summaryrefslogtreecommitdiffstats
path: root/src/opt/rwr/rwrEva.c
blob: fc612f95979be2c49984cdd46d5b7c5a2108f97e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/**CFile****************************************************************

  FileName    [rwrDec.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [DAG-aware AIG rewriting package.]

  Synopsis    [Evaluation and decomposition procedures.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: rwrDec.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "rwr.h"
#include "dec.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static Dec_Graph_t * Rwr_CutEvaluate( Rwr_Man_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest );
static int Rwr_CutIsBoolean( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves );
static int Rwr_CutCountNumNodes( Abc_Obj_t * pObj, Cut_Cut_t * pCut );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;
    Abc_Obj_t * pFanin;
    unsigned uPhase, uTruthBest, uTruth;
    char * pPerm;
    int Required, nNodesSaved, nNodesSaveCur;
    int i, GainCur, GainBest = -1;
    int clk, clk2;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_NodeReadRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );

    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//        if ( pNode->Id == 82 )
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabel( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
p->timeRes += clock() - clk;

    if ( GainBest == -1 )
        return -1;

//    printf( "%d", nNodesSaveCur - GainBest );
/*
    if ( GainBest > 0 )
    {
        if ( Rwr_CutIsBoolean( pNode, p->vFanins ) )
            printf( "b" );
        else
        {
            printf( "Node %d : ", pNode->Id );
            Vec_PtrForEachEntry( p->vFanins, pFanin, i )
                printf( "%d ", Abc_ObjRegular(pFanin)->Id );
            printf( "a" );
        }
    }
*/
/*
    if ( GainBest > 0 )
        if ( p->fCompl )
            printf( "c" );
        else
            printf( "." );
*/

    // copy the leaves
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        Dec_GraphNode(p->pGraph, i)->pFunc = pFanin;

    p->nScores[p->pMap[uTruthBest]]++;
    p->nNodesGained += GainBest;
    if ( fUseZeros || GainBest > 0 )
        p->nNodesRewritten++;

    // report the progress
    if ( fVeryVerbose && GainBest > 0 )
    {
        printf( "Node %6s :   ", Abc_ObjName(pNode) );
        printf( "Fanins = %d. ", p->vFanins->nSize );
        printf( "Save = %d.  ", nNodesSaveCur );
        printf( "Add = %d.  ",  nNodesSaveCur-GainBest );
        printf( "GAIN = %d.  ", GainBest );
        printf( "Cone = %d.  ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 );
        printf( "Class = %d.  ", p->pMap[uTruthBest] );
        printf( "\n" );
    }
    return GainBest;
}

/**Function*************************************************************

  Synopsis    [Evaluates the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Rwr_CutEvaluate( Rwr_Man_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest )
{
    Vec_Ptr_t * vSubgraphs;
    Dec_Graph_t * pGraphBest, * pGraphCur;
    Rwr_Node_t * pNode, * pFanin;
    int nNodesAdded, GainBest, i, k;
    unsigned uTruth;
    // find the matching class of subgraphs
    uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
    vSubgraphs = Vec_VecEntry( p->vClasses, p->pMap[uTruth] );
    p->nSubgraphs += vSubgraphs->nSize;
    // determine the best subgraph
    GainBest = -1;
    Vec_PtrForEachEntry( vSubgraphs, pNode, i )
    {
        // get the current graph
        pGraphCur = (Dec_Graph_t *)pNode->pNext;
        // copy the leaves
        Vec_PtrForEachEntry( vFaninsCur, pFanin, k )
            Dec_GraphNode(pGraphCur, k)->pFunc = pFanin;
        // detect how many unlabeled nodes will be reused
        nNodesAdded = Dec_GraphToNetworkCount( pRoot, pGraphCur, nNodesSaved, LevelMax );
        if ( nNodesAdded == -1 )
            continue;
        assert( nNodesSaved >= nNodesAdded );
        // count the gain at this node
        if ( GainBest < nNodesSaved - nNodesAdded )
        {
            GainBest   = nNodesSaved - nNodesAdded;
            pGraphBest = pGraphCur;

//            if ( GainBest > 0 )
//            printf( "%d %d  ", nNodesSaved, nNodesAdded );
        }
    }
    if ( GainBest == -1 )
        return NULL;
    *pGainBest = GainBest;
    return pGraphBest;
}


/**Function*************************************************************

  Synopsis    [Checks the type of the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Rwr_CutIsBoolean_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves, int fMarkA )
{
    if ( Vec_PtrFind(vLeaves, pObj) >= 0 || Vec_PtrFind(vLeaves, Abc_ObjNot(pObj)) >= 0 )
    {
        if ( fMarkA )
            pObj->fMarkA = 1;
        else
            pObj->fMarkB = 1;
        return;
    }
    assert( !Abc_ObjIsCi(pObj) );
    Rwr_CutIsBoolean_rec( Abc_ObjFanin0(pObj), vLeaves, fMarkA );
    Rwr_CutIsBoolean_rec( Abc_ObjFanin1(pObj), vLeaves, fMarkA );
}

/**Function*************************************************************

  Synopsis    [Checks the type of the cut.]

  Description [Returns 1(0) if the cut is Boolean (algebraic).]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_CutIsBoolean( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves )
{
    Abc_Obj_t * pTemp;
    int i, RetValue;
    Vec_PtrForEachEntry( vLeaves, pTemp, i )
    {
        pTemp = Abc_ObjRegular(pTemp);
        assert( !pTemp->fMarkA && !pTemp->fMarkB );
    }
    Rwr_CutIsBoolean_rec( Abc_ObjFanin0(pObj), vLeaves, 1 );
    Rwr_CutIsBoolean_rec( Abc_ObjFanin1(pObj), vLeaves, 0 );
    RetValue = 0;
    Vec_PtrForEachEntry( vLeaves, pTemp, i )
    {
        pTemp = Abc_ObjRegular(pTemp);
        RetValue |= pTemp->fMarkA && pTemp->fMarkB;
        pTemp->fMarkA = pTemp->fMarkB = 0;
    }
    return RetValue;
}


/**Function*************************************************************

  Synopsis    [Count the nodes in the cut space of a node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Rwr_CutCountNumNodes_rec( Abc_Obj_t * pObj, Cut_Cut_t * pCut, Vec_Ptr_t * vNodes )
{
    int i;
    for ( i = 0; i < (int)pCut->nLeaves; i++ )
        if ( pCut->pLeaves[i] == pObj->Id )
        {
            // check if the node is collected
            if ( pObj->fMarkC == 0 )
            {
                pObj->fMarkC = 1;
                Vec_PtrPush( vNodes, pObj );
            }
            return;
        }
    assert( Abc_ObjIsNode(pObj) );
    // check if the node is collected
    if ( pObj->fMarkC == 0 )
    {
        pObj->fMarkC = 1;
        Vec_PtrPush( vNodes, pObj );
    }
    // traverse the fanins
    Rwr_CutCountNumNodes_rec( Abc_ObjFanin0(pObj), pCut, vNodes );
    Rwr_CutCountNumNodes_rec( Abc_ObjFanin1(pObj), pCut, vNodes );
}

/**Function*************************************************************

  Synopsis    [Count the nodes in the cut space of a node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_CutCountNumNodes( Abc_Obj_t * pObj, Cut_Cut_t * pCut )
{
    Vec_Ptr_t * vNodes;
    int i, Counter;
    // collect all nodes
    vNodes = Vec_PtrAlloc( 100 );
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
        Rwr_CutCountNumNodes_rec( pObj, pCut, vNodes );
    // clean all nodes
    Vec_PtrForEachEntry( vNodes, pObj, i )
        pObj->fMarkC = 0;
    // delete and return
    Counter = Vec_PtrSize(vNodes);
    Vec_PtrFree( vNodes );
    return Counter;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////