summaryrefslogtreecommitdiffstats
path: root/src/opt/sim/simSym.c
blob: 8f99dc545e7c0618aa25a48aca746df30d8cdda9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/**CFile****************************************************************

  FileName    [simSym.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Simulation to determine two-variable symmetries.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: simSym.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "base/abc/abc.h"
#include "sim.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////
 
////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes two variable symmetries.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sim_ComputeTwoVarSymms( Abc_Ntk_t * pNtk, int fVerbose )
{
    Sym_Man_t * p;
    Vec_Ptr_t * vResult;
    int Result;
    int i;
    clock_t clk, clkTotal = clock();

    srand( 0xABC );

    // start the simulation manager
    p = Sym_ManStart( pNtk, fVerbose );
    p->nPairsTotal = p->nPairsRem = Sim_UtilCountAllPairs( p->vSuppFun, p->nSimWords, p->vPairsTotal );
    if ( fVerbose )
        printf( "Total = %8d.  Sym = %8d.  NonSym = %8d.  Remaining = %8d.\n", 
               p->nPairsTotal, p->nPairsSymm, p->nPairsNonSymm, p->nPairsRem );

    // detect symmetries using circuit structure
clk = clock();
    Sim_SymmsStructCompute( pNtk, p->vMatrSymms, p->vSuppFun );
p->timeStruct = clock() - clk;

    Sim_UtilCountPairsAll( p );
    p->nPairsSymmStr = p->nPairsSymm;
    if ( fVerbose )
        printf( "Total = %8d.  Sym = %8d.  NonSym = %8d.  Remaining = %8d.\n", 
            p->nPairsTotal, p->nPairsSymm, p->nPairsNonSymm, p->nPairsRem );

    // detect symmetries using simulation
    for ( i = 1; i <= 1000; i++ )
    {
        // simulate this pattern
        Sim_UtilSetRandom( p->uPatRand, p->nSimWords );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        if ( i % 50 != 0 )
            continue;
        // check disjointness
        assert( Sim_UtilMatrsAreDisjoint( p ) );
        // count the number of pairs
        Sim_UtilCountPairsAll( p );
        if ( i % 500 != 0 )
            continue;
        if ( fVerbose )
            printf( "Total = %8d.  Sym = %8d.  NonSym = %8d.  Remaining = %8d.\n", 
                p->nPairsTotal, p->nPairsSymm, p->nPairsNonSymm, p->nPairsRem );
    }

    // detect symmetries using SAT
    for ( i = 1; Sim_SymmsGetPatternUsingSat( p, p->uPatRand ); i++ )
    {
        // simulate this pattern in four polarities
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar1 );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar2 );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar1 );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar2 );
/*
        // try the previuos pair
        Sim_XorBit( p->uPatRand, p->iVar1Old );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar2Old );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
        Sim_XorBit( p->uPatRand, p->iVar1Old );
        Sim_SymmsSimulate( p, p->uPatRand, p->vMatrNonSymms );
*/
        if ( i % 10 != 0 )
            continue;
        // check disjointness
        assert( Sim_UtilMatrsAreDisjoint( p ) );
        // count the number of pairs
        Sim_UtilCountPairsAll( p );
        if ( i % 50 != 0 )
            continue;
        if ( fVerbose )
            printf( "Total = %8d.  Sym = %8d.  NonSym = %8d.  Remaining = %8d.\n", 
                p->nPairsTotal, p->nPairsSymm, p->nPairsNonSymm, p->nPairsRem );
    }

    // count the number of pairs
    Sim_UtilCountPairsAll( p );
    if ( fVerbose )
        printf( "Total = %8d.  Sym = %8d.  NonSym = %8d.  Remaining = %8d.\n", 
            p->nPairsTotal, p->nPairsSymm, p->nPairsNonSymm, p->nPairsRem );
//    Sim_UtilCountPairsAllPrint( p );

    Result = p->nPairsSymm;
    vResult = p->vMatrSymms;  
p->timeTotal = clock() - clkTotal;
    //  p->vMatrSymms = NULL;
    Sym_ManStop( p );
    return Result;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END