1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
/**CFile****************************************************************
FileName [bmcBmc.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT-based bounded model checking.]
Synopsis [Simple BMC package.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: bmcBmc.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "proof/fra/fra.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satStore.h"
#include "sat/satoko/satoko.h"
#include "bmc.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create timeframes of the manager for BMC.]
Description [The resulting manager is combinational. POs correspond to \
the property outputs in each time-frame.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManFramesBmc( Aig_Man_t * pAig, int nFrames )
{
Aig_Man_t * pFrames;
Aig_Obj_t * pObj, * pObjLi, * pObjLo;
int i, f;
assert( Saig_ManRegNum(pAig) > 0 );
pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
// create variables for register outputs
Saig_ManForEachLo( pAig, pObj, i )
pObj->pData = Aig_ManConst0( pFrames );
// add timeframes
for ( f = 0; f < nFrames; f++ )
{
// create PI nodes for this frame
Saig_ManForEachPi( pAig, pObj, i )
pObj->pData = Aig_ObjCreateCi( pFrames );
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// create POs for this frame
Saig_ManForEachPo( pAig, pObj, i )
Aig_ObjCreateCo( pFrames, Aig_ObjChild0Copy(pObj) );
if ( f == nFrames - 1 )
break;
// save register inputs
Saig_ManForEachLi( pAig, pObj, i )
pObj->pData = Aig_ObjChild0Copy(pObj);
// transfer to register outputs
Saig_ManForEachLiLo( pAig, pObjLi, pObjLo, i )
pObjLo->pData = pObjLi->pData;
}
Aig_ManCleanup( pFrames );
return pFrames;
}
/**Function*************************************************************
Synopsis [Returns the number of internal nodes that are not counted yet.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Saig_ManFramesCount_rec( Aig_Man_t * p, Aig_Obj_t * pObj )
{
if ( !Aig_ObjIsNode(pObj) )
return 0;
if ( Aig_ObjIsTravIdCurrent(p, pObj) )
return 0;
Aig_ObjSetTravIdCurrent(p, pObj);
return 1 + Saig_ManFramesCount_rec( p, Aig_ObjFanin0(pObj) ) +
Saig_ManFramesCount_rec( p, Aig_ObjFanin1(pObj) );
}
/**Function*************************************************************
Synopsis [Create timeframes of the manager for BMC.]
Description [The resulting manager is combinational. POs correspond to
the property outputs in each time-frame.
The unrolling is stopped as soon as the number of nodes in the frames
exceeds the given maximum size.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManFramesBmcLimit( Aig_Man_t * pAig, int nFrames, int nSizeMax )
{
Aig_Man_t * pFrames;
Aig_Obj_t * pObj, * pObjLi, * pObjLo, * pObjPo;
int i, f, Counter = 0;
assert( Saig_ManRegNum(pAig) > 0 );
pFrames = Aig_ManStart( nSizeMax );
Aig_ManIncrementTravId( pFrames );
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
// create variables for register outputs
Saig_ManForEachLo( pAig, pObj, i )
pObj->pData = Aig_ManConst0( pFrames );
// add timeframes
Counter = 0;
for ( f = 0; f < nFrames; f++ )
{
// create PI nodes for this frame
Saig_ManForEachPi( pAig, pObj, i )
pObj->pData = Aig_ObjCreateCi( pFrames );
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// create POs for this frame
Saig_ManForEachPo( pAig, pObj, i )
{
pObjPo = Aig_ObjCreateCo( pFrames, Aig_ObjChild0Copy(pObj) );
Counter += Saig_ManFramesCount_rec( pFrames, Aig_ObjFanin0(pObjPo) );
}
if ( Counter >= nSizeMax )
{
Aig_ManCleanup( pFrames );
return pFrames;
}
if ( f == nFrames - 1 )
break;
// save register inputs
Saig_ManForEachLi( pAig, pObj, i )
pObj->pData = Aig_ObjChild0Copy(pObj);
// transfer to register outputs
Saig_ManForEachLiLo( pAig, pObjLi, pObjLo, i )
pObjLo->pData = pObjLi->pData;
}
Aig_ManCleanup( pFrames );
return pFrames;
}
ABC_NAMESPACE_IMPL_END
#include "misc/util/utilMem.h"
ABC_NAMESPACE_IMPL_START
/**Function*************************************************************
Synopsis [Returns a counter-example.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int * Sat2_SolverGetModel( satoko_t * p, int * pVars, int nVars )
{
int * pModel;
int i;
pModel = ABC_CALLOC( int, nVars+1 );
for ( i = 0; i < nVars; i++ )
pModel[i] = satoko_read_cex_varvalue(p, pVars[i]);
return pModel;
}
/**Function*************************************************************
Synopsis [Performs BMC for the given AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Saig_ManBmcSimple( Aig_Man_t * pAig, int nFrames, int nSizeMax, int nConfLimit, int fRewrite, int fVerbose, int * piFrame, int nCofFanLit, int fUseSatoko )
{
extern Aig_Man_t * Gia_ManCofactorAig( Aig_Man_t * p, int nFrames, int nCofFanLit );
sat_solver * pSat = NULL;
satoko_t * pSat2 = NULL;
Cnf_Dat_t * pCnf;
Aig_Man_t * pFrames, * pAigTemp;
Aig_Obj_t * pObj;
int status, Lit, i, RetValue = -1;
abctime clk;
// derive the timeframes
clk = Abc_Clock();
if ( nCofFanLit )
{
pFrames = Gia_ManCofactorAig( pAig, nFrames, nCofFanLit );
if ( pFrames == NULL )
return -1;
}
else if ( nSizeMax > 0 )
{
pFrames = Saig_ManFramesBmcLimit( pAig, nFrames, nSizeMax );
nFrames = Aig_ManCoNum(pFrames) / Saig_ManPoNum(pAig) + ((Aig_ManCoNum(pFrames) % Saig_ManPoNum(pAig)) > 0);
}
else
pFrames = Saig_ManFramesBmc( pAig, nFrames );
if ( piFrame )
*piFrame = nFrames;
if ( fVerbose )
{
printf( "Running \"bmc\". AIG: PI/PO/Reg = %d/%d/%d. Node = %6d. Lev = %5d.\n",
Saig_ManPiNum(pAig), Saig_ManPoNum(pAig), Saig_ManRegNum(pAig),
Aig_ManNodeNum(pAig), Aig_ManLevelNum(pAig) );
printf( "Time-frames (%d): PI/PO = %d/%d. Node = %6d. Lev = %5d. ",
nFrames, Aig_ManCiNum(pFrames), Aig_ManCoNum(pFrames),
Aig_ManNodeNum(pFrames), Aig_ManLevelNum(pFrames) );
ABC_PRT( "Time", Abc_Clock() - clk );
fflush( stdout );
}
// rewrite the timeframes
if ( fRewrite )
{
clk = Abc_Clock();
// pFrames = Dar_ManBalance( pAigTemp = pFrames, 0 );
pFrames = Dar_ManRwsat( pAigTemp = pFrames, 1, 0 );
Aig_ManStop( pAigTemp );
if ( fVerbose )
{
printf( "Time-frames after rewriting: Node = %6d. Lev = %5d. ",
Aig_ManNodeNum(pFrames), Aig_ManLevelNum(pFrames) );
ABC_PRT( "Time", Abc_Clock() - clk );
fflush( stdout );
}
}
// create the SAT solver
clk = Abc_Clock();
pCnf = Cnf_Derive( pFrames, Aig_ManCoNum(pFrames) );
//if ( s_fInterrupt )
//return -1;
if ( fUseSatoko )
{
satoko_opts_t opts;
satoko_default_opts(&opts);
opts.conf_limit = nConfLimit;
pSat2 = satoko_create();
satoko_configure(pSat2, &opts);
satoko_setnvars(pSat2, pCnf->nVars);
for ( i = 0; i < pCnf->nClauses; i++ )
if ( !satoko_add_clause( pSat2, pCnf->pClauses[i], pCnf->pClauses[i+1]-pCnf->pClauses[i] ) )
assert( 0 );
}
else
{
pSat = sat_solver_new();
sat_solver_setnvars( pSat, pCnf->nVars );
for ( i = 0; i < pCnf->nClauses; i++ )
if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
assert( 0 );
}
if ( fVerbose )
{
printf( "CNF: Variables = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
ABC_PRT( "Time", Abc_Clock() - clk );
fflush( stdout );
}
status = pSat ? sat_solver_simplify(pSat) : 1;
if ( status == 0 )
{
if ( fVerbose )
{
printf( "The BMC problem is trivially UNSAT\n" );
fflush( stdout );
}
}
else
{
abctime clkPart = Abc_Clock();
Aig_ManForEachCo( pFrames, pObj, i )
{
Lit = toLitCond( pCnf->pVarNums[pObj->Id], 0 );
if ( fVerbose )
{
printf( "Solving output %2d of frame %3d ... \r",
i % Saig_ManPoNum(pAig), i / Saig_ManPoNum(pAig) );
}
clk = Abc_Clock();
if ( pSat2 )
status = satoko_solve_assumptions_limit( pSat2, &Lit, 1, nConfLimit );
else
status = sat_solver_solve( pSat, &Lit, &Lit + 1, (ABC_INT64_T)nConfLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
if ( fVerbose && (i % Saig_ManPoNum(pAig) == Saig_ManPoNum(pAig) - 1) )
{
printf( "Solved %2d outputs of frame %3d. ",
Saig_ManPoNum(pAig), i / Saig_ManPoNum(pAig) );
printf( "Conf =%8.0f. Imp =%11.0f. ",
(double)(pSat ? pSat->stats.conflicts : satoko_conflictnum(pSat2)),
(double)(pSat ? pSat->stats.propagations : satoko_stats(pSat2)->n_propagations) );
ABC_PRT( "T", Abc_Clock() - clkPart );
clkPart = Abc_Clock();
fflush( stdout );
}
if ( status == l_False )
{
/*
Lit = lit_neg( Lit );
RetValue = sat_solver_addclause( pSat, &Lit, &Lit + 1 );
assert( RetValue );
if ( pSat->qtail != pSat->qhead )
{
RetValue = sat_solver_simplify(pSat);
assert( RetValue );
}
*/
}
else if ( status == l_True )
{
Vec_Int_t * vCiIds = Cnf_DataCollectPiSatNums( pCnf, pFrames );
int * pModel = pSat2 ? Sat2_SolverGetModel(pSat2, vCiIds->pArray, vCiIds->nSize) : Sat_SolverGetModel(pSat, vCiIds->pArray, vCiIds->nSize);
pModel[Aig_ManCiNum(pFrames)] = pObj->Id;
pAig->pSeqModel = Fra_SmlCopyCounterExample( pAig, pFrames, pModel );
ABC_FREE( pModel );
Vec_IntFree( vCiIds );
if ( piFrame )
*piFrame = i / Saig_ManPoNum(pAig);
RetValue = 0;
break;
}
else
{
if ( piFrame )
*piFrame = i / Saig_ManPoNum(pAig);
RetValue = -1;
break;
}
}
}
if ( pSat ) sat_solver_delete( pSat );
if ( pSat2 ) satoko_destroy( pSat2 );
Cnf_DataFree( pCnf );
Aig_ManStop( pFrames );
return RetValue;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|