1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/**CFile****************************************************************
FileName [lpkAbcDec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Fast Boolean matching for LUT structures.]
Synopsis [The new core procedure.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: lpkAbcDec.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
#include "lpkInt.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Implements the function.]
Description [Returns the node implementing this function.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_ImplementFun( Lpk_Man_t * pMan, Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Lpk_Fun_t * p )
{
extern Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory );
unsigned * pTruth;
Abc_Obj_t * pObjNew;
int i;
if ( p->fMark )
pMan->nMuxes++;
else
pMan->nDsds++;
// create the new node
pObjNew = Abc_NtkCreateNode( pNtk );
for ( i = 0; i < (int)p->nVars; i++ )
Abc_ObjAddFanin( pObjNew, Abc_ObjRegular(Vec_PtrEntry(vLeaves, p->pFanins[i])) );
Abc_ObjSetLevel( pObjNew, Abc_ObjLevelNew(pObjNew) );
// assign the node's function
pTruth = Lpk_FunTruth(p, 0);
if ( p->nVars == 0 )
{
pObjNew->pData = Hop_NotCond( Hop_ManConst1(pNtk->pManFunc), !(pTruth[0] & 1) );
return pObjNew;
}
if ( p->nVars == 1 )
{
pObjNew->pData = Hop_NotCond( Hop_ManPi(pNtk->pManFunc, 0), (pTruth[0] & 1) );
return pObjNew;
}
// create the logic function
pObjNew->pData = Kit_TruthToHop( pNtk->pManFunc, pTruth, p->nVars, NULL );
return pObjNew;
}
/**Function*************************************************************
Synopsis [Implements the function.]
Description [Returns the node implementing this function.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_Implement_rec( Lpk_Man_t * pMan, Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, Lpk_Fun_t * pFun )
{
Abc_Obj_t * pFanin, * pRes;
int i;
// prepare the leaves of the function
for ( i = 0; i < (int)pFun->nVars; i++ )
{
pFanin = Vec_PtrEntry( vLeaves, pFun->pFanins[i] );
if ( !Abc_ObjIsComplement(pFanin) )
Lpk_Implement_rec( pMan, pNtk, vLeaves, (Lpk_Fun_t *)pFanin );
pFanin = Vec_PtrEntry( vLeaves, pFun->pFanins[i] );
assert( Abc_ObjIsComplement(pFanin) );
}
// construct the function
pRes = Lpk_ImplementFun( pMan, pNtk, vLeaves, pFun );
// replace the function
Vec_PtrWriteEntry( vLeaves, pFun->Id, Abc_ObjNot(pRes) );
Lpk_FunFree( pFun );
return pRes;
}
/**Function*************************************************************
Synopsis [Implements the function.]
Description [Returns the node implementing this function.]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_Implement( Lpk_Man_t * pMan, Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, int nLeavesOld )
{
Abc_Obj_t * pFanin, * pRes;
int i;
assert( nLeavesOld < Vec_PtrSize(vLeaves) );
// mark implemented nodes
Vec_PtrForEachEntryStop( vLeaves, pFanin, i, nLeavesOld )
Vec_PtrWriteEntry( vLeaves, i, Abc_ObjNot(pFanin) );
// recursively construct starting from the first entry
pRes = Lpk_Implement_rec( pMan, pNtk, vLeaves, Vec_PtrEntry( vLeaves, nLeavesOld ) );
Vec_PtrShrink( vLeaves, nLeavesOld );
return pRes;
}
/**Function*************************************************************
Synopsis [Decomposes the function using recursive MUX decomposition.]
Description [Returns the ID of the top-most decomposition node
implementing this function, or 0 if there is no decomposition satisfying
the constraints on area and delay.]
SideEffects []
SeeAlso []
***********************************************************************/
int Lpk_Decompose_rec( Lpk_Man_t * pMan, Lpk_Fun_t * p )
{
static Lpk_Res_t Res0, * pRes0 = &Res0;
Lpk_Res_t * pResMux, * pResDsd;
Lpk_Fun_t * p2;
int clk;
// is only called for non-trivial blocks
assert( p->nLutK >= 3 && p->nLutK <= 6 );
assert( p->nVars > p->nLutK );
// skip if area bound is exceeded
if ( Lpk_LutNumLuts(p->nVars, p->nLutK) > (int)p->nAreaLim )
return 0;
// skip if delay bound is exceeded
if ( Lpk_SuppDelay(p->uSupp, p->pDelays) > (int)p->nDelayLim )
return 0;
// compute supports if needed
if ( !p->fSupports )
Lpk_FunComputeCofSupps( p );
// check DSD decomposition
clk = clock();
pResDsd = Lpk_DsdAnalize( pMan, p, pMan->pPars->nVarsShared );
pMan->timeEvalDsdAn += clock() - clk;
if ( pResDsd && (pResDsd->nBSVars == (int)p->nLutK || pResDsd->nBSVars == (int)p->nLutK - 1) &&
pResDsd->AreaEst <= (int)p->nAreaLim && pResDsd->DelayEst <= (int)p->nDelayLim )
{
clk = clock();
p2 = Lpk_DsdSplit( pMan, p, pResDsd->pCofVars, pResDsd->nCofVars, pResDsd->BSVars );
pMan->timeEvalDsdSp += clock() - clk;
assert( p2->nVars <= (int)p->nLutK );
if ( p->nVars > p->nLutK && !Lpk_Decompose_rec( pMan, p ) )
return 0;
return 1;
}
// check MUX decomposition
clk = clock();
pResMux = Lpk_MuxAnalize( pMan, p );
pMan->timeEvalMuxAn += clock() - clk;
// pResMux = NULL;
assert( !pResMux || (pResMux->DelayEst <= (int)p->nDelayLim && pResMux->AreaEst <= (int)p->nAreaLim) );
// accept MUX decomposition if it is "good"
if ( pResMux && pResMux->nSuppSizeS <= (int)p->nLutK && pResMux->nSuppSizeL <= (int)p->nLutK )
pResDsd = NULL;
else if ( pResMux && pResDsd )
{
// compare two decompositions
if ( pResMux->AreaEst < pResDsd->AreaEst ||
(pResMux->AreaEst == pResDsd->AreaEst && pResMux->nSuppSizeL < pResDsd->nSuppSizeL) ||
(pResMux->AreaEst == pResDsd->AreaEst && pResMux->nSuppSizeL == pResDsd->nSuppSizeL && pResMux->DelayEst < pResDsd->DelayEst) )
pResDsd = NULL;
else
pResMux = NULL;
}
assert( pResMux == NULL || pResDsd == NULL );
if ( pResMux )
{
clk = clock();
p2 = Lpk_MuxSplit( pMan, p, pResMux->Variable, pResMux->Polarity );
pMan->timeEvalMuxSp += clock() - clk;
if ( p2->nVars > p->nLutK && !Lpk_Decompose_rec( pMan, p2 ) )
return 0;
if ( p->nVars > p->nLutK && !Lpk_Decompose_rec( pMan, p ) )
return 0;
return 1;
}
if ( pResDsd )
{
clk = clock();
p2 = Lpk_DsdSplit( pMan, p, pResDsd->pCofVars, pResDsd->nCofVars, pResDsd->BSVars );
pMan->timeEvalDsdSp += clock() - clk;
assert( p2->nVars <= (int)p->nLutK );
if ( p->nVars > p->nLutK && !Lpk_Decompose_rec( pMan, p ) )
return 0;
return 1;
}
return 0;
}
/**Function*************************************************************
Synopsis [Removes decomposed nodes from the array of fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Lpk_DecomposeClean( Vec_Ptr_t * vLeaves, int nLeavesOld )
{
Lpk_Fun_t * pFunc;
int i;
Vec_PtrForEachEntryStart( vLeaves, pFunc, i, nLeavesOld )
Lpk_FunFree( pFunc );
Vec_PtrShrink( vLeaves, nLeavesOld );
}
/**Function*************************************************************
Synopsis [Decomposes the function using recursive MUX decomposition.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Lpk_Decompose( Lpk_Man_t * p, Abc_Ntk_t * pNtk, Vec_Ptr_t * vLeaves, unsigned * pTruth, unsigned * puSupps, int nLutK, int AreaLim, int DelayLim )
{
Lpk_Fun_t * pFun;
Abc_Obj_t * pObjNew = NULL;
int nLeaves = Vec_PtrSize( vLeaves );
pFun = Lpk_FunCreate( pNtk, vLeaves, pTruth, nLutK, AreaLim, DelayLim );
if ( puSupps[0] || puSupps[1] )
{
/*
int i;
Lpk_FunComputeCofSupps( pFun );
for ( i = 0; i < nLeaves; i++ )
{
assert( pFun->puSupps[2*i+0] == puSupps[2*i+0] );
assert( pFun->puSupps[2*i+1] == puSupps[2*i+1] );
}
*/
memcpy( pFun->puSupps, puSupps, sizeof(unsigned) * 2 * nLeaves );
pFun->fSupports = 1;
}
Lpk_FunSuppMinimize( pFun );
if ( pFun->nVars <= pFun->nLutK )
pObjNew = Lpk_ImplementFun( p, pNtk, vLeaves, pFun );
else if ( Lpk_Decompose_rec(p, pFun) )
pObjNew = Lpk_Implement( p, pNtk, vLeaves, nLeaves );
Lpk_DecomposeClean( vLeaves, nLeaves );
return pObjNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|