summaryrefslogtreecommitdiffstats
path: root/src/proof/llb/llb2Core.c
blob: a6f16aebfa605a3d578688a39bea98ef19e39c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/**CFile****************************************************************

  FileName    [llb2Core.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [BDD based reachability.]

  Synopsis    [Core procedure.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: llb2Core.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "llbInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Llb_Img_t_ Llb_Img_t;
struct Llb_Img_t_
{
    Aig_Man_t *     pInit;          // AIG manager
    Aig_Man_t *     pAig;           // AIG manager
    Gia_ParLlb_t *  pPars;          // parameters

    DdManager *     dd;             // BDD manager
    DdManager *     ddG;            // BDD manager
    DdManager *     ddR;            // BDD manager
    Vec_Ptr_t *     vDdMans;        // BDD managers for each partition
    Vec_Ptr_t *     vRings;         // onion rings in ddR

    Vec_Int_t *     vDriRefs;       // driver references
    Vec_Int_t *     vVarsCs;        // cur state variables
    Vec_Int_t *     vVarsNs;        // next state variables

    Vec_Int_t *     vCs2Glo;        // cur state variables into global variables
    Vec_Int_t *     vNs2Glo;        // next state variables into global variables
    Vec_Int_t *     vGlo2Cs;        // global variables into cur state variables
    Vec_Int_t *     vGlo2Ns;        // global variables into next state variables
};

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes cube composed of given variables with given values.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_CoreComputeCube( DdManager * dd, Vec_Int_t * vVars, int fUseVarIndex, char * pValues )
{
    DdNode * bRes, * bVar, * bTemp;
    int i, iVar, Index;
    clock_t TimeStop;
    TimeStop = dd->TimeStop; dd->TimeStop = 0;
    bRes = Cudd_ReadOne( dd );   Cudd_Ref( bRes );
    Vec_IntForEachEntry( vVars, Index, i )
    {
        iVar  = fUseVarIndex ? Index : i;
        bVar  = Cudd_NotCond( Cudd_bddIthVar(dd, iVar), (int)(pValues == NULL || pValues[i] != 1) );
        bRes  = Cudd_bddAnd( dd, bTemp = bRes, bVar );  Cudd_Ref( bRes );
        Cudd_RecursiveDeref( dd, bTemp );
    }
    Cudd_Deref( bRes );
    dd->TimeStop = TimeStop;
    return bRes;
}

/**Function*************************************************************

  Synopsis    [Derives counter-example by backward reachability.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Cex_t * Llb_CoreDeriveCex( Llb_Img_t * p )
{
    Abc_Cex_t * pCex;
    Aig_Obj_t * pObj;
    Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
    DdNode * bState = NULL, * bImage, * bOneCube, * bTemp, * bRing;
    int i, v, RetValue, nPiOffset;
    char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) );
    assert( Vec_PtrSize(p->vRings) > 0 );

    p->dd->TimeStop  = 0;
    p->ddR->TimeStop = 0;

    // get supports and quantified variables
    Vec_PtrReverseOrder( p->vDdMans );
    vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 1, 0 );
    Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, 0 );
    Vec_VecFree( (Vec_Vec_t *)vSupps );
    Llb_ImgQuantifyReset( p->vDdMans );
//    Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0 );

    // allocate room for the counter-example
    pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) );
    pCex->iFrame = Vec_PtrSize(p->vRings) - 1;
    pCex->iPo = -1;

    // get the last cube
    bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc );  Cudd_Ref( bOneCube );
    RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
    Cudd_RecursiveDeref( p->ddR, bOneCube );
    assert( RetValue );

    // write PIs of counter-example
    nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1);
    Saig_ManForEachPi( p->pAig, pObj, i )
        if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
            Abc_InfoSetBit( pCex->pData, nPiOffset + i );

    // write state in terms of NS variables
    if ( Vec_PtrSize(p->vRings) > 1 )
    {
        bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues );   Cudd_Ref( bState );
    }
    // perform backward analysis
    Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v )
    { 
        if ( v == Vec_PtrSize(p->vRings) - 1 )
            continue;
        // compute the next states
        bImage = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bState, 
            vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, 1, 0, 0 );
        assert( bImage != NULL );
        Cudd_Ref( bImage );
        Cudd_RecursiveDeref( p->dd, bState );
//Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" );

        // move reached states into ring manager
        bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) );    Cudd_Ref( bImage );
        Cudd_RecursiveDeref( p->dd, bTemp );

        // intersect with the previous set
        bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing );                Cudd_Ref( bOneCube );
        Cudd_RecursiveDeref( p->ddR, bImage );

        // find any assignment of the BDD
        RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues );
        Cudd_RecursiveDeref( p->ddR, bOneCube );
        assert( RetValue );

        // write PIs of counter-example
        nPiOffset -= Saig_ManPiNum(p->pAig);
        Saig_ManForEachPi( p->pAig, pObj, i )
            if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 )
                Abc_InfoSetBit( pCex->pData, nPiOffset + i );

        // check that we get the init state
        if ( v == 0 )
        {
            Saig_ManForEachLo( p->pAig, pObj, i )
                assert( pValues[i] == 0 );
            break;
        }

        // write state in terms of NS variables
        bState = Llb_CoreComputeCube( p->dd, p->vVarsNs, 1, pValues );   Cudd_Ref( bState );
    }
    assert( nPiOffset == Saig_ManRegNum(p->pAig) );
    // update the output number
    RetValue = Saig_ManFindFailedPoCex( p->pInit, pCex );
    assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pInit) ); // invalid CEX!!!
    pCex->iPo = RetValue;
    // cleanup
    ABC_FREE( pValues );
    Vec_VecFree( (Vec_Vec_t *)vQuant0 );
    Vec_VecFree( (Vec_Vec_t *)vQuant1 );
    return pCex;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_CoreReachability_int( Llb_Img_t * p, Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1 )
{
    int * pLoc2Glo  = p->pPars->fBackward? Vec_IntArray( p->vCs2Glo ) : Vec_IntArray( p->vNs2Glo );
    int * pLoc2GloR = p->pPars->fBackward? Vec_IntArray( p->vNs2Glo ) : Vec_IntArray( p->vCs2Glo );
    int * pGlo2Loc  = p->pPars->fBackward? Vec_IntArray( p->vGlo2Ns ) : Vec_IntArray( p->vGlo2Cs );
    DdNode * bCurrent, * bReached, * bNext, * bTemp;
    clock_t clk2, clk = clock();
    int nIters, nBddSize;//, iOutFail = -1;
/*
    // compute time to stop
    if ( p->pPars->TimeLimit )
        p->pPars->TimeTarget = clock() + p->pPars->TimeLimit * CLOCKS_PER_SEC;
    else
        p->pPars->TimeTarget = 0;
*/

    if ( clock() > p->pPars->TimeTarget )
    {
        if ( !p->pPars->fSilent )
            printf( "Reached timeout (%d seconds) before image computation.\n", p->pPars->TimeLimit );
        p->pPars->iFrame = -1;
        return -1;
    }

    // set the stop time parameter
    p->dd->TimeStop  = p->pPars->TimeTarget;
    p->ddG->TimeStop = p->pPars->TimeTarget;
    p->ddR->TimeStop = p->pPars->TimeTarget;

    // compute initial states
    if ( p->pPars->fBackward )
    {
        // create init state in the global manager
        bTemp = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );   
        if ( bTemp == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
            p->pPars->iFrame = -1;
            return -1;
        }
        Cudd_Ref( bTemp );
        // create bad state in the ring manager
        p->ddR->bFunc = Llb_CoreComputeCube( p->ddR, p->vVarsCs, 0, NULL );      Cudd_Ref( p->ddR->bFunc );
        bCurrent = Llb_BddQuantifyPis( p->pInit, p->ddR, bTemp );                Cudd_Ref( bCurrent );
        Cudd_RecursiveDeref( p->ddR, bTemp );
        bReached = Cudd_bddTransfer( p->ddR, p->ddG, bCurrent );                 Cudd_Ref( bReached );
        Cudd_RecursiveDeref( p->ddR, bCurrent );
        // move init state to the working manager
        bCurrent = Extra_TransferPermute( p->ddG, p->dd, bReached, pGlo2Loc );   
        if ( bCurrent == NULL )
        {
            Cudd_RecursiveDeref( p->ddG, bReached );
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during transfer 0.\n", p->pPars->TimeLimit );
            p->pPars->iFrame = -1;
            return -1;
        }
        Cudd_Ref( bCurrent );
    }
    else
    {
        // create bad state in the ring manager
        p->ddR->bFunc = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget );  
        if ( p->ddR->bFunc == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) while computing bad states.\n", p->pPars->TimeLimit );
            p->pPars->iFrame = -1;
            return -1;
        }
        Cudd_Ref( p->ddR->bFunc );
        // create init state in the working and global manager
        bCurrent = Llb_CoreComputeCube( p->dd,  p->vVarsCs, 1, NULL );           Cudd_Ref( bCurrent );
        bReached = Llb_CoreComputeCube( p->ddG, p->vVarsCs, 0, NULL );           Cudd_Ref( bReached );
//Extra_bddPrint( p->dd, bCurrent );  printf( "\n" );
//Extra_bddPrint( p->ddG, bReached );  printf( "\n" );
    }

    // compute onion rings
    for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ )
    { 
        clk2 = clock();
        // check the runtime limit
        if ( p->pPars->TimeLimit && clock() > p->pPars->TimeTarget )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->dd,  bCurrent );  bCurrent = NULL;
            Cudd_RecursiveDeref( p->ddG, bReached );  bReached = NULL;
            return -1;
        }

        // save the onion ring
        bTemp = Extra_TransferPermute( p->dd, p->ddR, bCurrent, pLoc2GloR );  
        if ( bTemp == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->dd,  bCurrent );  bCurrent = NULL;
            Cudd_RecursiveDeref( p->ddG, bReached );  bReached = NULL;
            return -1;
        }
        Cudd_Ref( bTemp );
        Vec_PtrPush( p->vRings, bTemp );

        // check it for bad states
        if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) ) 
        {
            assert( p->pInit->pSeqModel == NULL );
            if ( !p->pPars->fBackward )
                p->pInit->pSeqModel = Llb_CoreDeriveCex( p ); 
            Cudd_RecursiveDeref( p->dd,  bCurrent );  bCurrent = NULL;
            Cudd_RecursiveDeref( p->ddG, bReached );  bReached = NULL;
            if ( !p->pPars->fSilent )
            {
                if ( !p->pPars->fBackward )
                    Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d.  ", p->pInit->pSeqModel->iPo, p->pInit->pName, nIters );
                else
                    Abc_Print( 1, "Output ??? was asserted in frame %d (counter-example is not produced).  ", nIters );
                Abc_PrintTime( 1, "Time", clock() - clk );
            }
            p->pPars->iFrame = nIters - 1;
            return 0;
        }

        // compute the next states
        bNext = Llb_ImgComputeImage( p->pAig, p->vDdMans, p->dd, bCurrent, 
            vQuant0, vQuant1, p->vDriRefs, p->pPars->TimeTarget, 
            p->pPars->fBackward, p->pPars->fReorder, p->pPars->fVeryVerbose );
        if ( bNext == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->dd,  bCurrent );   bCurrent = NULL;
            Cudd_RecursiveDeref( p->ddG, bReached );   bReached = NULL;
            return -1;
        }
        Cudd_Ref( bNext );
        Cudd_RecursiveDeref( p->dd, bCurrent );        bCurrent = NULL;
//Extra_bddPrintSupport( p->dd, bNext ); printf( "\n" );

        // remap these states into the global manager
//        bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo );    Cudd_Ref( bNext );
//        Cudd_RecursiveDeref( p->dd, bTemp );

//        bNext = Extra_TransferPermuteTime( p->dd, p->ddG, bTemp = bNext, pLoc2Glo, p->pPars->TimeTarget );    
        bNext = Extra_TransferPermute( p->dd, p->ddG, bTemp = bNext, pLoc2Glo );    
        if ( bNext == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->dd,  bTemp );  
            Cudd_RecursiveDeref( p->ddG, bReached );   bReached = NULL;
            return -1;
        }
        Cudd_Ref( bNext );
        Cudd_RecursiveDeref( p->dd, bTemp );  

        nBddSize = Cudd_DagSize(bNext);
        // check if there are any new states
        if ( Cudd_bddLeq( p->ddG, bNext, bReached ) ) // implication = no new states
        {
            Cudd_RecursiveDeref( p->ddG,  bNext );     bNext = NULL;
            break;
        }

        // get the new states
        bCurrent = Cudd_bddAnd( p->ddG, bNext, Cudd_Not(bReached) );                    
        if ( bCurrent == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->ddG, bNext );  
            Cudd_RecursiveDeref( p->ddG, bReached );   bReached = NULL;
            return -1;
        }
        Cudd_Ref( bCurrent );

        // remap these states into the current state vars
//        bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc );   Cudd_Ref( bCurrent );
//        Cudd_RecursiveDeref( p->ddG, bTemp );

//        bCurrent = Extra_TransferPermuteTime( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc, p->pPars->TimeTarget );    
        bCurrent = Extra_TransferPermute( p->ddG, p->dd, bTemp = bCurrent, pGlo2Loc );    
        if ( bCurrent == NULL )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n",  p->pPars->TimeLimit );
            p->pPars->iFrame = nIters - 1;
            Cudd_RecursiveDeref( p->ddG, bTemp );  
            Cudd_RecursiveDeref( p->ddG, bReached );   bReached = NULL;
            return -1;
        }
        Cudd_Ref( bCurrent );
        Cudd_RecursiveDeref( p->ddG, bTemp );

        // add to the reached states
        bReached = Cudd_bddOr( p->ddG, bTemp = bReached, bNext );                       Cudd_Ref( bReached );
        Cudd_RecursiveDeref( p->ddG, bTemp );
        Cudd_RecursiveDeref( p->ddG, bNext );
        bNext = NULL;

        if ( p->pPars->fVeryVerbose )
        {
            double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
//            Extra_bddPrint( p->ddG, bReached );printf( "\n" );
            fprintf( stdout, "        Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
            fflush( stdout ); 
        }
        if ( p->pPars->fVerbose )
        {
            fprintf( stdout, "F =%3d : ",    nIters );
            fprintf( stdout, "Image =%6d  ", nBddSize );
            fprintf( stdout, "(%4d%4d)  ", 
                Cudd_ReadReorderings(p->dd),  Cudd_ReadGarbageCollections(p->dd) );
            fprintf( stdout, "Reach =%6d  ", Cudd_DagSize(bReached) );
            fprintf( stdout, "(%4d%4d)  ", 
                Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) );
            Abc_PrintTime( 1, "Time", clock() - clk2 );
        }

        // check timeframe limit
        if ( nIters == p->pPars->nIterMax - 1 )
        {
            if ( !p->pPars->fSilent )
                printf( "Reached limit on the number of timeframes (%d).\n",  p->pPars->nIterMax );
            p->pPars->iFrame = nIters;
            Cudd_RecursiveDeref( p->dd,  bCurrent );  bCurrent = NULL;
            Cudd_RecursiveDeref( p->ddG, bReached );  bReached = NULL;
            return -1;
        }
    }
    if ( bReached == NULL )
    {
        p->pPars->iFrame = nIters - 1;
        return 0; // reachable
    }
    if ( bCurrent )
        Cudd_RecursiveDeref( p->dd, bCurrent );
    // report the stats
    if ( p->pPars->fVerbose )
    {
        double nMints = Cudd_CountMinterm(p->ddG, bReached, Saig_ManRegNum(p->pAig) );
        if ( nIters >= p->pPars->nIterMax )
            fprintf( stdout, "Reachability analysis is stopped after %d frames.\n", nIters );
        else
            fprintf( stdout, "Reachability analysis completed after %d frames.\n", nIters );
        fprintf( stdout, "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) );
        fflush( stdout ); 
    }
    if ( p->pPars->fDumpReached )
    {
        Llb_ManDumpReached( p->ddG, bReached, p->pAig->pName, "reached.blif" );
        printf( "Reached states with %d BDD nodes are dumpted into file \"reached.blif\".\n", Cudd_DagSize(bReached) );
    }
    Cudd_RecursiveDeref( p->ddG, bReached );
    if ( nIters >= p->pPars->nIterMax )
    {
        if ( !p->pPars->fSilent )
        {
            printf( "Verified only for states reachable in %d frames.  ", nIters );
            Abc_PrintTime( 1, "Time", clock() - clk );
        }
        p->pPars->iFrame = p->pPars->nIterMax;
        return -1; // undecided
    }
    if ( !p->pPars->fSilent )
    {
        printf( "The miter is proved unreachable after %d iterations.  ", nIters );
        Abc_PrintTime( 1, "Time", clock() - clk );
    }
    p->pPars->iFrame = nIters - 1;
    return 1; // unreachable
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_CoreReachability( Llb_Img_t * p )
{
    Vec_Ptr_t * vSupps, * vQuant0, * vQuant1;
    int RetValue;
    // get supports and quantified variables
    if ( p->pPars->fBackward )
    {
        Vec_PtrReverseOrder( p->vDdMans );
        vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsNs, p->vVarsCs, 0, p->pPars->fVeryVerbose );
    }
    else
        vSupps = Llb_ImgSupports( p->pAig, p->vDdMans, p->vVarsCs, p->vVarsNs, 0, p->pPars->fVeryVerbose );
    Llb_ImgSchedule( vSupps, &vQuant0, &vQuant1, p->pPars->fVeryVerbose );
    Vec_VecFree( (Vec_Vec_t *)vSupps );
    // remove variables
    Llb_ImgQuantifyFirst( p->pAig, p->vDdMans, vQuant0, p->pPars->fVeryVerbose );
    // perform reachability
    RetValue = Llb_CoreReachability_int( p, vQuant0, vQuant1 );
    Vec_VecFree( (Vec_Vec_t *)vQuant0 );
    Vec_VecFree( (Vec_Vec_t *)vQuant1 );
    return RetValue;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Llb_CoreConstructAll( Aig_Man_t * p, Vec_Ptr_t * vResult, Vec_Int_t * vVarsNs, clock_t TimeTarget )
{
    DdManager * dd;
    Vec_Ptr_t * vDdMans;
    Vec_Ptr_t * vLower, * vUpper = NULL;
    int i;
    vDdMans = Vec_PtrStart( Vec_PtrSize(vResult) );
    Vec_PtrForEachEntryReverse( Vec_Ptr_t *, vResult, vLower, i )
    {
        if ( i < Vec_PtrSize(vResult) - 1 )
            dd = Llb_ImgPartition( p, vLower, vUpper, TimeTarget );
        else
            dd = Llb_DriverLastPartition( p, vVarsNs, TimeTarget );
        if ( dd == NULL )
        {
            Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
            {
                if ( dd == NULL )
                    continue;
                if ( dd->bFunc )
                    Cudd_RecursiveDeref( dd, dd->bFunc );
                Extra_StopManager( dd );
            }
            Vec_PtrFree( vDdMans );
            return NULL;
        }
        Vec_PtrWriteEntry( vDdMans, i, dd );
        vUpper = vLower;
    }
    return vDdMans;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_CoreSetVarMaps( Llb_Img_t * p )
{
    Aig_Obj_t * pObj;
    int i, iVarCs, iVarNs;
    assert( p->vVarsCs != NULL );
    assert( p->vVarsNs != NULL );
    assert( p->vCs2Glo == NULL );
    assert( p->vNs2Glo == NULL );
    assert( p->vGlo2Cs == NULL );
    assert( p->vGlo2Ns == NULL );
    p->vCs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
    p->vNs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) );
    p->vGlo2Cs = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
    p->vGlo2Ns = Vec_IntStartFull( Aig_ManRegNum(p->pAig) );
    for ( i = 0; i < Aig_ManRegNum(p->pAig); i++ )
    {
        iVarCs = Vec_IntEntry( p->vVarsCs, i );
        iVarNs = Vec_IntEntry( p->vVarsNs, i );
        assert( iVarCs >= 0 && iVarCs < Aig_ManObjNumMax(p->pAig) );
        assert( iVarNs >= 0 && iVarNs < Aig_ManObjNumMax(p->pAig) );
        Vec_IntWriteEntry( p->vCs2Glo, iVarCs, i );
        Vec_IntWriteEntry( p->vNs2Glo, iVarNs, i );
        Vec_IntWriteEntry( p->vGlo2Cs, i, iVarCs );
        Vec_IntWriteEntry( p->vGlo2Ns, i, iVarNs );
    }
    // add mapping of the PIs
    Saig_ManForEachPi( p->pAig, pObj, i )
        Vec_IntWriteEntry( p->vCs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Llb_Img_t * Llb_CoreStart( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t *  pPars )
{
    Llb_Img_t * p;
    p = ABC_CALLOC( Llb_Img_t, 1 );
    p->pInit = pInit;
    p->pAig  = pAig;
    p->pPars = pPars;
    p->dd    = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
    p->ddG   = Cudd_Init( Aig_ManRegNum(pAig),    0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
    p->ddR   = Cudd_Init( Aig_ManCiNum(pAig),     0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
    Cudd_AutodynEnable( p->dd,  CUDD_REORDER_SYMM_SIFT );
    Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT );
    Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT );
    p->vRings = Vec_PtrAlloc( 100 );
    p->vDriRefs = Llb_DriverCountRefs( pAig );
    p->vVarsCs  = Llb_DriverCollectCs( pAig );
    p->vVarsNs  = Llb_DriverCollectNs( pAig, p->vDriRefs );
    Llb_CoreSetVarMaps( p );
    return p;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_CoreStop( Llb_Img_t * p )
{
    DdManager * dd;
    DdNode * bTemp;
    int i;
    if ( p->vDdMans )
    Vec_PtrForEachEntry( DdManager *, p->vDdMans, dd, i )
    {
        if ( dd->bFunc )
            Cudd_RecursiveDeref( dd, dd->bFunc );
        if ( dd->bFunc2 )
            Cudd_RecursiveDeref( dd, dd->bFunc2 );
        Extra_StopManager( dd );
    }
    Vec_PtrFreeP( &p->vDdMans );
    if ( p->ddR->bFunc )
        Cudd_RecursiveDeref( p->ddR, p->ddR->bFunc );
    Vec_PtrForEachEntry( DdNode *, p->vRings, bTemp, i )
        Cudd_RecursiveDeref( p->ddR, bTemp );
    Vec_PtrFree( p->vRings );
    Extra_StopManager( p->dd );
    Extra_StopManager( p->ddG );
    Extra_StopManager( p->ddR );
    Vec_IntFreeP( &p->vDriRefs );
    Vec_IntFreeP( &p->vVarsCs );
    Vec_IntFreeP( &p->vVarsNs );
    Vec_IntFreeP( &p->vCs2Glo );
    Vec_IntFreeP( &p->vNs2Glo );
    Vec_IntFreeP( &p->vGlo2Cs );
    Vec_IntFreeP( &p->vGlo2Ns );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_CoreExperiment( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars, Vec_Ptr_t * vResult, clock_t TimeTarget )
{
    int RetValue;
    Llb_Img_t * p;
//    printf( "\n" );
//    pPars->fVerbose = 1;
    p = Llb_CoreStart( pInit, pAig, pPars );
    p->vDdMans = Llb_CoreConstructAll( pAig, vResult, p->vVarsNs, TimeTarget );
    if ( p->vDdMans == NULL )
    {
        if ( !pPars->fSilent )
            printf( "Reached timeout (%d seconds) while deriving the partitions.\n", pPars->TimeLimit );
        Llb_CoreStop( p );
        return -1;
    }
    RetValue = Llb_CoreReachability( p );
    Llb_CoreStop( p );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Finds balanced cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_ManReachMinCut( Aig_Man_t * pAig, Gia_ParLlb_t * pPars )
{
    extern Vec_Ptr_t * Llb_ManComputeCuts( Aig_Man_t * p, int Num, int fVerbose, int fVeryVerbose );
    Vec_Ptr_t * vResult;
    Aig_Man_t * p;
    int RetValue = -1;
    clock_t clk = clock();

    // compute time to stop
    pPars->TimeTarget = pPars->TimeLimit ? pPars->TimeLimit * CLOCKS_PER_SEC + clock(): 0;

    p = Aig_ManDupFlopsOnly( pAig );
//Aig_ManShow( p, 0, NULL );
    if ( pPars->fVerbose )
    Aig_ManPrintStats( pAig );
    if ( pPars->fVerbose )
    Aig_ManPrintStats( p );
    Aig_ManFanoutStart( p );

    vResult = Llb_ManComputeCuts( p, pPars->nPartValue, pPars->fVerbose, pPars->fVeryVerbose );

    if ( pPars->TimeLimit && clock() > pPars->TimeTarget )
    {
        if ( !pPars->fSilent )
            printf( "Reached timeout (%d seconds) after partitioning.\n", pPars->TimeLimit );

        Vec_VecFree( (Vec_Vec_t *)vResult );
        Aig_ManFanoutStop( p );
        Aig_ManCleanMarkAB( p );
        Aig_ManStop( p );
        return RetValue;
    }

    if ( !pPars->fSkipReach )
        RetValue = Llb_CoreExperiment( pAig, p, pPars, vResult, pPars->TimeTarget );

    Vec_VecFree( (Vec_Vec_t *)vResult );
    Aig_ManFanoutStop( p );
    Aig_ManCleanMarkAB( p );
    Aig_ManStop( p );

    if ( RetValue == -1 )
        Abc_PrintTime( 1, "Total runtime of the min-cut-based reachability engine", clock() - clk );
    return RetValue;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END