summaryrefslogtreecommitdiffstats
path: root/src/proof/fra/fraImp.c
blob: 809ad8e4749cac31624d91f90d7b55e14a576993 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/**CFile****************************************************************

  FileName    [fraImp.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [New FRAIG package.]

  Synopsis    [Detecting and proving implications.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 30, 2007.]

  Revision    [$Id: fraImp.c,v 1.00 2007/06/30 00:00:00 alanmi Exp $]

***********************************************************************/

#include "fra.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Counts the number of 1s in each siminfo of each node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Fra_SmlCountOnesOne( Fra_Sml_t * p, int Node )
{
    unsigned * pSim;
    int k, Counter = 0;
    pSim = Fra_ObjSim( p, Node );
    for ( k = p->nWordsPref; k < p->nWordsTotal; k++ )
        Counter += Aig_WordCountOnes( pSim[k] );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Counts the number of 1s in each siminfo of each node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int * Fra_SmlCountOnes( Fra_Sml_t * p )
{
    Aig_Obj_t * pObj;
    int i, * pnBits; 
    pnBits = ABC_ALLOC( int, Aig_ManObjNumMax(p->pAig) );  
    memset( pnBits, 0, sizeof(int) * Aig_ManObjNumMax(p->pAig) );
    Aig_ManForEachObj( p->pAig, pObj, i )
        pnBits[i] = Fra_SmlCountOnesOne( p, i );
    return pnBits;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if implications holds.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Sml_NodeCheckImp( Fra_Sml_t * p, int Left, int Right )
{
    unsigned * pSimL, * pSimR;
    int k;
    pSimL = Fra_ObjSim( p, Left );
    pSimR = Fra_ObjSim( p, Right );
    for ( k = p->nWordsPref; k < p->nWordsTotal; k++ )
        if ( pSimL[k] & ~pSimR[k] )
            return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Counts the number of 1s in the complement of the implication.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Sml_NodeNotImpWeight( Fra_Sml_t * p, int Left, int Right )
{
    unsigned * pSimL, * pSimR;
    int k, Counter = 0;
    pSimL = Fra_ObjSim( p, Left );
    pSimR = Fra_ObjSim( p, Right );
    for ( k = p->nWordsPref; k < p->nWordsTotal; k++ )
        Counter += Aig_WordCountOnes( pSimL[k] & ~pSimR[k] );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Computes the complement of the implication.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Sml_NodeSaveNotImpPatterns( Fra_Sml_t * p, int Left, int Right, unsigned * pResult )
{
    unsigned * pSimL, * pSimR;
    int k;
    pSimL = Fra_ObjSim( p, Left );
    pSimR = Fra_ObjSim( p, Right );
    for ( k = p->nWordsPref; k < p->nWordsTotal; k++ )
        pResult[k] |= pSimL[k] & ~pSimR[k];
}

/**Function*************************************************************

  Synopsis    [Returns the array of nodes sorted by the number of 1s.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Fra_SmlSortUsingOnes( Fra_Sml_t * p, int fLatchCorr )
{
    Aig_Obj_t * pObj;
    Vec_Ptr_t * vNodes;
    int i, nNodes, nTotal, nBits, * pnNodes, * pnBits, * pMemory;
    assert( p->nWordsTotal > 0 );
    // count 1s in each node's siminfo
    pnBits = Fra_SmlCountOnes( p );
    // count number of nodes having that many 1s
    nNodes = 0;
    nBits = p->nWordsTotal * 32;
    pnNodes = ABC_ALLOC( int, nBits + 1 );
    memset( pnNodes, 0, sizeof(int) * (nBits + 1) );
    Aig_ManForEachObj( p->pAig, pObj, i )
    {
        if ( i == 0 ) continue;
        // skip non-PI and non-internal nodes
        if ( fLatchCorr )
        {
            if ( !Aig_ObjIsCi(pObj) )
                continue;
        }
        else
        {
            if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsCi(pObj) )
                continue;
        }
        // skip nodes participating in the classes
//        if ( Fra_ClassObjRepr(pObj) )
//            continue;
        assert( pnBits[i] <= nBits ); // "<" because of normalized info
        pnNodes[pnBits[i]]++;
        nNodes++;
    }
    // allocate memory for all the nodes
    pMemory = ABC_ALLOC( int, nNodes + nBits + 1 );  
    // markup the memory for each node
    vNodes = Vec_PtrAlloc( nBits + 1 );
    Vec_PtrPush( vNodes, pMemory );
    for ( i = 1; i <= nBits; i++ )
    {
        pMemory += pnNodes[i-1] + 1;
        Vec_PtrPush( vNodes, pMemory );
    }
    // add the nodes
    memset( pnNodes, 0, sizeof(int) * (nBits + 1) );
    Aig_ManForEachObj( p->pAig, pObj, i )
    {
        if ( i == 0 ) continue;
        // skip non-PI and non-internal nodes
        if ( fLatchCorr )
        {
            if ( !Aig_ObjIsCi(pObj) )
                continue;
        }
        else
        {
            if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsCi(pObj) )
                continue;
        }
        // skip nodes participating in the classes
//        if ( Fra_ClassObjRepr(pObj) )
//            continue;
        pMemory = (int *)Vec_PtrEntry( vNodes, pnBits[i] );
        pMemory[ pnNodes[pnBits[i]]++ ] = i;
    }
    // add 0s in the end
    nTotal = 0;
    Vec_PtrForEachEntry( int *, vNodes, pMemory, i )
    {
        pMemory[ pnNodes[i]++ ] = 0;
        nTotal += pnNodes[i];
    }
    assert( nTotal == nNodes + nBits + 1 );
    ABC_FREE( pnNodes );
    ABC_FREE( pnBits );
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Returns the array of implications with the highest cost.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Fra_SmlSelectMaxCost( Vec_Int_t * vImps, int * pCosts, int nCostMax, int nImpLimit, int * pCostRange )
{
    Vec_Int_t * vImpsNew;
    int * pCostCount, nImpCount, Imp, i, c;
    assert( Vec_IntSize(vImps) >= nImpLimit );
    // count how many implications have each cost
    pCostCount = ABC_ALLOC( int, nCostMax + 1 );
    memset( pCostCount, 0, sizeof(int) * (nCostMax + 1) );
    for ( i = 0; i < Vec_IntSize(vImps); i++ )
    {
        assert( pCosts[i] <= nCostMax );
        pCostCount[ pCosts[i] ]++;
    }
    assert( pCostCount[0] == 0 );
    // select the bound on the cost (above this bound, implication will be included)
    nImpCount = 0;
    for ( c = nCostMax; c > 0; c-- )
    {
        nImpCount += pCostCount[c];
        if ( nImpCount >= nImpLimit )
            break;
    }
//    printf( "Cost range >= %d.\n", c );
    // collect implications with the given costs
    vImpsNew = Vec_IntAlloc( nImpLimit );
    Vec_IntForEachEntry( vImps, Imp, i )
    {
        if ( pCosts[i] < c )
            continue;
        Vec_IntPush( vImpsNew, Imp );
        if ( Vec_IntSize( vImpsNew ) == nImpLimit )
            break;
    }
    ABC_FREE( pCostCount );
    if ( pCostRange )
        *pCostRange = c;
    return vImpsNew;
}

/**Function*************************************************************

  Synopsis    [Compares two implications using their largest ID.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sml_CompareMaxId( unsigned short * pImp1, unsigned short * pImp2 )
{
    int Max1 = Abc_MaxInt( pImp1[0], pImp1[1] );
    int Max2 = Abc_MaxInt( pImp2[0], pImp2[1] );
    if ( Max1 < Max2 )
        return -1;
    if ( Max1 > Max2  )
        return 1;
    return 0; 
}

/**Function*************************************************************

  Synopsis    [Derives implication candidates.]

  Description [Implication candidates have the property that 
  (1) they hold using sequential simulation information
  (2) they do not hold using combinational simulation information
  (3) they have as high expressive power as possible (heuristically)
      that is, they are easy to disprove combinationally
      meaning they cover relatively larger sequential subspace.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Fra_ImpDerive( Fra_Man_t * p, int nImpMaxLimit, int nImpUseLimit, int fLatchCorr )
{
    int nSimWords = 64;
    Fra_Sml_t * pSeq, * pComb;
    Vec_Int_t * vImps, * vTemp;
    Vec_Ptr_t * vNodes;
    int * pImpCosts, * pNodesI, * pNodesK;
    int nImpsTotal = 0, nImpsTried = 0, nImpsNonSeq = 0, nImpsComb = 0, nImpsCollected = 0;
    int CostMin = ABC_INFINITY, CostMax = 0;
    int i, k, Imp, CostRange;
    clock_t clk = clock();
    assert( Aig_ManObjNumMax(p->pManAig) < (1 << 15) );
    assert( nImpMaxLimit > 0 && nImpUseLimit > 0 && nImpUseLimit <= nImpMaxLimit );
    // normalize both managers
    pComb = Fra_SmlSimulateComb( p->pManAig, nSimWords, 0 );
    pSeq = Fra_SmlSimulateSeq( p->pManAig, p->pPars->nFramesP, nSimWords, 1, 1 );
    // get the nodes sorted by the number of 1s
    vNodes = Fra_SmlSortUsingOnes( pSeq, fLatchCorr );
    // count the total number of implications
    for ( k = nSimWords * 32; k > 0; k-- )
    for ( i = k - 1; i > 0; i-- )
    for ( pNodesI = (int *)Vec_PtrEntry( vNodes, i ); *pNodesI; pNodesI++ )
    for ( pNodesK = (int *)Vec_PtrEntry( vNodes, k ); *pNodesK; pNodesK++ )
        nImpsTotal++;

    // compute implications and their costs
    pImpCosts = ABC_ALLOC( int, nImpMaxLimit );
    vImps = Vec_IntAlloc( nImpMaxLimit );
    for ( k = pSeq->nWordsTotal * 32; k > 0; k-- )
        for ( i = k - 1; i > 0; i-- )
        {
            // HERE WE ARE MISSING SOME POTENTIAL IMPLICATIONS (with complement!)

            for ( pNodesI = (int *)Vec_PtrEntry( vNodes, i ); *pNodesI; pNodesI++ )
            for ( pNodesK = (int *)Vec_PtrEntry( vNodes, k ); *pNodesK; pNodesK++ )
            {
                nImpsTried++;
                if ( !Sml_NodeCheckImp(pSeq, *pNodesI, *pNodesK) )
                {
                    nImpsNonSeq++;
                    continue;
                }
                if ( Sml_NodeCheckImp(pComb, *pNodesI, *pNodesK) )
                {
                    nImpsComb++;
                    continue;
                }
                nImpsCollected++;
                Imp = Fra_ImpCreate( *pNodesI, *pNodesK );
                pImpCosts[ Vec_IntSize(vImps) ] = Sml_NodeNotImpWeight(pComb, *pNodesI, *pNodesK);
                CostMin = Abc_MinInt( CostMin, pImpCosts[ Vec_IntSize(vImps) ] );
                CostMax = Abc_MaxInt( CostMax, pImpCosts[ Vec_IntSize(vImps) ] );
                Vec_IntPush( vImps, Imp );
                if ( Vec_IntSize(vImps) == nImpMaxLimit )
                    goto finish;
            } 
        }
finish:
    Fra_SmlStop( pComb );
    Fra_SmlStop( pSeq );

    // select implications with the highest cost
    CostRange = CostMin;
    if ( Vec_IntSize(vImps) > nImpUseLimit )
    {
        vImps = Fra_SmlSelectMaxCost( vTemp = vImps, pImpCosts, nSimWords * 32, nImpUseLimit, &CostRange );
        Vec_IntFree( vTemp );  
    }

    // dealloc
    ABC_FREE( pImpCosts ); 
    {
    void * pTemp = Vec_PtrEntry(vNodes, 0);
    ABC_FREE( pTemp );
    }
    Vec_PtrFree( vNodes );
    // reorder implications topologically
    qsort( (void *)Vec_IntArray(vImps), Vec_IntSize(vImps), sizeof(int), 
            (int (*)(const void *, const void *)) Sml_CompareMaxId );
if ( p->pPars->fVerbose )
{
printf( "Implications: All = %d. Try = %d. NonSeq = %d. Comb = %d. Res = %d.\n", 
    nImpsTotal, nImpsTried, nImpsNonSeq, nImpsComb, nImpsCollected );
printf( "Implication weight: Min = %d. Pivot = %d. Max = %d.   ", 
       CostMin, CostRange, CostMax );
ABC_PRT( "Time", clock() - clk );
}
    return vImps;
}


// the following three procedures are called to 
// - add implications to the SAT solver
// - check implications using the SAT solver
// - refine implications using after a cex is generated

/**Function*************************************************************

  Synopsis    [Add implication clauses to the SAT solver.]

  Description [Note that implications should be checked in the first frame!]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ImpAddToSolver( Fra_Man_t * p, Vec_Int_t * vImps, int * pSatVarNums )
{
    sat_solver * pSat = p->pSat;
    Aig_Obj_t * pLeft, * pRight;
    Aig_Obj_t * pLeftF, * pRightF;
    int pLits[2], Imp, Left, Right, i, f, status;
    int fComplL, fComplR;
    Vec_IntForEachEntry( vImps, Imp, i )
    {
        // get the corresponding nodes
        pLeft = Aig_ManObj( p->pManAig, Fra_ImpLeft(Imp) );
        pRight = Aig_ManObj( p->pManAig, Fra_ImpRight(Imp) );
        // check if all the nodes are present
        for ( f = 0; f < p->pPars->nFramesK; f++ )
        {
            // map these info fraig
            pLeftF = Fra_ObjFraig( pLeft, f );
            pRightF = Fra_ObjFraig( pRight, f );
            if ( Aig_ObjIsNone(Aig_Regular(pLeftF)) || Aig_ObjIsNone(Aig_Regular(pRightF)) )
            {
                Vec_IntWriteEntry( vImps, i, 0 );
                break;
            }
        } 
        if ( f < p->pPars->nFramesK )
            continue;
        // add constraints in each timeframe
        for ( f = 0; f < p->pPars->nFramesK; f++ )
        {
            // map these info fraig
            pLeftF = Fra_ObjFraig( pLeft, f );
            pRightF = Fra_ObjFraig( pRight, f );
            // get the corresponding SAT numbers
            Left = pSatVarNums[ Aig_Regular(pLeftF)->Id ];
            Right = pSatVarNums[ Aig_Regular(pRightF)->Id ];
            assert( Left > 0  && Left < p->nSatVars );
            assert( Right > 0 && Right < p->nSatVars );
            // get the complemented attributes
            fComplL = pLeft->fPhase ^ Aig_IsComplement(pLeftF);
            fComplR = pRight->fPhase ^ Aig_IsComplement(pRightF);
            // get the constraint
            // L => R      L' v R     (complement = L & R')
            pLits[0] = 2 * Left  + !fComplL;
            pLits[1] = 2 * Right +  fComplR;
            // add constraint to solver
            if ( !sat_solver_addclause( pSat, pLits, pLits + 2 ) )
            {
                sat_solver_delete( pSat );
                p->pSat = NULL;
                return;
            }
        }
    }
    status = sat_solver_simplify(pSat);
    if ( status == 0 )
    {
        sat_solver_delete( pSat );
        p->pSat = NULL;
    }
//    printf( "Total imps = %d. ", Vec_IntSize(vImps) );
    Fra_ImpCompactArray( vImps );
//    printf( "Valid imps = %d. \n", Vec_IntSize(vImps) );
}

/**Function*************************************************************

  Synopsis    [Check implications for the node (if they are present).]

  Description [Returns the new position in the array.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ImpCheckForNode( Fra_Man_t * p, Vec_Int_t * vImps, Aig_Obj_t * pNode, int Pos )
{
    Aig_Obj_t * pLeft, * pRight;
    Aig_Obj_t * pLeftF, * pRightF;
    int i, Imp, Left, Right, Max, RetValue;
    int fComplL, fComplR;
    Vec_IntForEachEntryStart( vImps, Imp, i, Pos )
    {
        if ( Imp == 0 )
            continue;
        Left = Fra_ImpLeft(Imp);
        Right = Fra_ImpRight(Imp);
        Max = Abc_MaxInt( Left, Right );
        assert( Max >= pNode->Id );
        if ( Max > pNode->Id )
            return i;
        // get the corresponding nodes
        pLeft  = Aig_ManObj( p->pManAig, Left );
        pRight = Aig_ManObj( p->pManAig, Right );
        // get the corresponding FRAIG nodes
        pLeftF  = Fra_ObjFraig( pLeft, p->pPars->nFramesK );
        pRightF = Fra_ObjFraig( pRight, p->pPars->nFramesK );
        // get the complemented attributes
        fComplL = pLeft->fPhase ^ Aig_IsComplement(pLeftF);
        fComplR = pRight->fPhase ^ Aig_IsComplement(pRightF);
        // check equality
        if ( Aig_Regular(pLeftF) == Aig_Regular(pRightF) )
        {
            if ( fComplL == fComplR ) // x => x  - always true
                continue;
            assert( fComplL != fComplR );
            // consider 4 possibilities:
            // NOT(1) => 1    or   0 => 1  - always true
            // 1 => NOT(1)    or   1 => 0  - never true
            // NOT(x) => x    or   x       - not always true
            // x => NOT(x)    or   NOT(x)  - not always true
            if ( Aig_ObjIsConst1(Aig_Regular(pLeftF)) && fComplL ) // proved implication
                continue;
            // disproved implication
            p->pCla->fRefinement = 1;
            Vec_IntWriteEntry( vImps, i, 0 );
            continue;
        }
        // check the implication 
        // - if true, a clause is added
        // - if false, a cex is simulated
        // make sure the implication is refined
        RetValue = Fra_NodesAreImp( p, Aig_Regular(pLeftF), Aig_Regular(pRightF), fComplL, fComplR );
        if ( RetValue != 1 )
        {
            p->pCla->fRefinement = 1;
            if ( RetValue == 0 )
                Fra_SmlResimulate( p );
            if ( Vec_IntEntry(vImps, i) != 0 )
                printf( "Fra_ImpCheckForNode(): Implication is not refined!\n" );
            assert( Vec_IntEntry(vImps, i) == 0 );
        }
    }
    return i;
}

/**Function*************************************************************

  Synopsis    [Removes those implications that no longer hold.]

  Description [Returns 1 if refinement has happened.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ImpRefineUsingCex( Fra_Man_t * p, Vec_Int_t * vImps )
{
    Aig_Obj_t * pLeft, * pRight;
    int Imp, i, RetValue = 0;
    Vec_IntForEachEntry( vImps, Imp, i )
    {
        if ( Imp == 0 )
            continue;
        // get the corresponding nodes
        pLeft = Aig_ManObj( p->pManAig, Fra_ImpLeft(Imp) );
        pRight = Aig_ManObj( p->pManAig, Fra_ImpRight(Imp) );
        // check if implication holds using this simulation info
        if ( !Sml_NodeCheckImp(p->pSml, pLeft->Id, pRight->Id) )
        {
            Vec_IntWriteEntry( vImps, i, 0 );
            RetValue = 1;
        }
    }
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Removes empty implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ImpCompactArray( Vec_Int_t * vImps )
{
    int i, k, Imp;
    k = 0;
    Vec_IntForEachEntry( vImps, Imp, i )
        if ( Imp )
            Vec_IntWriteEntry( vImps, k++, Imp );
    Vec_IntShrink( vImps, k );
}

/**Function*************************************************************

  Synopsis    [Determines the ratio of the state space by computed implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
double Fra_ImpComputeStateSpaceRatio( Fra_Man_t * p )
{
    int nSimWords = 64;
    Fra_Sml_t * pComb;
    unsigned * pResult;
    double Ratio = 0.0;
    int Left, Right, Imp, i;
    if ( p->pCla->vImps == NULL || Vec_IntSize(p->pCla->vImps) == 0 )
        return Ratio;
    // simulate the AIG manager with combinational patterns
    pComb = Fra_SmlSimulateComb( p->pManAig, nSimWords, 0 );
    // go through the implications and collect where they do not hold
    pResult = Fra_ObjSim( pComb, 0 );
    assert( pResult[0] == 0 );
    Vec_IntForEachEntry( p->pCla->vImps, Imp, i )
    {
        Left = Fra_ImpLeft(Imp);
        Right = Fra_ImpRight(Imp);
        Sml_NodeSaveNotImpPatterns( pComb, Left, Right, pResult );
    }
    // count the number of ones in this area
    Ratio = 100.0 * Fra_SmlCountOnesOne( pComb, 0 ) / (32*(pComb->nWordsTotal-pComb->nWordsPref));
    Fra_SmlStop( pComb );
    return Ratio;
}

/**Function*************************************************************

  Synopsis    [Returns the number of failed implications.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_ImpVerifyUsingSimulation( Fra_Man_t * p )
{
    int nFrames = 2000;
    int nSimWords = 8;
    Fra_Sml_t * pSeq;
    char * pfFails;
    int Left, Right, Imp, i, Counter;
    if ( p->pCla->vImps == NULL || Vec_IntSize(p->pCla->vImps) == 0 )
        return 0;
    // simulate the AIG manager with combinational patterns
    pSeq = Fra_SmlSimulateSeq( p->pManAig, p->pPars->nFramesP, nFrames, nSimWords, 1  );
    // go through the implications and check how many of them do not hold
    pfFails = ABC_ALLOC( char, Vec_IntSize(p->pCla->vImps) );
    memset( pfFails, 0, sizeof(char) * Vec_IntSize(p->pCla->vImps) );
    Vec_IntForEachEntry( p->pCla->vImps, Imp, i )
    {
        Left = Fra_ImpLeft(Imp);
        Right = Fra_ImpRight(Imp);
        pfFails[i] = !Sml_NodeCheckImp( pSeq, Left, Right );
    }
    // count how many has failed
    Counter = 0;
    for ( i = 0; i < Vec_IntSize(p->pCla->vImps); i++ )
        Counter += pfFails[i];
    ABC_FREE( pfFails );
    Fra_SmlStop( pSeq );
    return Counter;
}

/**Function*************************************************************

  Synopsis    [Record proven implications in the AIG manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fra_ImpRecordInManager( Fra_Man_t * p, Aig_Man_t * pNew )
{
    Aig_Obj_t * pLeft, * pRight, * pMiter;
    int nPosOld, Imp, i;
    if ( p->pCla->vImps == NULL || Vec_IntSize(p->pCla->vImps) == 0 )
        return;
    // go through the implication
    nPosOld = Aig_ManCoNum(pNew);
    Vec_IntForEachEntry( p->pCla->vImps, Imp, i )
    {
        pLeft = Aig_ManObj( p->pManAig, Fra_ImpLeft(Imp) );
        pRight = Aig_ManObj( p->pManAig, Fra_ImpRight(Imp) );
        // record the implication: L' + R
        pMiter = Aig_Or( pNew, 
            Aig_NotCond((Aig_Obj_t *)pLeft->pData, !pLeft->fPhase), 
            Aig_NotCond((Aig_Obj_t *)pRight->pData, pRight->fPhase) ); 
        Aig_ObjCreateCo( pNew, pMiter );
    }
    pNew->nAsserts = Aig_ManCoNum(pNew) - nPosOld;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END