node_t ** ppStore )
{
float aArea;
int i;
assert( !Fpga_IsComplement(pNode) );
if ( pNode->nRefs++ )
return 0;
if ( !Fpga_NodeIsAnd(pNode) )
return 0;
assert( pNode->pCutBest != NULL );
// store the node in the structure by level
pNode->pData0 = (char *)ppStore[pNode->Level];
ppStore[pNode->Level] = pNode;
// visit the transitive fanin of the selected cut
aArea = pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode->pCutBest->ppLeaves[i], ppStore );
return aArea;
}
/**Function*************************************************************
Synopsis [Sets the correct reference counts for the mapping.]
Description [Collects the nodes in reverse topological order
and places in them in array pMan->vMapping.]
SideEffects []
SeeAlso []
***********************************************************************/
float Fpga_MappingSetRefsAndArea( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode, ** ppStore;
float aArea;
int i, LevelMax;
// clean all references
for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
pMan->vNodesAll->pArray[i]->nRefs = 0;
// allocate place to store the nodes
LevelMax = Fpga_MappingMaxLevel( pMan );
ppStore = ABC_ALLOC( Fpga_Node_t *, LevelMax + 1 );
memset( ppStore, 0, sizeof(Fpga_Node_t *) * (LevelMax + 1) );
// collect nodes reachable from POs in the DFS order through the best cuts
aArea = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
{
pNode = Fpga_Regular(pMan->pOutputs[i]);
if ( pNode == pMan->pConst1 )
continue;
aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode, ppStore );
pNode->nRefs++;
}
// reconnect the nodes in reverse topological order
pMan->vMapping->nSize = 0;
for ( i = LevelMax; i >= 0; i-- )
for ( pNode = ppStore[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
Fpga_NodeVecPush( pMan->vMapping, pNode );
ABC_FREE( ppStore );
return aArea;
}
/**Function*************************************************************
Synopsis [Compares the outputs by their arrival times.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 )
{
Fpga_Node_t * pNode1 = Fpga_Regular(*ppNode1);
Fpga_Node_t * pNode2 = Fpga_Regular(*ppNode2);
float Arrival1 = pNode1->pCutBest? pNode1->pCutBest->tArrival : 0;
float Arrival2 = pNode2->pCutBest? pNode2->pCutBest->tArrival : 0;
if ( Arrival1 < Arrival2 )
return -1;
if ( Arrival1 > Arrival2 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Finds given number of latest arriving COs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax )
{
int nNodes, i, k, v;
assert( p->nOutputs >= nNodesMax );
pNodes[0] = 0;
nNodes = 1;
for ( i = 1; i < p->nOutputs; i++ )
{
for ( k = nNodes - 1; k >= 0; k-- )
if ( Fpga_MappingCompareOutputDelay( &p->pOutputs[pNodes[k]], &p->pOutputs[i] ) >= 0 )
break;
if ( k == nNodesMax - 1 )
continue;
if ( nNodes < nNodesMax )
nNodes++;
for ( v = nNodes - 1; v > k+1; v-- )
pNodes[v] = pNodes[v-1];
pNodes[k+1] = i;
}
}
/**Function*************************************************************
Synopsis [Prints a bunch of latest arriving outputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingPrintOutputArrivals( Fpga_Man_t * p )
{
Fpga_Node_t * pNode;
int pSorted[FPGA_CO_LIST_SIZE];
int fCompl, Limit, MaxNameSize, i;
// determine the number of nodes to print
Limit = (p->nOutputs > FPGA_CO_LIST_SIZE)? FPGA_CO_LIST_SIZE : p->nOutputs;
// determine the order
Fpga_MappingFindLatest( p, pSorted, Limit );
// determine max size of the node's name
MaxNameSize = 0;
for ( i = 0; i < Limit; i++ )
if ( MaxNameSize < (int)strlen(p->ppOutputNames[pSorted[i]]) )
MaxNameSize = strlen(p->ppOutputNames[pSorted[i]]);
// print the latest outputs
for ( i = 0; i < Limit; i++ )
{
// get the i-th latest output
pNode = Fpga_Regular(p->pOutputs[pSorted[i]]);
fCompl = Fpga_IsComplement(p->pOutputs[pSorted[i]]);
// print out the best arrival time
printf( "Output %-*s : ", MaxNameSize + 3, p->ppOutputNames[pSorted[i]] );
printf( "Delay = %8.2f ", (double)pNode->pCutBest->tArrival );
if ( fCompl )
printf( "NEG" );
else
printf( "POS" );
printf( "\n" );
}
}
/**Function*************************************************************
Synopsis [Sets up the truth tables.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetupTruthTables( unsigned uTruths[][2] )
{
int m, v;
// set up the truth tables
for ( m = 0; m < 32; m++ )
for ( v = 0; v < 5; v++ )
if ( m & (1 << v) )
uTruths[v][0] |= (1 << m);
// make adjustments for the case of 6 variables
for ( v = 0; v < 5; v++ )
uTruths[v][1] = uTruths[v][0];
uTruths[5][0] = 0;
uTruths[5][1] = FPGA_FULL;
}
/**Function*************************************************************
Synopsis [Sets up the mask.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetupMask( unsigned uMask[], int nVarsMax )
{
if ( nVarsMax == 6 )
uMask[0] = uMask[1] = FPGA_FULL;
else
{
uMask[0] = FPGA_MASK(1 << nVarsMax);
uMask[1] = 0;
}
}
/**Function*************************************************************
Synopsis [Verify one useful property.]
Description [This procedure verifies one useful property. After
the FRAIG construction with choice nodes is over, each primary node
should have fanins that are primary nodes. The primary nodes is the
one that does not have pNode->pRepr set to point to another node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_ManCheckConsistency( Fpga_Man_t * p )
{
Fpga_Node_t * pNode;
Fpga_NodeVec_t * pVec;
int i;
pVec = Fpga_MappingDfs( p, 0 );
for ( i = 0; i < pVec->nSize; i++ )
{
pNode = pVec->pArray[i];
if ( Fpga_NodeIsVar(pNode) )
{
if ( pNode->pRepr )
printf( "Primary input %d is a secondary node.\n", pNode->Num );
}
else if ( Fpga_NodeIsConst(pNode) )
{
if ( pNode->pRepr )
printf( "Constant 1 %d is a secondary node.\n", pNode->Num );
}
else
{
if ( pNode->pRepr )
printf( "Internal node %d is a secondary node.\n", pNode->Num );
if ( Fpga_Regular(pNode->p1)->pRepr )
printf( "Internal node %d has first fanin that is a secondary node.\n", pNode->Num );
if ( Fpga_Regular(pNode->p2)->pRepr )
printf( "Internal node %d has second fanin that is a secondary node.\n", pNode->Num );
}
}
Fpga_NodeVecFree( pVec );
return 1;
}
/**Function*************************************************************
Synopsis [Compares the supergates by their level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CompareNodesByLevelDecreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
return -1;
if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Compares the supergates by their level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CompareNodesByLevelIncreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
return -1;
if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Orders the nodes in the decreasing order of levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSortByLevel( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes, int fIncreasing )
{
if ( fIncreasing )
qsort( (void *)vNodes->pArray, (size_t)vNodes->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_CompareNodesByLevelIncreasing );
else
qsort( (void *)vNodes->pArray, (size_t)vNodes->nSize, sizeof(Fpga_Node_t *),
(int (*)(const void *, const void *)) Fpga_CompareNodesByLevelDecreasing );
// assert( Fpga_CompareNodesByLevel( vNodes->pArray, vNodes->pArray + vNodes->nSize - 1 ) <= 0 );
}
/**Function*************************************************************
Synopsis [Computes the limited DFS ordering for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_DfsLim( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int nLevels )
{
Fpga_NodeVec_t * vNodes;
int i;
// perform the traversal
vNodes = Fpga_NodeVecAlloc( 100 );
Fpga_DfsLim_rec( pNode, nLevels, vNodes );
for ( i = 0; i < vNodes->nSize; i++ )
vNodes->pArray[i]->fMark0 = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis [Recursively computes the DFS ordering of the nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes )
{
assert( !Fpga_IsComplement(pNode) );
if ( pNode->fMark0 )
return;
pNode->fMark0 = 1;
// visit the transitive fanin
Level--;
if ( Level > 0 && Fpga_NodeIsAnd(pNode) )
{
Fpga_DfsLim_rec( Fpga_Regular(pNode->p1), Level, vNodes );
Fpga_DfsLim_rec( Fpga_Regular(pNode->p2), Level, vNodes );
}
// add the node to the list
Fpga_NodeVecPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Computes the limited DFS ordering for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_ManCleanData0( Fpga_Man_t * pMan )
{
int i;
for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
pMan->vNodesAll->pArray[i]->pData0 = 0;
}
/**Function*************************************************************
Synopsis [Collects the TFO of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_CollectNodeTfo( Fpga_Man_t * pMan, Fpga_Node_t * pNode )
{
Fpga_NodeVec_t * vVisited, * vTfo;
int i;
// perform the traversal
vVisited = Fpga_NodeVecAlloc( 100 );
vTfo = Fpga_NodeVecAlloc( 100 );
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_CollectNodeTfo_rec( Fpga_Regular(pMan->pOutputs[i]), pNode, vVisited, vTfo );
for ( i = 0; i < vVisited->nSize; i++ )
vVisited->pArray[i]->fMark0 = vVisited->pArray[i]->fMark1 = 0;
Fpga_NodeVecFree( vVisited );
return vTfo;
}
/**Function*************************************************************
Synopsis [Collects the TFO of the node.]
Description [Returns 1 if the node should be collected.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo )
{
int Ret1, Ret2;
assert( !Fpga_IsComplement(pNode) );
// skip visited nodes
if ( pNode->fMark0 )
return pNode->fMark1;
pNode->fMark0 = 1;
Fpga_NodeVecPush( vVisited, pNode );
// return the pivot node
if ( pNode == pPivot )
{
pNode->fMark1 = 1;
return 1;
}
if ( pNode->Level < pPivot->Level )
{
pNode->fMark1 = 0;
return 0;
}
// visit the transitive fanin
assert( Fpga_NodeIsAnd(pNode) );
Ret1 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p1), pPivot, vVisited, vTfo );
Ret2 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p2), pPivot, vVisited, vTfo );
if ( Ret1 || Ret2 )
{
pNode->fMark1 = 1;
Fpga_NodeVecPush( vTfo, pNode );
}
else
pNode->fMark1 = 0;
return pNode->fMark1;
}
/**Function*************************************************************
Synopsis [Levelizes the nodes accessible from the POs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingLevelize( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes )
{
Fpga_NodeVec_t * vLevels;
Fpga_Node_t ** ppNodes;
Fpga_Node_t * pNode;
int nNodes, nLevelsMax, i;
// reassign the levels (this may be necessary for networks which choices)
ppNodes = vNodes->pArray;
nNodes = vNodes->nSize;
for ( i = 0; i < nNodes; i++ )
{
pNode = ppNodes[i];
if ( !Fpga_NodeIsAnd(pNode) )
{
pNode->Level = 0;
continue;
}
pNode->Level = 1 + FPGA_MAX( Fpga_Regular(pNode->p1)->Level, Fpga_Regular(pNode->p2)->Level );
}
// get the max levels
nLevelsMax = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
nLevelsMax = FPGA_MAX( nLevelsMax, (int)Fpga_Regular(pMan->pOutputs[i])->Level );
nLevelsMax++;
// allocate storage for levels
vLevels = Fpga_NodeVecAlloc( nLevelsMax );
for ( i = 0; i < nLevelsMax; i++ )
Fpga_NodeVecPush( vLevels, NULL );
// go through the nodes and add them to the levels
for ( i = 0; i < nNodes; i++ )
{
pNode = ppNodes[i];
pNode->pLevel = NULL;
if ( !Fpga_NodeIsAnd(pNode) )
continue;
// attach the node to this level
pNode->pLevel = Fpga_NodeVecReadEntry( vLevels, pNode->Level );
Fpga_NodeVecWriteEntry( vLevels, pNode->Level, pNode );
}
return vLevels;
}
/**Function*************************************************************
Synopsis [Sets up the mask.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingMaxLevel( Fpga_Man_t * pMan )
{
int nLevelMax, i;
nLevelMax = 0;
for ( i = 0; i < pMan->nOutputs; i++ )
nLevelMax = nLevelMax > (int)Fpga_Regular(pMan->pOutputs[i])->Level?
nLevelMax : (int)Fpga_Regular(pMan->pOutputs[i])->Level;
return nLevelMax;
}
/**Function*************************************************************
Synopsis [Analyses choice nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fpga_MappingUpdateLevel_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int fMaximum )
{
Fpga_Node_t * pTemp;
int Level1, Level2, LevelE;
assert( !Fpga_IsComplement(pNode) );
if ( !Fpga_NodeIsAnd(pNode) )
return pNode->Level;
// skip the visited node
if ( pNode->TravId == pMan->nTravIds )
return pNode->Level;
pNode->TravId = pMan->nTravIds;
// compute levels of the children nodes
Level1 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p1), fMaximum );
Level2 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p2), fMaximum );
pNode->Level = 1 + FPGA_MAX( Level1, Level2 );
if ( pNode->pNextE )
{
LevelE = Fpga_MappingUpdateLevel_rec( pMan, pNode->pNextE, fMaximum );
if ( fMaximum )
{
if ( pNode->Level < (unsigned)LevelE )
pNode->Level = LevelE;
}
else
{
if ( pNode->Level > (unsigned)LevelE )
pNode->Level = LevelE;
}
// set the level of all equivalent nodes to be the same minimum
if ( pNode->pRepr == NULL ) // the primary node
for ( pTemp = pNode->pNextE; pTemp; pTemp = pTemp->pNextE )
pTemp->Level = pNode->Level;
}
return pNode->Level;
}
/**Function*************************************************************
Synopsis [Resets the levels of the nodes in the choice graph.]
Description [Makes the level of the choice nodes to be equal to the
maximum of the level of the nodes in the equivalence class. This way
sorting by level leads to the reverse topological order, which is
needed for the required time computation.]
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_MappingSetChoiceLevels( Fpga_Man_t * pMan )
{
int i;
pMan->nTravIds++;
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 1 );
}
/**Function*************************************************************
Synopsis [Reports statistics on choice nodes.]
Description [The number of choice nodes is the number of primary nodes,
which has pNextE set to a pointer. The number of choices is the number
of entries in the equivalent-node lists of the primary nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Fpga_ManReportChoices( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode, * pTemp;
int nChoiceNodes, nChoices;
int i, LevelMax1, LevelMax2;
// report the number of levels
LevelMax1 = Fpga_MappingMaxLevel( pMan );
pMan->nTravIds++;
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 0 );
LevelMax2 = Fpga_MappingMaxLevel( pMan );
// report statistics about choices
nChoiceNodes = nChoices = 0;
for ( i = 0; i < pMan->vAnds->nSize; i++ )
{
pNode = pMan->vAnds->pArray[i];
if ( pNode->pRepr == NULL && pNode->pNextE != NULL )
{ // this is a choice node = the primary node that has equivalent nodes
nChoiceNodes++;
for ( pTemp = pNode; pTemp; pTemp = pTemp->pNextE )
nChoices++;
}
}
if ( pMan->fVerbose )
{
printf( "Maximum level: Original = %d. Reduced due to choices = %d.\n", LevelMax1, LevelMax2 );
printf( "Choice stats: Choice nodes = %d. Total choices = %d.\n", nChoiceNodes, nChoices );
}
/*
{
FILE * pTable;
pTable = fopen( "stats_choice.txt", "a+" );
fprintf( pTable, "%s ", pMan->pFileName );
fprintf( pTable, "%4d ", LevelMax1 );
fprintf( pTable, "%4d ", pMan->vAnds->nSize - pMan->nInputs );
fprintf( pTable, "%4d ", LevelMax2 );
fprintf( pTable, "%7d ", nChoiceNodes );
fprintf( pTable, "%7d ", nChoices + nChoiceNodes );
fprintf( pTable, "\n" );
fclose( pTable );
}
*/
}
/**Function*************************************************************
Synopsis [Returns the array of CO nodes sorted by level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan )
{
Fpga_Node_t * pNode;
Fpga_NodeVec_t * vNodes;
int i, nLevels;
// get the largest level of a CO
nLevels = Fpga_MappingMaxLevel( pMan );
// allocate the array of nodes
vNodes = Fpga_NodeVecAlloc( nLevels + 1 );
for ( i = 0; i <= nLevels; i++ )
Fpga_NodeVecPush( vNodes, NULL );
// clean the marks
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
// put the nodes into the structure
for ( i = 0; i < pMan->nOutputs; i++ )
{
pNode = Fpga_Regular(pMan->pOutputs[i]);
if ( pNode->fMark0 )
continue;
pNode->fMark0 = 1;
pNode->pData0 = (char *)Fpga_NodeVecReadEntry( vNodes, pNode->Level );
Fpga_NodeVecWriteEntry( vNodes, pNode->Level, pNode );
}
for ( i = 0; i < pMan->nOutputs; i++ )
Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
return vNodes;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|