summaryrefslogtreecommitdiffstats
path: root/src/sat/bmc/bmcClp.c
blob: 81f8106308c7f75c7e36d901a9587b9b0f5bb5f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/**CFile****************************************************************

  FileName    [bmcClp.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [SAT-based bounded model checking.]

  Synopsis    [INT-FX: Interpolation-based logic sharing extraction.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: bmcClp.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "bmc.h"
#include "misc/vec/vecWec.h"
#include "sat/cnf/cnf.h"
#include "sat/bsat/satStore.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

extern Cnf_Dat_t * Mf_ManGenerateCnf( Gia_Man_t * pGia, int nLutSize, int fCnfObjIds, int fAddOrCla, int fVerbose );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

static abctime clkCheck1 = 0;
static abctime clkCheck2 = 0;
static abctime clkCheckS = 0;
static abctime clkCheckU = 0;

// enumerate cubes and literals
#define Bmc_SopForEachCube( pSop, nVars, pCube )                        \
    for ( pCube = (pSop); *pCube; pCube += (nVars) + 3 )

/**Function*************************************************************

  Synopsis    [Perform approximate irredundant step on the cover.]

  Description [Iterate through the cubes in the reverse order and
  check if each cube is contained in the previously seen cubes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_CollapseIrredundant( Vec_Str_t * vSop, int nCubes, int nVars )
{
    int nBTLimit = 0;
    sat_solver * pSat; 
    int i, k, status, iLit, nRemoved = 0; 
    Vec_Int_t * vLits = Vec_IntAlloc(nVars);
    // collect cubes
    char * pCube, * pSop = Vec_StrArray(vSop);
    Vec_Ptr_t * vCubes = Vec_PtrAlloc(nCubes);
    assert( Vec_StrSize(vSop) == nCubes * (nVars + 3) + 1 );
    Bmc_SopForEachCube( pSop, nVars, pCube )
        Vec_PtrPush( vCubes, pCube );
    // create SAT solver
    pSat = sat_solver_new();
    sat_solver_setnvars( pSat, nVars );
    // iterate through cubes in the reverse order
    Vec_PtrForEachEntryReverse( char *, vCubes, pCube, i )
    {
        // collect literals
        Vec_IntClear( vLits );
        for ( k = 0; k < nVars; k++ )
            if ( pCube[k] != '-' )
                Vec_IntPush( vLits, Abc_Var2Lit(k, pCube[k] == '1') );
        // check if this cube intersects with the complement of other cubes in the solver
        // if it does not intersect, then it is redundant and can be skipped
        // if it does, then it should be added
        status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
        if ( status == l_Undef ) // timeout
            break;
        if ( status == l_False ) // unsat
        {
            Vec_PtrWriteEntry( vCubes, i, NULL );
            nRemoved++;
            continue;
        }
        assert( status == l_True );
        // make a clause out of the cube by complementing its literals
        Vec_IntForEachEntry( vLits, iLit, k )
            Vec_IntWriteEntry( vLits, k, Abc_LitNot(iLit) );
        // add it to the solver
        status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) );
        assert( status == 1 );
    }
    //printf( "Approximate irrendundant reduced %d cubes (out of %d).\n", nRemoved, nCubes );
    // cleanup cover
    if ( i == -1 && nRemoved > 0 ) // finished without timeout and removed some cubes
    {
        int j = 0;
        Vec_PtrForEachEntry( char *, vCubes, pCube, i )
            if ( pCube != NULL )
                for ( k = 0; k < nVars + 3; k++ )
                    Vec_StrWriteEntry( vSop, j++, pCube[k] );
        Vec_StrWriteEntry( vSop, j++, '\0' );
        Vec_StrShrink( vSop, j );
    }
    sat_solver_delete( pSat );
    Vec_PtrFree( vCubes );
    Vec_IntFree( vLits );
    return i == -1 ? 1 : 0;
}

/**Function*************************************************************

  Synopsis    [Perform full irredundant step on the cover.]

  Description [Iterate through the cubes in the direct order and
  check if each cube is contained in all other cubes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_CollapseIrredundantFull( Vec_Str_t * vSop, int nCubes, int nVars )
{
    int nBTLimit = 0;
    sat_solver * pSat; 
    int i, k, status, nRemoved = 0; 
    Vec_Int_t * vLits = Vec_IntAlloc(nVars+nCubes);
    // collect cubes
    char * pCube, * pSop = Vec_StrArray(vSop);
    Vec_Ptr_t * vCubes = Vec_PtrAlloc(nCubes);
    assert( Vec_StrSize(vSop) == nCubes * (nVars + 3) + 1 );
    Bmc_SopForEachCube( pSop, nVars, pCube )
        Vec_PtrPush( vCubes, pCube );
    // create SAT solver
    pSat = sat_solver_new();
    sat_solver_setnvars( pSat, nVars + nCubes );
    // add cubes
    Vec_PtrForEachEntry( char *, vCubes, pCube, i )
    {
        // collect literals
        Vec_IntFill( vLits, 1, Abc_Var2Lit(nVars + i, 1) ); // neg literal
        for ( k = 0; k < nVars; k++ )
            if ( pCube[k] != '-' )
                Vec_IntPush( vLits, Abc_Var2Lit(k, pCube[k] == '0') );
        // add it to the solver
        status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits) );
        assert( status == 1 );
    }
    // iterate through cubes in the direct order
    Vec_PtrForEachEntry( char *, vCubes, pCube, i )
    {
        // collect literals
        Vec_IntClear( vLits );
        for ( k = 0; k < nCubes; k++ )
            if ( k != i && Vec_PtrEntry(vCubes, k) ) // skip this cube and already removed cubes
                Vec_IntPush( vLits, Abc_Var2Lit(nVars + k, 0) ); // pos literal
        // collect cube
        for ( k = 0; k < nVars; k++ )
            if ( pCube[k] != '-' )
                Vec_IntPush( vLits, Abc_Var2Lit(k, pCube[k] == '1') );
        // check if this cube intersects with the complement of other cubes in the solver
        // if it does not intersect, then it is redundant and can be skipped
        status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
        if ( status == l_Undef ) // timeout
            break;
        if ( status == l_False ) // unsat
        {
            Vec_PtrWriteEntry( vCubes, i, NULL );
            nRemoved++;
            continue;
        }
        assert( status == l_True );
    }
    //printf( "Approximate irrendundant reduced %d cubes (out of %d).\n", nRemoved, nCubes );
    // cleanup cover
    if ( i == Vec_PtrSize(vCubes) && nRemoved > 0 ) // finished without timeout and removed some cubes
    {
        int j = 0;
        Vec_PtrForEachEntry( char *, vCubes, pCube, i )
            if ( pCube != NULL )
                for ( k = 0; k < nVars + 3; k++ )
                    Vec_StrWriteEntry( vSop, j++, pCube[k] );
        Vec_StrWriteEntry( vSop, j++, '\0' );
        Vec_StrShrink( vSop, j );
    }
    sat_solver_delete( pSat );
    Vec_PtrFree( vCubes );
    Vec_IntFree( vLits );
    return i == -1 ? 1 : 0;
}

/**Function*************************************************************

  Synopsis    [Performs one round of removing literals.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_CollapseExpandRound( sat_solver * pSat, sat_solver * pSatOn, Vec_Int_t * vLits, Vec_Int_t * vNums, Vec_Int_t * vTemp, int nBTLimit, int fCanon )
{
    int fProfile = 0;
    int k, n, iLit, status;
    abctime clk;
    // try removing one literal at a time
    for ( k = Vec_IntSize(vLits) - 1; k >= 0; k-- )
    {
        int Save = Vec_IntEntry( vLits, k );
        if ( Save == -1 )
            continue;
        // check if this literal when expanded overlaps with the on-set
        if ( pSatOn )
        {
            // it is ok to skip the first round if the literal is positive
            if ( fCanon && !Abc_LitIsCompl(Save) )
                continue;
            // put into new array
            Vec_IntClear( vTemp );
            Vec_IntForEachEntry( vLits, iLit, n )
                if ( iLit != -1 )
                    Vec_IntPush( vTemp, Abc_LitNotCond(iLit, k==n) );
            // check against onset
            if ( fProfile ) clk = Abc_Clock();
            status = sat_solver_solve( pSatOn, Vec_IntArray(vTemp), Vec_IntLimit(vTemp), nBTLimit, 0, 0, 0 );
            if ( fProfile ) clkCheck1 += Abc_Clock() - clk;
            if ( status == l_Undef )
                return -1;
            //printf( "%d", status == l_True );
            if ( status == l_False )
            {
                if ( fProfile ) clkCheckU += Abc_Clock() - clk;
                continue;
            }
            if ( fProfile ) clkCheckS += Abc_Clock() - clk;
            // otherwise keep trying to remove it
        }
        Vec_IntWriteEntry( vLits, k, -1 );
        // put into new array
        Vec_IntClear( vTemp );
        Vec_IntForEachEntry( vLits, iLit, n )
            if ( iLit != -1 )
                Vec_IntPush( vTemp, iLit );
        // check against offset
        if ( fProfile ) clk = Abc_Clock();
        status = sat_solver_solve( pSat, Vec_IntArray(vTemp), Vec_IntLimit(vTemp), nBTLimit, 0, 0, 0 );
        if ( fProfile ) clkCheck2 += Abc_Clock() - clk;
        if ( status == l_Undef )
            return -1;
        if ( status == l_True )
        {
            Vec_IntWriteEntry( vLits, k, Save );
            if ( fProfile ) clkCheckS += Abc_Clock() - clk;
        }
        else
            if ( fProfile ) clkCheckU += Abc_Clock() - clk;
    }
//    if ( pSatOn )
//    printf( "\n" );
    // put into new array
    Vec_IntClear( vNums );
    Vec_IntForEachEntry( vLits, iLit, n )
        if ( iLit != -1 )
            Vec_IntPush( vNums, n );
    return 0;
}

/**Function*************************************************************

  Synopsis    [Expends minterm into a cube.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_CollapseExpand( sat_solver * pSat, sat_solver * pSatOn, Vec_Int_t * vLits, Vec_Int_t * vNums, Vec_Int_t * vTemp, int nBTLimit, int fCanon )
{
    // perform one quick reduction if it is non-canonical
    if ( !fCanon )
    {
        int i, k, iLit, status, nFinal, * pFinal;
        // check against offset
        status = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits), nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
            return -1;
        assert( status == l_False );
        // get subset of literals
        nFinal = sat_solver_final( pSat, &pFinal );
        // mark unused literals
        Vec_IntForEachEntry( vLits, iLit, i )
        {
            for ( k = 0; k < nFinal; k++ )
                if ( iLit == Abc_LitNot(pFinal[k]) )
                    break;
            if ( k == nFinal )
                Vec_IntWriteEntry( vLits, i, -1 );
        }
    }
    Bmc_CollapseExpandRound( pSat, pSatOn, vLits, vNums, vTemp, nBTLimit, fCanon );
    Bmc_CollapseExpandRound( pSat, NULL,   vLits, vNums, vTemp, nBTLimit, fCanon );
    return 0;
}

/**Function*************************************************************

  Synopsis    [Returns SAT solver in the 'sat' state with the given assignment.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bmc_ComputeCanonical( sat_solver * pSat, Vec_Int_t * vLits, Vec_Int_t * vTemp, int nBTLimit )
{
    int i, k, iLit, status = l_Undef;
    for ( i = 0; i < Vec_IntSize(vLits); i++ )
    {
        // copy the first i+1 literals
        Vec_IntClear( vTemp );
        Vec_IntForEachEntryStop( vLits, iLit, k, i+1 )
            Vec_IntPush( vTemp, iLit );
        // check if it satisfies the on-set
        status = sat_solver_solve( pSat, Vec_IntArray(vTemp), Vec_IntLimit(vTemp), nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
            return l_Undef;
        if ( status == l_True )
            continue;
        // if it is UNSAT, try the opposite literal
        iLit = Vec_IntEntry( vLits, i );
        // if literal is positive, there is no way to flip it
        if ( !Abc_LitIsCompl(iLit) )
            return l_False;
        Vec_IntWriteEntry( vLits, i, Abc_LitNot(iLit) );
        Vec_IntForEachEntryStart( vLits, iLit, k, i+1 )
            Vec_IntWriteEntry( vLits, k, Abc_LitNot(Abc_LitRegular(iLit)) );
        // recheck
        i--;
    }
    assert( status == l_True );
    return status;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Str_t * Bmc_CollapseOneInt( Gia_Man_t * p, int nCubeLim, int nBTLimit, int fCanon, int fReverse, int fVerbose, int fCompl )
{
    int fPrintMinterm = 0;
    int nVars = Gia_ManCiNum(p);
    Vec_Int_t * vVars = Vec_IntAlloc( nVars );
    Vec_Int_t * vLits = Vec_IntAlloc( nVars );
    Vec_Int_t * vLitsC= Vec_IntAlloc( nVars );
    Vec_Int_t * vNums = Vec_IntAlloc( nVars );
    Vec_Int_t * vCube = Vec_IntAlloc( nVars );
    Vec_Str_t * vSop  = Vec_StrAlloc( 100 );
    int iOut = 0, iLit, iVar, status, n, Count, Start;

    // create SAT solver
    Cnf_Dat_t * pCnf = Mf_ManGenerateCnf( p, 8, 0, 0, 0 );
    sat_solver * pSat[3] = { 
        (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0), 
        (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0),
        fCanon ? (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0) : NULL
    };

    // collect CI variables
    int iCiVarBeg = pCnf->nVars - nVars;// - 1;
    if ( fReverse )
        for ( n = nVars - 1; n >= 0; n-- )
            Vec_IntPush( vVars, iCiVarBeg + n );
    else
        for ( n = 0; n < nVars; n++ )
            Vec_IntPush( vVars, iCiVarBeg + n );

    // start with all negative literals
    Vec_IntForEachEntry( vVars, iVar, n )
        Vec_IntPush( vLitsC, Abc_Var2Lit(iVar, 1) );

    // check that on-set/off-set is sat
    for ( n = 0; n < 2 + fCanon; n++ )
    {
        iLit = Abc_Var2Lit( iOut + 1, n&1 ); // n=0 => F=1   n=1 => F=0
        status = sat_solver_addclause( pSat[n], &iLit, &iLit + 1 );
        if ( status == 0 )
        {
            Vec_StrPrintStr( vSop, ((n&1) ^ fCompl) ? " 1\n" : " 0\n" );
            Vec_StrPush( vSop, '\0' );
            goto cleanup; // const0/1
        }
        status = sat_solver_solve( pSat[n], NULL, NULL, nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
        {
            Vec_StrFreeP( &vSop );
            goto cleanup; // timeout
        }
        if ( status == l_False )
        {
            Vec_StrPrintStr( vSop, ((n&1) ^ fCompl) ? " 1\n" : " 0\n" );
            Vec_StrPush( vSop, '\0' );
            goto cleanup; // const0/1
        }
    }
    Vec_StrPush( vSop, '\0' );

    // prepare on-set for solving
//    if ( fCanon )
//        sat_solver_prepare_enum( pSat[0], Vec_IntArray(vVars), Vec_IntSize(vVars) );
    Count = 0;
    while ( 1 )
    {
        // get the assignment
        if ( fCanon )
            status = Bmc_ComputeCanonical( pSat[0], vLitsC, vCube, nBTLimit );
        else
        {
            sat_solver_clean_polarity( pSat[0], Vec_IntArray(vVars), Vec_IntSize(vVars) );
            status = sat_solver_solve( pSat[0], NULL, NULL, 0, 0, 0, 0 );
        }
        if ( status == l_Undef )
        {
            Vec_StrFreeP( &vSop );
            goto cleanup; // timeout
        }
        if ( status == l_False )
            break;
        // check number of cubes
        if ( nCubeLim > 0 && Count == nCubeLim )
        {
            //printf( "The number of cubes exceeded the limit (%d).\n", nCubeLim );
            Vec_StrFreeP( &vSop );
            goto cleanup; // cube out
        }
        // collect values
        Vec_IntClear( vLits );
        Vec_IntClear( vLitsC );
        Vec_IntForEachEntry( vVars, iVar, n )
        {
            iLit = Abc_Var2Lit(iVar, !sat_solver_var_value(pSat[0], iVar));
            Vec_IntPush( vLits, iLit );
            Vec_IntPush( vLitsC, iLit );
        }
        // print minterm
        if ( fPrintMinterm )
        {
            printf( "Mint: " );
            Vec_IntForEachEntry( vLits, iLit, n )
                printf( "%d", !Abc_LitIsCompl(iLit) );
            printf( "\n" );
        }
        // expand the values
        status = Bmc_CollapseExpand( pSat[1], fCanon ? pSat[2] : pSat[0], vLits, vNums, vCube, nBTLimit, fCanon );
        if ( status < 0 )
        {
            Vec_StrFreeP( &vSop );
            goto cleanup; // timeout
        }
        // collect cube
        Vec_StrPop( vSop );
        Start = Vec_StrSize( vSop );
        Vec_StrFillExtra( vSop, Start + nVars + 4, '-' );
        Vec_StrWriteEntry( vSop, Start + nVars + 0, ' ' );
        Vec_StrWriteEntry( vSop, Start + nVars + 1, (char)(fCompl ? '0' : '1') );
        Vec_StrWriteEntry( vSop, Start + nVars + 2, '\n' );
        Vec_StrWriteEntry( vSop, Start + nVars + 3, '\0' );
        Vec_IntClear( vCube );
        Vec_IntForEachEntry( vNums, iVar, n )
        {
            iLit = Vec_IntEntry( vLits, iVar );
            Vec_IntPush( vCube, Abc_LitNot(iLit) );
            if ( fReverse )
                Vec_StrWriteEntry( vSop, Start + nVars - iVar - 1, (char)('0' + !Abc_LitIsCompl(iLit)) );
            else 
                Vec_StrWriteEntry( vSop, Start + iVar, (char)('0' + !Abc_LitIsCompl(iLit)) );
        }
        if ( fVerbose )
            printf( "Cube %4d: %s", Count, Vec_StrArray(vSop) + Start );
        Count++;
        // add cube
        status = sat_solver_addclause( pSat[0], Vec_IntArray(vCube), Vec_IntLimit(vCube) );
        if ( status == 0 )
            break;
        // add cube
        if ( fCanon )
            status = sat_solver_addclause( pSat[2], Vec_IntArray(vCube), Vec_IntLimit(vCube) );
        assert( status == 1 );
    }
    //printf( "Finished enumerating %d assignments.\n", Count );
cleanup:
    Vec_IntFree( vVars );
    Vec_IntFree( vLits );
    Vec_IntFree( vLitsC );
    Vec_IntFree( vNums );
    Vec_IntFree( vCube );
    sat_solver_delete( pSat[0] );
    sat_solver_delete( pSat[1] );
    if ( fCanon )
    sat_solver_delete( pSat[2] );
    Cnf_DataFree( pCnf );
    // quickly reduce contained cubes
    if ( vSop != NULL )
        Bmc_CollapseIrredundant( vSop, Vec_StrSize(vSop)/(nVars +3), nVars );
    return vSop;
}
Vec_Str_t * Bmc_CollapseOne2( Gia_Man_t * p, int nCubeLim, int nBTLimit, int fCanon, int fReverse, int fVerbose )
{
    Vec_Str_t * vSopOn, * vSopOff;
    int nCubesOn = ABC_INFINITY;
    int nCubesOff = ABC_INFINITY;
    vSopOn = Bmc_CollapseOneInt( p, nCubeLim, nBTLimit, fCanon, fReverse, fVerbose, 0 );
    if ( vSopOn )
        nCubesOn = Vec_StrCountEntry(vSopOn,'\n');
    Gia_ObjFlipFaninC0( Gia_ManPo(p, 0) );
    vSopOff = Bmc_CollapseOneInt( p, Abc_MinInt(nCubeLim, nCubesOn), nBTLimit, fCanon, fReverse, fVerbose, 1 );
    Gia_ObjFlipFaninC0( Gia_ManPo(p, 0) );
    if ( vSopOff )
        nCubesOff = Vec_StrCountEntry(vSopOff,'\n');
    if ( vSopOn == NULL )
        return vSopOff;
    if ( vSopOff == NULL )
        return vSopOn;
    if ( nCubesOn <= nCubesOff )
    {
        Vec_StrFree( vSopOff );
        return vSopOn;
    }
    else
    {
        Vec_StrFree( vSopOn );
        return vSopOff;
    }
}


/**Function*************************************************************

  Synopsis    [This code computes on-set and off-set simultaneously.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Str_t * Bmc_CollapseOne( Gia_Man_t * p, int nCubeLim, int nBTLimit, int fCanon, int fReverse, int fVerbose )
{
    int fVeryVerbose = fVerbose;
    int nVars = Gia_ManCiNum(p);
    Cnf_Dat_t * pCnf = Mf_ManGenerateCnf( p, 8, 0, 0, 0 );
    sat_solver * pSat[2]      = { (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0), (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0) };
    sat_solver * pSatClean[2] = { (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0), (sat_solver *)Cnf_DataWriteIntoSolver(pCnf, 1, 0) };
    Vec_Str_t * vSop[2]   = { Vec_StrAlloc(1000),  Vec_StrAlloc(1000)  }, * vRes = NULL;
    Vec_Int_t * vLitsC[2] = { Vec_IntAlloc(nVars), Vec_IntAlloc(nVars) };
    Vec_Int_t * vVars = Vec_IntAlloc( nVars );
    Vec_Int_t * vLits = Vec_IntAlloc( nVars );
    Vec_Int_t * vNums = Vec_IntAlloc( nVars );
    Vec_Int_t * vCube = Vec_IntAlloc( nVars );
    int n, v, iVar, iLit, iCiVarBeg, iCube = 0, Start, status;
    abctime clk = 0, Time[2][2] = {{0}};
    int fComplete[2] = {0};

    // collect CI variables
    iCiVarBeg = pCnf->nVars - nVars;// - 1;
    if ( fReverse )
        for ( v = nVars - 1; v >= 0; v-- )
            Vec_IntPush( vVars, iCiVarBeg + v );
    else
        for ( v = 0; v < nVars; v++ )
            Vec_IntPush( vVars, iCiVarBeg + v );

    // check that on-set/off-set is sat
    for ( n = 0; n < 2; n++ )
    {
        iLit = Abc_Var2Lit( 1, n ); // n=0 => F=1   n=1 => F=0
        status = sat_solver_solve( pSat[n], &iLit, &iLit + 1, nBTLimit, 0, 0, 0 );
        if ( status == l_Undef )
            goto cleanup; // timeout
        if ( status == l_False )
        {
            Vec_StrClear( vSop[0] );
            Vec_StrPrintStr( vSop[0], n ? " 1\n" : " 0\n" );
            Vec_StrPush( vSop[0], '\0' );
            fComplete[0] = 1;
            goto cleanup; // const0/1
        }
        // start with all negative literals
        Vec_IntForEachEntry( vVars, iVar, v )
            Vec_IntPush( vLitsC[n], Abc_Var2Lit(iVar, 1) );
        // add literals to the solver
        status = sat_solver_addclause( pSat[n], &iLit, &iLit + 1 );
        assert( status );
        status = sat_solver_addclause( pSatClean[n], &iLit, &iLit + 1 );
        assert( status );
        // start cover
        Vec_StrPush( vSop[n], '\0' );
    }

    // compute cube pairs
    for ( iCube = 0; nCubeLim == 0 || iCube < nCubeLim; iCube++ )
    {
        for ( n = 0; n < 2; n++ )
        {
            if ( fVeryVerbose ) clk = Abc_Clock();
            // get the assignment
            if ( fCanon )
                status = Bmc_ComputeCanonical( pSat[n], vLitsC[n], vCube, nBTLimit );
            else
            {
                sat_solver_clean_polarity( pSat[n], Vec_IntArray(vVars), Vec_IntSize(vVars) );
                status = sat_solver_solve( pSat[n], NULL, NULL, 0, 0, 0, 0 );
            }
            if ( fVeryVerbose ) Time[n][0] += Abc_Clock() - clk;
            if ( status == l_Undef )
                goto cleanup; // timeout
            if ( status == l_False )
            {
                fComplete[n] = 1;
                break;
            }
            // collect values
            Vec_IntClear( vLits );
            Vec_IntClear( vLitsC[n] );
            Vec_IntForEachEntry( vVars, iVar, v )
            {
                iLit = Abc_Var2Lit(iVar, !sat_solver_var_value(pSat[n], iVar));
                Vec_IntPush( vLits, iLit );
                Vec_IntPush( vLitsC[n], iLit );
            }
            // expand the values
            if ( fVeryVerbose ) clk = Abc_Clock();
            status = Bmc_CollapseExpand( pSatClean[!n], pSat[n], vLits, vNums, vCube, nBTLimit, fCanon );
            if ( fVeryVerbose ) Time[n][1] += Abc_Clock() - clk;
            if ( status < 0 )
                goto cleanup; // timeout
            // collect cube
            Vec_StrPop( vSop[n] );
            Start = Vec_StrSize( vSop[n] );
            Vec_StrFillExtra( vSop[n], Start + nVars + 4, '-' );
            Vec_StrWriteEntry( vSop[n], Start + nVars + 0, ' ' );
            Vec_StrWriteEntry( vSop[n], Start + nVars + 1, (char)(n ? '0' : '1') );
            Vec_StrWriteEntry( vSop[n], Start + nVars + 2, '\n' );
            Vec_StrWriteEntry( vSop[n], Start + nVars + 3, '\0' );
            Vec_IntClear( vCube );
            Vec_IntForEachEntry( vNums, iVar, v )
            {
                iLit = Vec_IntEntry( vLits, iVar );
                Vec_IntPush( vCube, Abc_LitNot(iLit) );
                if ( fReverse )
                    Vec_StrWriteEntry( vSop[n], Start + nVars - iVar - 1, (char)('0' + !Abc_LitIsCompl(iLit)) );
                else 
                    Vec_StrWriteEntry( vSop[n], Start + iVar, (char)('0' + !Abc_LitIsCompl(iLit)) );
            }
            // add cube
            status = sat_solver_addclause( pSat[n], Vec_IntArray(vCube), Vec_IntLimit(vCube) );
            if ( status == 0 )
            {
                fComplete[n] = 1;
                break;
            }
            assert( status == 1 );
        }
        if ( fComplete[0] || fComplete[1] )
            break;
    }
cleanup:
    Vec_IntFree( vVars );
    Vec_IntFree( vLits );
    Vec_IntFree( vLitsC[0] );
    Vec_IntFree( vLitsC[1] );
    Vec_IntFree( vNums );
    Vec_IntFree( vCube );
    Cnf_DataFree( pCnf );
    sat_solver_delete( pSat[0] );
    sat_solver_delete( pSat[1] );
    sat_solver_delete( pSatClean[0] );
    sat_solver_delete( pSatClean[1] );
    assert( !fComplete[0] || !fComplete[1] );
    if ( fComplete[0] || fComplete[1] ) // one of the cover is computed
    {
        vRes = vSop[fComplete[1]]; vSop[fComplete[1]] = NULL;
        if ( iCube > 1 )
//            Bmc_CollapseIrredundant( vRes, Vec_StrSize(vRes)/(nVars +3), nVars );
            Bmc_CollapseIrredundantFull( vRes, Vec_StrSize(vRes)/(nVars +3), nVars );
    }
    if ( fVeryVerbose )
    {
        int fProfile = 0;
        printf( "Processed output with %d supp vars. ", nVars );
        if ( vRes == NULL )
            printf( "The resulting SOP exceeded %d cubes.\n", nCubeLim );
        else 
            printf( "The best cover contains %d cubes.\n", Vec_StrSize(vRes)/(nVars +3) );
        Abc_PrintTime( 1, "Onset  minterm", Time[0][0] );
        Abc_PrintTime( 1, "Onset  expand ", Time[0][1] );
        Abc_PrintTime( 1, "Offset minterm", Time[1][0] );
        Abc_PrintTime( 1, "Offset expand ", Time[1][1] );
        if ( fProfile )
        {
            Abc_PrintTime( 1, "Expand check1 ", clkCheck1 ); clkCheck1 = 0;
            Abc_PrintTime( 1, "Expand check2 ", clkCheck2 ); clkCheck2 = 0;
            Abc_PrintTime( 1, "Expand sat    ", clkCheckS ); clkCheckS = 0;
            Abc_PrintTime( 1, "Expand unsat  ", clkCheckU ); clkCheckU = 0;
        }
    }
    Vec_StrFreeP( &vSop[0] );
    Vec_StrFreeP( &vSop[1] );
    return vRes;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END