summaryrefslogtreecommitdiffstats
path: root/src/opt/sfm/sfmTim.c
blob: e9c40d04fc4a2852fe09c1529c3faee8c8bec062 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/**CFile****************************************************************

  FileName    [sfmTim.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [SAT-based optimization using internal don't-cares.]

  Synopsis    [Timing manager.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: sfmTim.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "sfmInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

struct Sfm_Tim_t_
{
    // external
    Mio_Library_t *   pLib;        // library
    Scl_Con_t *       pExt;        // external timing
    Abc_Ntk_t *       pNtk;        // mapped network
    int               Delay;       // the largest delay
    int               DeltaCrit;   // critical delay delta
    // timing info
    Vec_Int_t         vTimArrs;    // arrivals (rise/fall)
    Vec_Int_t         vTimReqs;    // required (rise/fall)
    // incremental timing
    Vec_Wec_t         vLevels;     // levels
    // critical path
    Vec_Int_t         vPath;       // critical path
    Vec_Wrd_t         vSortData;   // node priority order
};

static inline int * Sfm_TimArrId( Sfm_Tim_t * p, int Id )                    { return Vec_IntEntryP( &p->vTimArrs,  Abc_Var2Lit(Id, 0) );               }
static inline int * Sfm_TimReqId( Sfm_Tim_t * p, int Id )                    { return Vec_IntEntryP( &p->vTimReqs,  Abc_Var2Lit(Id, 0) );               }

static inline int * Sfm_TimArr( Sfm_Tim_t * p, Abc_Obj_t * pNode )           { return Vec_IntEntryP( &p->vTimArrs,  Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int * Sfm_TimReq( Sfm_Tim_t * p, Abc_Obj_t * pNode )           { return Vec_IntEntryP( &p->vTimReqs,  Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }

static inline int   Sfm_TimArrMaxId( Sfm_Tim_t * p, int Id )                 { int * a = Sfm_TimArrId(p, Id); return Abc_MaxInt(a[0], a[1]);            }

static inline int   Sfm_TimArrMax( Sfm_Tim_t * p, Abc_Obj_t * pNode )        { int * a = Sfm_TimArr(p, pNode); return Abc_MaxInt(a[0], a[1]);           }
static inline void  Sfm_TimSetReq( Sfm_Tim_t * p, Abc_Obj_t * pNode, int t ) { int * r = Sfm_TimReq(p, pNode); r[0] = r[1] = t;                         }
static inline int   Sfm_TimSlack( Sfm_Tim_t * p, Abc_Obj_t * pNode )         { int * r = Sfm_TimReq(p, pNode), * a = Sfm_TimArr(p, pNode); return Abc_MinInt(r[0]-a[0], r[1]-a[1]); }

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Sfm_TimEdgeArrival( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut )
{
    Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
    int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin));  
    int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin));  
    if ( PinPhase != MIO_PHASE_INV )  // NONINV phase is present
    {
        pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[0] + tDelayBlockRise );
        pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[1] + tDelayBlockFall );
    }
    if ( PinPhase != MIO_PHASE_NONINV )  // INV phase is present
    {
        pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[1] + tDelayBlockRise );
        pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[0] + tDelayBlockFall );
    }
}
static inline void Sfm_TimGateArrival( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut )
{
    Mio_Pin_t * pPin;  int i = 0;
    pTimeOut[0] = pTimeOut[1] = 0;
    Mio_GateForEachPin( pGate, pPin )
        Sfm_TimEdgeArrival( p, pPin, pTimesIn[i++], pTimeOut );
    assert( i == Mio_GateReadPinNum(pGate) );
}
static inline void Sfm_TimNodeArrival( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
    int i, iFanin, * pTimesIn[6];
    int * pTimeOut = Sfm_TimArr(p, pNode);
    assert( Abc_ObjFaninNum(pNode) <= 6 );
    Abc_ObjForEachFaninId( pNode, iFanin, i )
        pTimesIn[i] = Sfm_TimArrId( p, iFanin );
    Sfm_TimGateArrival( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut );
}

static inline void Sfm_TimEdgeRequired( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut )
{
    Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
    int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin));  
    int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin));  
    if ( PinPhase != MIO_PHASE_INV )  // NONINV phase is present
    {
        pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[0] - tDelayBlockRise );
        pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[1] - tDelayBlockFall );
    }
    if ( PinPhase != MIO_PHASE_NONINV )  // INV phase is present
    {
        pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[1] - tDelayBlockRise );
        pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[0] - tDelayBlockFall );
    }
}
static inline void Sfm_TimGateRequired( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut )
{
    Mio_Pin_t * pPin;  int i = 0;
    Mio_GateForEachPin( pGate, pPin )
        Sfm_TimEdgeRequired( p, pPin, pTimesIn[i++], pTimeOut );
    assert( i == Mio_GateReadPinNum(pGate) );
}
void Sfm_TimNodeRequired( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
    int i, iFanin, * pTimesIn[6];
    int * pTimeOut = Sfm_TimReq(p, pNode);
    assert( Abc_ObjFaninNum(pNode) <= 6 );
    Abc_ObjForEachFaninId( pNode, iFanin, i )
        pTimesIn[i] = Sfm_TimReqId( p, iFanin );
    Sfm_TimGateRequired( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut );
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sfm_TimCriticalPath_int( Sfm_Tim_t * p, Abc_Obj_t * pObj, Vec_Int_t * vPath, int SlackMax )
{
    Abc_Obj_t * pNext; int i;
    if ( Abc_NodeIsTravIdCurrent( pObj ) )
        return;
    Abc_NodeSetTravIdCurrent( pObj );
    assert( Abc_ObjIsNode(pObj) );
    Abc_ObjForEachFanin( pObj, pNext, i )
    {
        if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
            continue;
        assert( Abc_ObjIsNode(pNext) );
        if ( Sfm_TimSlack(p, pNext) <= SlackMax )
            Sfm_TimCriticalPath_int( p, pNext, vPath, SlackMax );
    }
    if ( Abc_ObjFaninNum(pObj) > 0 )
        Vec_IntPush( vPath, Abc_ObjId(pObj) );
}
int Sfm_TimCriticalPath( Sfm_Tim_t * p, int Window )
{
    int i, SlackMax = p->Delay * Window / 100;
    Abc_Obj_t * pObj, * pNext; 
    Vec_IntClear( &p->vPath );
    Abc_NtkIncrementTravId( p->pNtk ); 
    Abc_NtkForEachCo( p->pNtk, pObj, i )
    {
        pNext = Abc_ObjFanin0(pObj);
        if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
            continue;
        assert( Abc_ObjIsNode(pNext) );
        if ( Sfm_TimSlack(p, pNext) <= SlackMax )
            Sfm_TimCriticalPath_int( p, pNext, &p->vPath, SlackMax );
    }
    return Vec_IntSize(&p->vPath);
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sfm_TimTrace( Sfm_Tim_t * p )
{
    Abc_Obj_t * pObj; int i, Delay = 0;
    Vec_Ptr_t * vNodes = Abc_NtkDfs( p->pNtk, 1 );
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
        Sfm_TimNodeArrival( p, pObj );
    Abc_NtkForEachCo( p->pNtk, pObj, i )
        Delay = Abc_MaxInt( Delay, Sfm_TimArrMax(p, Abc_ObjFanin0(pObj)) );
    Vec_IntFill( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), ABC_INFINITY );
    Abc_NtkForEachCo( p->pNtk, pObj, i )
        Sfm_TimSetReq( p, Abc_ObjFanin0(pObj), Delay );
    Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
        Sfm_TimNodeRequired( p, pObj );
    Vec_PtrFree( vNodes );
    return Delay;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Sfm_Tim_t * Sfm_TimStart( Mio_Library_t * pLib, Scl_Con_t * pExt, Abc_Ntk_t * pNtk, int DeltaCrit )
{
    Sfm_Tim_t * p = ABC_CALLOC( Sfm_Tim_t, 1 );
    p->pLib = pLib;
    p->pExt = pExt;
    p->pNtk = pNtk;
    Vec_IntFill( &p->vTimArrs,  3*Abc_NtkObjNumMax(pNtk), 0 );
    Vec_IntFill( &p->vTimReqs,  3*Abc_NtkObjNumMax(pNtk), 0 );
    p->Delay = Sfm_TimTrace( p );
    assert( DeltaCrit > 0 && DeltaCrit < Scl_Flt2Int(1000.0) );
    p->DeltaCrit = DeltaCrit;
    return p;
}
void Sfm_TimStop( Sfm_Tim_t * p )
{
    Vec_IntErase( &p->vTimArrs );
    Vec_IntErase( &p->vTimReqs );
    Vec_WecErase( &p->vLevels );
    Vec_IntErase( &p->vPath );
    Vec_WrdErase( &p->vSortData );
    ABC_FREE( p );
}
int Sfm_TimReadNtkDelay( Sfm_Tim_t * p )
{
    return p->Delay;
}
int Sfm_TimReadObjDelay( Sfm_Tim_t * p, int iObj )
{
    return Sfm_TimArrMaxId(p, iObj);
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sfm_TimTest( Abc_Ntk_t * pNtk )
{
    Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
    Sfm_Tim_t * p = Sfm_TimStart( pLib, NULL, pNtk, 100 );
    printf( "Max delay = %.2f.  Path = %d (%d).\n", Scl_Int2Flt(p->Delay), Sfm_TimCriticalPath(p, 1), Abc_NtkNodeNum(p->pNtk) );
    Sfm_TimStop( p );
}

/**Function*************************************************************

  Synopsis    [Levelized structure.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Sfm_TimUpdateClean( Sfm_Tim_t * p )
{
    Vec_Int_t * vLevel;
    Abc_Obj_t * pObj;
    int i, k;
    Vec_WecForEachLevel( &p->vLevels, vLevel, i )
    {
        Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k )
        {
            assert( pObj->fMarkC == 1 );
            pObj->fMarkC = 0;
        }
        Vec_IntClear( vLevel );
    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Sfm_TimUpdateTiming( Sfm_Tim_t * p, Vec_Int_t * vTimeNodes )
{
    assert( Vec_IntSize(vTimeNodes) > 0 && Vec_IntSize(vTimeNodes) <= 2 );
    Vec_IntFillExtra( &p->vTimArrs, 2*Abc_NtkObjNumMax(p->pNtk), 0 );
    Vec_IntFillExtra( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), 0 );
    p->Delay = Sfm_TimTrace( p );
}

/**Function*************************************************************

  Synopsis    [Sort an array of nodes using their max arrival times.]

  Description [Returns the number of new divisor nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sfm_TimSortArrayByArrival( Sfm_Tim_t * p, Vec_Int_t * vNodes, int iPivot )
{
    word Entry; 
    int i, Id, Time, nDivNew = -1; 
    int MaxDelay = ABC_INFINITY/2+Sfm_TimArrMaxId(p, iPivot);
    assert( p->DeltaCrit > 0 );
    // collect nodes
    Vec_WrdClear( &p->vSortData );
    Vec_IntForEachEntry( vNodes, Id, i )
    {
        Time = Sfm_TimArrMaxId( p, Id );
        assert( -ABC_INFINITY/2 < Time && Time < ABC_INFINITY/2 );
        Vec_WrdPush( &p->vSortData, ((word)Id << 32) | (ABC_INFINITY/2+Time) );
    }
    // sort nodes by delay
    Abc_QuickSort3( Vec_WrdArray(&p->vSortData), Vec_WrdSize(&p->vSortData), 0 );
    // collect sorted nodes and find place where divisors end
    Vec_IntClear( vNodes );
    Vec_WrdForEachEntry( &p->vSortData, Entry, i )
    {
        Vec_IntPush( vNodes, (int)(Entry >> 32) );
        if ( nDivNew == -1 && ((int)Entry) + p->DeltaCrit > MaxDelay )
            nDivNew = i;
    }
    return nDivNew;
}

/**Function*************************************************************

  Synopsis    [Priority of nodes to try remapping for delay.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sfm_TimPriorityNodes( Sfm_Tim_t * p, Vec_Int_t * vCands, int Window )
{
    Vec_Int_t * vLevel;
    Abc_Obj_t * pObj;
    int i, k;
    assert( Window >= 0 && Window <= 100 );
    // collect critical path
    Sfm_TimCriticalPath( p, Window );
    // add nodes to the levelized structure
    Sfm_TimUpdateClean( p );
    Abc_NtkForEachObjVec( &p->vPath, p->pNtk, pObj, i )
    {
        assert( pObj->fMarkC == 0 );
        pObj->fMarkC = 1;
        Vec_WecPush( &p->vLevels, Abc_ObjLevel(pObj), Abc_ObjId(pObj) );
    }
    // prioritize nodes by expected gain
    Vec_WecSort( &p->vLevels, 0 );
    Vec_IntClear( vCands );
    Vec_WecForEachLevel( &p->vLevels, vLevel, i )
        Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k )
            if ( !pObj->fMarkA )
                Vec_IntPush( vCands, Abc_ObjId(pObj) );
//    printf( "Path = %5d   Cand = %5d\n", Vec_IntSize(&p->vPath) );
    return Vec_IntSize(vCands) > 0;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if node is relatively non-critical compared to the pivot.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sfm_TimNodeIsNonCritical( Sfm_Tim_t * p, Abc_Obj_t * pPivot, Abc_Obj_t * pNode )
{
    return Sfm_TimArrMax(p, pNode) + p->DeltaCrit <= Sfm_TimArrMax(p, pPivot);
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sfm_TimEvalRemapping( Sfm_Tim_t * p, Vec_Int_t * vFanins, Vec_Int_t * vMap, Mio_Gate_t * pGate1, char * pFans1, Mio_Gate_t * pGate2, char * pFans2 )
{
    int TimeOut[2][2];
    int * pTimesIn1[6], * pTimesIn2[6];
    int i, nFanins1, nFanins2;
    // process the first gate
    nFanins1 = Mio_GateReadPinNum( pGate1 );
    for ( i = 0; i < nFanins1; i++ )
        pTimesIn1[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans1[i])) );
    Sfm_TimGateArrival( p, pGate1, pTimesIn1, TimeOut[0] );
    if ( pGate2 == NULL )
        return Abc_MaxInt(TimeOut[0][0], TimeOut[0][1]);
    // process the second gate
    nFanins2 = Mio_GateReadPinNum( pGate2 );
    for ( i = 0; i < nFanins2; i++ )
        if ( (int)pFans2[i] == 16 )
            pTimesIn2[i] = TimeOut[0];
        else
            pTimesIn2[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans2[i])) );
    Sfm_TimGateArrival( p, pGate2, pTimesIn2, TimeOut[1] );
    return Abc_MaxInt(TimeOut[1][0], TimeOut[1][1]);
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END