1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
/*
* Revision Control Information
*
* $Source$
* $Author$
* $Revision$
* $Date$
*
*/
/*
* espresso.h -- header file for Espresso-mv
*/
//#include "port.h"
//#include "utility.h"
#include "sparse.h"
#include "mincov.h"
#include "util_hack.h" // added
#define ptime() util_cpu_time()
#define print_time(t) util_print_time(t)
#ifdef IBM_WATC
#define void int
#include "short.h"
#endif
#ifdef IBMPC /* set default options for IBM/PC */
#define NO_INLINE
#define BPI 16
#endif
/*-----THIS USED TO BE set.h----- */
/*
* set.h -- definitions for packed arrays of bits
*
* This header file describes the data structures which comprise a
* facility for efficiently implementing packed arrays of bits
* (otherwise known as sets, cf. Pascal).
*
* A set is a vector of bits and is implemented here as an array of
* unsigned integers. The low order bits of set[0] give the index of
* the last word of set data. The higher order bits of set[0] are
* used to store data associated with the set. The set data is
* contained in elements set[1] ... set[LOOP(set)] as a packed bit
* array.
*
* A family of sets is a two-dimensional matrix of bits and is
* implemented with the data type "set_family".
*
* BPI == 32 and BPI == 16 have been tested and work.
*/
/* Define host machine characteristics of "unsigned int" */
#ifndef BPI
#define BPI 32 /* # bits per integer */
#endif
#if BPI == 32
#define LOGBPI 5 /* log(BPI)/log(2) */
#else
#define LOGBPI 4 /* log(BPI)/log(2) */
#endif
/* Define the set type */
typedef unsigned int *pset;
/* Define the set family type -- an array of sets */
typedef struct set_family {
int wsize; /* Size of each set in 'ints' */
int sf_size; /* User declared set size */
int capacity; /* Number of sets allocated */
int count; /* The number of sets in the family */
int active_count; /* Number of "active" sets */
pset data; /* Pointer to the set data */
struct set_family *next; /* For garbage collection */
} set_family_t, *pset_family;
/* Macros to set and test single elements */
#define WHICH_WORD(element) (((element) >> LOGBPI) + 1)
#define WHICH_BIT(element) ((element) & (BPI-1))
/* # of ints needed to allocate a set with "size" elements */
#if BPI == 32
#define SET_SIZE(size) ((size) <= BPI ? 2 : (WHICH_WORD((size)-1) + 1))
#else
#define SET_SIZE(size) ((size) <= BPI ? 3 : (WHICH_WORD((size)-1) + 2))
#endif
/*
* Three fields are maintained in the first word of the set
* LOOP is the index of the last word used for set data
* LOOPCOPY is the index of the last word in the set
* SIZE is available for general use (e.g., recording # elements in set)
* NELEM retrieves the number of elements in the set
*/
#define LOOP(set) (set[0] & 0x03ff)
#define PUTLOOP(set, i) (set[0] &= ~0x03ff, set[0] |= (i))
#if BPI == 32
#define LOOPCOPY(set) LOOP(set)
#define SIZE(set) (set[0] >> 16)
#define PUTSIZE(set, size) (set[0] &= 0xffff, set[0] |= ((size) << 16))
#else
#define LOOPCOPY(set) (LOOP(set) + 1)
#define SIZE(set) (set[LOOP(set)+1])
#define PUTSIZE(set, size) ((set[LOOP(set)+1]) = (size))
#endif
#define NELEM(set) (BPI * LOOP(set))
#define LOOPINIT(size) ((size <= BPI) ? 1 : WHICH_WORD((size)-1))
/*
* FLAGS store general information about the set
*/
#define SET(set, flag) (set[0] |= (flag))
#define RESET(set, flag) (set[0] &= ~ (flag))
#define TESTP(set, flag) (set[0] & (flag))
/* Flag definitions are ... */
#define PRIME 0x8000 /* cube is prime */
#define NONESSEN 0x4000 /* cube cannot be essential prime */
#define ACTIVE 0x2000 /* cube is still active */
#define REDUND 0x1000 /* cube is redundant(at this point) */
#define COVERED 0x0800 /* cube has been covered */
#define RELESSEN 0x0400 /* cube is relatively essential */
/* Most efficient way to look at all members of a set family */
#define foreach_set(R, last, p)\
for(p=R->data,last=p+R->count*R->wsize;p<last;p+=R->wsize)
#define foreach_remaining_set(R, last, pfirst, p)\
for(p=pfirst+R->wsize,last=R->data+R->count*R->wsize;p<last;p+=R->wsize)
#define foreach_active_set(R, last, p)\
foreach_set(R,last,p) if (TESTP(p, ACTIVE))
/* Another way that also keeps the index of the current set member in i */
#define foreachi_set(R, i, p)\
for(p=R->data,i=0;i<R->count;p+=R->wsize,i++)
#define foreachi_active_set(R, i, p)\
foreachi_set(R,i,p) if (TESTP(p, ACTIVE))
/* Looping over all elements in a set:
* foreach_set_element(pset p, int i, unsigned val, int base) {
* .
* .
* .
* }
*/
#define foreach_set_element(p, i, val, base) \
for(i = LOOP(p); i > 0; ) \
for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) \
if (val & 1)
/* Return a pointer to a given member of a set family */
#define GETSET(family, index) ((family)->data + (family)->wsize * (index))
/* Allocate and deallocate sets */
#define set_new(size) set_clear(ALLOC(unsigned int, SET_SIZE(size)), size)
#define set_full(size) set_fill(ALLOC(unsigned int, SET_SIZE(size)), size)
#define set_save(r) set_copy(ALLOC(unsigned int, SET_SIZE(NELEM(r))), r)
#define set_free(r) FREE(r)
/* Check for set membership, remove set element and insert set element */
#define is_in_set(set, e) (set[WHICH_WORD(e)] & (1 << WHICH_BIT(e)))
#define set_remove(set, e) (set[WHICH_WORD(e)] &= ~ (1 << WHICH_BIT(e)))
#define set_insert(set, e) (set[WHICH_WORD(e)] |= 1 << WHICH_BIT(e))
/* Inline code substitution for those places that REALLY need it on a VAX */
#ifdef NO_INLINE
#define INLINEset_copy(r, a) (void) set_copy(r,a)
#define INLINEset_clear(r, size) (void) set_clear(r, size)
#define INLINEset_fill(r, size) (void) set_fill(r, size)
#define INLINEset_and(r, a, b) (void) set_and(r, a, b)
#define INLINEset_or(r, a, b) (void) set_or(r, a, b)
#define INLINEset_diff(r, a, b) (void) set_diff(r, a, b)
#define INLINEset_ndiff(r, a, b, f) (void) set_ndiff(r, a, b, f)
#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
#define INLINEset_merge(r, a, b, mask) (void) set_merge(r, a, b, mask)
#define INLINEsetp_implies(a, b, when_false) \
if (! setp_implies(a,b)) when_false
#define INLINEsetp_disjoint(a, b, when_false) \
if (! setp_disjoint(a,b)) when_false
#define INLINEsetp_equal(a, b, when_false) \
if (! setp_equal(a,b)) when_false
#else
#define INLINEset_copy(r, a)\
{register int i_=LOOPCOPY(a); do r[i_]=a[i_]; while (--i_>=0);}
#define INLINEset_clear(r, size)\
{register int i_=LOOPINIT(size); *r=i_; do r[i_] = 0; while (--i_ > 0);}
#define INLINEset_fill(r, size)\
{register int i_=LOOPINIT(size); *r=i_; \
r[i_]=((unsigned int)(~0))>>(i_*BPI-size); while(--i_>0) r[i_]=~0;}
#define INLINEset_and(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] & b[i_]; while (--i_>0);}
#define INLINEset_or(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] | b[i_]; while (--i_>0);}
#define INLINEset_diff(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] & ~ b[i_]; while (--i_>0);}
#define INLINEset_ndiff(r, a, b, fullset)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = fullset[i_] & (a[i_] | ~ b[i_]); while (--i_>0);}
#ifdef IBM_WATC
#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b)
#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f)
#else
#define INLINEset_xor(r, a, b)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = a[i_] ^ b[i_]; while (--i_>0);}
#define INLINEset_xnor(r, a, b, fullset)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = fullset[i_] & ~ (a[i_] ^ b[i_]); while (--i_>0);}
#endif
#define INLINEset_merge(r, a, b, mask)\
{register int i_=LOOP(a); PUTLOOP(r,i_);\
do r[i_] = (a[i_]&mask[i_]) | (b[i_]&~mask[i_]); while (--i_>0);}
#define INLINEsetp_implies(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]&~b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#define INLINEsetp_disjoint(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]&b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#define INLINEsetp_equal(a, b, when_false)\
{register int i_=LOOP(a); do if (a[i_]!=b[i_]) break; while (--i_>0);\
if (i_ != 0) when_false;}
#endif
#if BPI == 32
#define count_ones(v)\
(bit_count[v & 255] + bit_count[(v >> 8) & 255]\
+ bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255])
#else
#define count_ones(v) (bit_count[v & 255] + bit_count[(v >> 8) & 255])
#endif
/* Table for efficient bit counting */
extern int bit_count[256];
/*----- END OF set.h ----- */
/* Define a boolean type */
#define bool int
#define FALSE 0
#define TRUE 1
#define MAYBE 2
#define print_bool(x) ((x) == 0 ? "FALSE" : ((x) == 1 ? "TRUE" : "MAYBE"))
/* Map many cube/cover types/routines into equivalent set types/routines */
#define pcube pset
#define new_cube() set_new(cube.size)
#define free_cube(r) set_free(r)
#define pcover pset_family
#define new_cover(i) sf_new(i, cube.size)
#define free_cover(r) sf_free(r)
#define free_cubelist(T) FREE(T[0]); FREE(T);
/* cost_t describes the cost of a cover */
typedef struct cost_struct {
int cubes; /* number of cubes in the cover */
int in; /* transistor count, binary-valued variables */
int out; /* transistor count, output part */
int mv; /* transistor count, multiple-valued vars */
int total; /* total number of transistors */
int primes; /* number of prime cubes */
} cost_t, *pcost;
/* pair_t describes bit-paired variables */
typedef struct pair_struct {
int cnt;
int *var1;
int *var2;
} pair_t, *ppair;
/* symbolic_list_t describes a single ".symbolic" line */
typedef struct symbolic_list_struct {
int variable;
int pos;
struct symbolic_list_struct *next;
} symbolic_list_t;
/* symbolic_list_t describes a single ".symbolic" line */
typedef struct symbolic_label_struct {
char *label;
struct symbolic_label_struct *next;
} symbolic_label_t;
/* symbolic_t describes a linked list of ".symbolic" lines */
typedef struct symbolic_struct {
symbolic_list_t *symbolic_list; /* linked list of items */
int symbolic_list_length; /* length of symbolic_list list */
symbolic_label_t *symbolic_label; /* linked list of new names */
int symbolic_label_length; /* length of symbolic_label list */
struct symbolic_struct *next;
} symbolic_t;
/* PLA_t stores the logical representation of a PLA */
typedef struct {
pcover F, D, R; /* on-set, off-set and dc-set */
char *filename; /* filename */
int pla_type; /* logical PLA format */
pcube phase; /* phase to split into on-set and off-set */
ppair pair; /* how to pair variables */
char **label; /* labels for the columns */
symbolic_t *symbolic; /* allow binary->symbolic mapping */
symbolic_t *symbolic_output;/* allow symbolic output mapping */
} PLA_t, *pPLA;
#define equal(a,b) (strcmp(a,b) == 0)
/* This is a hack which I wish I hadn't done, but too painful to change */
#define CUBELISTSIZE(T) (((pcube *) T[1] - T) - 3)
/* For documentation purposes */
#define IN
#define OUT
#define INOUT
/* The pla_type field describes the input and output format of the PLA */
#define F_type 1
#define D_type 2
#define R_type 4
#define PLEASURE_type 8 /* output format */
#define EQNTOTT_type 16 /* output format algebraic eqns */
#define KISS_type 128 /* output format kiss */
#define CONSTRAINTS_type 256 /* output the constraints (numeric) */
#define SYMBOLIC_CONSTRAINTS_type 512 /* output the constraints (symbolic) */
#define FD_type (F_type | D_type)
#define FR_type (F_type | R_type)
#define DR_type (D_type | R_type)
#define FDR_type (F_type | D_type | R_type)
/* Definitions for the debug variable */
#define COMPL 0x0001
#define ESSEN 0x0002
#define EXPAND 0x0004
#define EXPAND1 0x0008
#define GASP 0x0010
#define IRRED 0x0020
#define REDUCE 0x0040
#define REDUCE1 0x0080
#define SPARSE 0x0100
#define TAUT 0x0200
#define EXACT 0x0400
#define MINCOV 0x0800
#define MINCOV1 0x1000
#define SHARP 0x2000
#define IRRED1 0x4000
#define VERSION\
"UC Berkeley, Espresso Version #2.3, Release date 01/31/88"
/* Define constants used for recording program statistics */
#define TIME_COUNT 16
#define READ_TIME 0
#define COMPL_TIME 1
#define ONSET_TIME 2
#define ESSEN_TIME 3
#define EXPAND_TIME 4
#define IRRED_TIME 5
#define REDUCE_TIME 6
#define GEXPAND_TIME 7
#define GIRRED_TIME 8
#define GREDUCE_TIME 9
#define PRIMES_TIME 10
#define MINCOV_TIME 11
#define MV_REDUCE_TIME 12
#define RAISE_IN_TIME 13
#define VERIFY_TIME 14
#define WRITE_TIME 15
/* For those who like to think about PLAs, macros to get at inputs/outputs */
#define NUMINPUTS cube.num_binary_vars
#define NUMOUTPUTS cube.part_size[cube.num_vars - 1]
#define POSITIVE_PHASE(pos)\
(is_in_set(PLA->phase, cube.first_part[cube.output]+pos) != 0)
#define INLABEL(var) PLA->label[cube.first_part[var] + 1]
#define OUTLABEL(pos) PLA->label[cube.first_part[cube.output] + pos]
#define GETINPUT(c, pos)\
((c[WHICH_WORD(2*pos)] >> WHICH_BIT(2*pos)) & 3)
#define GETOUTPUT(c, pos)\
(is_in_set(c, cube.first_part[cube.output] + pos) != 0)
#define PUTINPUT(c, pos, value)\
c[WHICH_WORD(2*pos)] = (c[WHICH_WORD(2*pos)] & ~(3 << WHICH_BIT(2*pos)))\
| (value << WHICH_BIT(2*pos))
#define PUTOUTPUT(c, pos, value)\
c[WHICH_WORD(pos)] = (c[WHICH_WORD(pos)] & ~(1 << WHICH_BIT(pos)))\
| (value << WHICH_BIT(pos))
#define TWO 3
#define DASH 3
#define ONE 2
#define ZERO 1
#define EXEC(fct, name, S)\
{long t=ptime();fct;if(trace)print_trace(S,name,ptime()-t);}
#define EXEC_S(fct, name, S)\
{long t=ptime();fct;if(summary)print_trace(S,name,ptime()-t);}
#define EXECUTE(fct,i,S,cost)\
{long t=ptime();fct;totals(t,i,S,&(cost));}
/*
* Global Variable Declarations
*/
extern unsigned int debug; /* debug parameter */
extern bool verbose_debug; /* -v: whether to print a lot */
extern char *total_name[TIME_COUNT]; /* basic function names */
extern long total_time[TIME_COUNT]; /* time spent in basic fcts */
extern int total_calls[TIME_COUNT]; /* # calls to each fct */
extern bool echo_comments; /* turned off by -eat option */
extern bool echo_unknown_commands; /* always true ?? */
extern bool force_irredundant; /* -nirr command line option */
extern bool skip_make_sparse;
extern bool kiss; /* -kiss command line option */
extern bool pos; /* -pos command line option */
extern bool print_solution; /* -x command line option */
extern bool recompute_onset; /* -onset command line option */
extern bool remove_essential; /* -ness command line option */
extern bool single_expand; /* -fast command line option */
extern bool summary; /* -s command line option */
extern bool trace; /* -t command line option */
extern bool unwrap_onset; /* -nunwrap command line option */
extern bool use_random_order; /* -random command line option */
extern bool use_super_gasp; /* -strong command line option */
extern char *filename; /* filename PLA was read from */
extern bool debug_exact_minimization; /* dumps info for -do exact */
/*
* pla_types are the input and output types for reading/writing a PLA
*/
struct pla_types_struct {
char *key;
int value;
};
/*
* The cube structure is a global structure which contains information
* on how a set maps into a cube -- i.e., number of parts per variable,
* number of variables, etc. Also, many fields are pre-computed to
* speed up various primitive operations.
*/
#define CUBE_TEMP 10
struct cube_struct {
int size; /* set size of a cube */
int num_vars; /* number of variables in a cube */
int num_binary_vars; /* number of binary variables */
int *first_part; /* first element of each variable */
int *last_part; /* first element of each variable */
int *part_size; /* number of elements in each variable */
int *first_word; /* first word for each variable */
int *last_word; /* last word for each variable */
pset binary_mask; /* Mask to extract binary variables */
pset mv_mask; /* mask to get mv parts */
pset *var_mask; /* mask to extract a variable */
pset *temp; /* an array of temporary sets */
pset fullset; /* a full cube */
pset emptyset; /* an empty cube */
unsigned int inmask; /* mask to get odd word of binary part */
int inword; /* which word number for above */
int *sparse; /* should this variable be sparse? */
int num_mv_vars; /* number of multiple-valued variables */
int output; /* which variable is "output" (-1 if none) */
};
struct cdata_struct {
int *part_zeros; /* count of zeros for each element */
int *var_zeros; /* count of zeros for each variable */
int *parts_active; /* number of "active" parts for each var */
bool *is_unate; /* indicates given var is unate */
int vars_active; /* number of "active" variables */
int vars_unate; /* number of unate variables */
int best; /* best "binate" variable */
};
extern struct pla_types_struct pla_types[];
extern struct cube_struct cube, temp_cube_save;
extern struct cdata_struct cdata, temp_cdata_save;
#ifdef lint
#define DISJOINT 0x5555
#else
#if BPI == 32
#define DISJOINT 0x55555555
#else
#define DISJOINT 0x5555
#endif
#endif
/* function declarations */
/* cofactor.c */ extern int binate_split_select();
/* cofactor.c */ extern pcover cubeunlist();
/* cofactor.c */ extern pcube *cofactor();
/* cofactor.c */ extern pcube *cube1list();
/* cofactor.c */ extern pcube *cube2list();
/* cofactor.c */ extern pcube *cube3list();
/* cofactor.c */ extern pcube *scofactor();
/* cofactor.c */ extern void massive_count();
/* compl.c */ extern pcover complement();
/* compl.c */ extern pcover simplify();
/* compl.c */ extern void simp_comp();
/* contain.c */ extern int d1_rm_equal();
/* contain.c */ extern int rm2_contain();
/* contain.c */ extern int rm2_equal();
/* contain.c */ extern int rm_contain();
/* contain.c */ extern int rm_equal();
/* contain.c */ extern int rm_rev_contain();
/* contain.c */ extern pset *sf_list();
/* contain.c */ extern pset *sf_sort();
/* contain.c */ extern pset_family d1merge();
/* contain.c */ extern pset_family dist_merge();
/* contain.c */ extern pset_family sf_contain();
/* contain.c */ extern pset_family sf_dupl();
/* contain.c */ extern pset_family sf_ind_contain();
/* contain.c */ extern pset_family sf_ind_unlist();
/* contain.c */ extern pset_family sf_merge();
/* contain.c */ extern pset_family sf_rev_contain();
/* contain.c */ extern pset_family sf_union();
/* contain.c */ extern pset_family sf_unlist();
/* cubestr.c */ extern void cube_setup();
/* cubestr.c */ extern void restore_cube_struct();
/* cubestr.c */ extern void save_cube_struct();
/* cubestr.c */ extern void setdown_cube();
/* cvrin.c */ extern PLA_labels();
/* cvrin.c */ extern char *get_word();
/* cvrin.c */ extern int label_index();
/* cvrin.c */ extern int read_pla();
/* cvrin.c */ extern int read_symbolic();
/* cvrin.c */ extern pPLA new_PLA();
/* cvrin.c */ extern void PLA_summary();
/* cvrin.c */ extern void free_PLA();
/* cvrin.c */ extern void parse_pla();
/* cvrin.c */ extern void read_cube();
/* cvrin.c */ extern void skip_line();
/* cvrm.c */ extern foreach_output_function();
/* cvrm.c */ extern int cubelist_partition();
/* cvrm.c */ extern int so_both_do_espresso();
/* cvrm.c */ extern int so_both_do_exact();
/* cvrm.c */ extern int so_both_save();
/* cvrm.c */ extern int so_do_espresso();
/* cvrm.c */ extern int so_do_exact();
/* cvrm.c */ extern int so_save();
/* cvrm.c */ extern pcover cof_output();
/* cvrm.c */ extern pcover lex_sort();
/* cvrm.c */ extern pcover mini_sort();
/* cvrm.c */ extern pcover random_order();
/* cvrm.c */ extern pcover size_sort();
/* cvrm.c */ extern pcover sort_reduce();
/* cvrm.c */ extern pcover uncof_output();
/* cvrm.c */ extern pcover unravel();
/* cvrm.c */ extern pcover unravel_range();
/* cvrm.c */ extern void so_both_espresso();
/* cvrm.c */ extern void so_espresso();
/* cvrmisc.c */ extern char *fmt_cost();
/* cvrmisc.c */ extern char *print_cost();
/* cvrmisc.c */ extern char *strsav();
/* cvrmisc.c */ extern void copy_cost();
/* cvrmisc.c */ extern void cover_cost();
/* cvrmisc.c */ extern void fatal();
/* cvrmisc.c */ extern void print_trace();
/* cvrmisc.c */ extern void size_stamp();
/* cvrmisc.c */ extern void totals();
/* cvrout.c */ extern char *fmt_cube();
/* cvrout.c */ extern char *fmt_expanded_cube();
/* cvrout.c */ extern char *pc1();
/* cvrout.c */ extern char *pc2();
/* cvrout.c */ extern char *pc3();
/* cvrout.c */ extern int makeup_labels();
/* cvrout.c */ extern kiss_output();
/* cvrout.c */ extern kiss_print_cube();
/* cvrout.c */ extern output_symbolic_constraints();
/* cvrout.c */ extern void cprint();
/* cvrout.c */ extern void debug1_print();
/* cvrout.c */ extern void debug_print();
/* cvrout.c */ extern void eqn_output();
/* cvrout.c */ extern void fpr_header();
/* cvrout.c */ extern void fprint_pla();
/* cvrout.c */ extern void pls_group();
/* cvrout.c */ extern void pls_label();
/* cvrout.c */ extern void pls_output();
/* cvrout.c */ extern void print_cube();
/* cvrout.c */ extern void print_expanded_cube();
/* cvrout.c */ extern void sf_debug_print();
/* equiv.c */ extern find_equiv_outputs();
/* equiv.c */ extern int check_equiv();
/* espresso.c */ extern pcover espresso();
/* essen.c */ extern bool essen_cube();
/* essen.c */ extern pcover cb_consensus();
/* essen.c */ extern pcover cb_consensus_dist0();
/* essen.c */ extern pcover essential();
/* exact.c */ extern pcover minimize_exact();
/* exact.c */ extern pcover minimize_exact_literals();
/* expand.c */ extern bool feasibly_covered();
/* expand.c */ extern int most_frequent();
/* expand.c */ extern pcover all_primes();
/* expand.c */ extern pcover expand();
/* expand.c */ extern pcover find_all_primes();
/* expand.c */ extern void elim_lowering();
/* expand.c */ extern void essen_parts();
/* expand.c */ extern void essen_raising();
/* expand.c */ extern void expand1();
/* expand.c */ extern void mincov();
/* expand.c */ extern void select_feasible();
/* expand.c */ extern void setup_BB_CC();
/* gasp.c */ extern pcover expand_gasp();
/* gasp.c */ extern pcover irred_gasp();
/* gasp.c */ extern pcover last_gasp();
/* gasp.c */ extern pcover super_gasp();
/* gasp.c */ extern void expand1_gasp();
/* getopt.c */ extern int util_getopt();
/* hack.c */ extern find_dc_inputs();
/* hack.c */ extern find_inputs();
/* hack.c */ extern form_bitvector();
/* hack.c */ extern map_dcset();
/* hack.c */ extern map_output_symbolic();
/* hack.c */ extern map_symbolic();
/* hack.c */ extern pcover map_symbolic_cover();
/* hack.c */ extern symbolic_hack_labels();
/* irred.c */ extern bool cube_is_covered();
/* irred.c */ extern bool taut_special_cases();
/* irred.c */ extern bool tautology();
/* irred.c */ extern pcover irredundant();
/* irred.c */ extern void mark_irredundant();
/* irred.c */ extern void irred_split_cover();
/* irred.c */ extern sm_matrix *irred_derive_table();
/* map.c */ extern pset minterms();
/* map.c */ extern void explode();
/* map.c */ extern void map();
/* opo.c */ extern output_phase_setup();
/* opo.c */ extern pPLA set_phase();
/* opo.c */ extern pcover opo();
/* opo.c */ extern pcube find_phase();
/* opo.c */ extern pset_family find_covers();
/* opo.c */ extern pset_family form_cover_table();
/* opo.c */ extern pset_family opo_leaf();
/* opo.c */ extern pset_family opo_recur();
/* opo.c */ extern void opoall();
/* opo.c */ extern void phase_assignment();
/* opo.c */ extern void repeated_phase_assignment();
/* pair.c */ extern generate_all_pairs();
/* pair.c */ extern int **find_pairing_cost();
/* pair.c */ extern int find_best_cost();
/* pair.c */ extern int greedy_best_cost();
/* pair.c */ extern int minimize_pair();
/* pair.c */ extern int pair_free();
/* pair.c */ extern pair_all();
/* pair.c */ extern pcover delvar();
/* pair.c */ extern pcover pairvar();
/* pair.c */ extern ppair pair_best_cost();
/* pair.c */ extern ppair pair_new();
/* pair.c */ extern ppair pair_save();
/* pair.c */ extern print_pair();
/* pair.c */ extern void find_optimal_pairing();
/* pair.c */ extern void set_pair();
/* pair.c */ extern void set_pair1();
/* primes.c */ extern pcover primes_consensus();
/* reduce.c */ extern bool sccc_special_cases();
/* reduce.c */ extern pcover reduce();
/* reduce.c */ extern pcube reduce_cube();
/* reduce.c */ extern pcube sccc();
/* reduce.c */ extern pcube sccc_cube();
/* reduce.c */ extern pcube sccc_merge();
/* set.c */ extern bool set_andp();
/* set.c */ extern bool set_orp();
/* set.c */ extern bool setp_disjoint();
/* set.c */ extern bool setp_empty();
/* set.c */ extern bool setp_equal();
/* set.c */ extern bool setp_full();
/* set.c */ extern bool setp_implies();
/* set.c */ extern char *pbv1();
/* set.c */ extern char *ps1();
/* set.c */ extern int *sf_count();
/* set.c */ extern int *sf_count_restricted();
/* set.c */ extern int bit_index();
/* set.c */ extern int set_dist();
/* set.c */ extern int set_ord();
/* set.c */ extern void set_adjcnt();
/* set.c */ extern pset set_and();
/* set.c */ extern pset set_clear();
/* set.c */ extern pset set_copy();
/* set.c */ extern pset set_diff();
/* set.c */ extern pset set_fill();
/* set.c */ extern pset set_merge();
/* set.c */ extern pset set_or();
/* set.c */ extern pset set_xor();
/* set.c */ extern pset sf_and();
/* set.c */ extern pset sf_or();
/* set.c */ extern pset_family sf_active();
/* set.c */ extern pset_family sf_addcol();
/* set.c */ extern pset_family sf_addset();
/* set.c */ extern pset_family sf_append();
/* set.c */ extern pset_family sf_bm_read();
/* set.c */ extern pset_family sf_compress();
/* set.c */ extern pset_family sf_copy();
/* set.c */ extern pset_family sf_copy_col();
/* set.c */ extern pset_family sf_delc();
/* set.c */ extern pset_family sf_delcol();
/* set.c */ extern pset_family sf_inactive();
/* set.c */ extern pset_family sf_join();
/* set.c */ extern pset_family sf_new();
/* set.c */ extern pset_family sf_permute();
/* set.c */ extern pset_family sf_read();
/* set.c */ extern pset_family sf_save();
/* set.c */ extern pset_family sf_transpose();
/* set.c */ extern void set_write();
/* set.c */ extern void sf_bm_print();
/* set.c */ extern void sf_cleanup();
/* set.c */ extern void sf_delset();
/* set.c */ extern void sf_free();
/* set.c */ extern void sf_print();
/* set.c */ extern void sf_write();
/* setc.c */ extern bool ccommon();
/* setc.c */ extern bool cdist0();
/* setc.c */ extern bool full_row();
/* setc.c */ extern int ascend();
/* setc.c */ extern int cactive();
/* setc.c */ extern int cdist();
/* setc.c */ extern int cdist01();
/* setc.c */ extern int cvolume();
/* setc.c */ extern int d1_order();
/* setc.c */ extern int d1_order_size();
/* setc.c */ extern int desc1();
/* setc.c */ extern int descend();
/* setc.c */ extern int lex_order();
/* setc.c */ extern int lex_order1();
/* setc.c */ extern pset force_lower();
/* setc.c */ extern void consensus();
/* sharp.c */ extern pcover cb1_dsharp();
/* sharp.c */ extern pcover cb_dsharp();
/* sharp.c */ extern pcover cb_recur_dsharp();
/* sharp.c */ extern pcover cb_recur_sharp();
/* sharp.c */ extern pcover cb_sharp();
/* sharp.c */ extern pcover cv_dsharp();
/* sharp.c */ extern pcover cv_intersect();
/* sharp.c */ extern pcover cv_sharp();
/* sharp.c */ extern pcover dsharp();
/* sharp.c */ extern pcover make_disjoint();
/* sharp.c */ extern pcover sharp();
/* sminterf.c */pset do_sm_minimum_cover();
/* sparse.c */ extern pcover make_sparse();
/* sparse.c */ extern pcover mv_reduce();
#if !defined(__osf__) && !defined(__STDC__) && !defined(__hpux)
/* ucbqsort.c */ extern qsort();
#endif
/* ucbqsort.c */ extern qst();
/* unate.c */ extern pcover find_all_minimal_covers_petrick();
/* unate.c */ extern pcover map_cover_to_unate();
/* unate.c */ extern pcover map_unate_to_cover();
/* unate.c */ extern pset_family exact_minimum_cover();
/* unate.c */ extern pset_family gen_primes();
/* unate.c */ extern pset_family unate_compl();
/* unate.c */ extern pset_family unate_complement();
/* unate.c */ extern pset_family unate_intersect();
/* verify.c */ extern PLA_permute();
/* verify.c */ extern bool PLA_verify();
/* verify.c */ extern bool check_consistency();
/* verify.c */ extern bool verify();
|