1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko
#ifndef ABC__sat__bsat__satSolver2_h
#define ABC__sat__bsat__satSolver2_h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "satVec.h"
#include "satClause.h"
#include "misc/vec/vecSet.h"
#include "satProof2.h"
ABC_NAMESPACE_HEADER_START
//#define USE_FLOAT_ACTIVITY2
//=================================================================================================
// Public interface:
struct sat_solver2_t;
typedef struct sat_solver2_t sat_solver2;
extern sat_solver2* sat_solver2_new(void);
extern void sat_solver2_delete(sat_solver2* s);
extern int sat_solver2_addclause(sat_solver2* s, lit* begin, lit* end, int Id);
extern int sat_solver2_simplify(sat_solver2* s);
extern int sat_solver2_solve(sat_solver2* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
extern void sat_solver2_rollback(sat_solver2* s);
extern void sat_solver2_reducedb(sat_solver2* s);
extern double sat_solver2_memory( sat_solver2* s, int fAll );
extern double sat_solver2_memory_proof( sat_solver2* s );
extern void sat_solver2_setnvars(sat_solver2* s,int n);
extern void Sat_Solver2WriteDimacs( sat_solver2 * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars );
extern void Sat_Solver2PrintStats( FILE * pFile, sat_solver2 * p );
extern int * Sat_Solver2GetModel( sat_solver2 * p, int * pVars, int nVars );
extern void Sat_Solver2DoubleClauses( sat_solver2 * p, int iVar );
// global variables
extern int var_is_assigned(sat_solver2* s, int v);
extern int var_is_partA (sat_solver2* s, int v);
extern void var_set_partA (sat_solver2* s, int v, int partA);
// proof-based APIs
extern void * Sat_ProofCore( sat_solver2 * s );
extern void * Sat_ProofInterpolant( sat_solver2 * s, void * pGloVars );
extern word * Sat_ProofInterpolantTruth( sat_solver2 * s, void * pGloVars );
extern void Sat_ProofCheck( sat_solver2 * s );
//=================================================================================================
// Solver representation:
struct varinfo_t;
typedef struct varinfo2_t varinfo2;
struct sat_solver2_t
{
int size; // nof variables
int cap; // size of varmaps
int qhead; // Head index of queue.
int qtail; // Tail index of queue.
int root_level; // Level of first proper decision.
double random_seed;
double progress_estimate;
int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything // activities
#ifdef USE_FLOAT_ACTIVITY2
double var_inc; // Amount to bump next variable with.
double var_decay; // INVERSE decay factor for variable activity: stores 1/decay.
float cla_inc; // Amount to bump next clause with.
float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay.
double* activity; // A heuristic measurement of the activity of a variable.
#else
int var_inc; // Amount to bump next variable with.
int var_inc2; // Amount to bump next variable with.
int cla_inc; // Amount to bump next clause with.
unsigned* activity; // A heuristic measurement of the activity of a variable
unsigned* activity2; // backup variable activity
#endif
int nUnits; // the total number of unit clauses
int nof_learnts; // the number of clauses to trigger reduceDB
int nLearntMax; // enables using reduce DB method
int nLearntStart; // starting learned clause limit
int nLearntDelta; // delta of learned clause limit
int nLearntRatio; // ratio percentage of learned clauses
int nDBreduces; // number of DB reductions
int fNotUseRandom; // do not allow random decisions with a fixed probability
int fSkipSimplify; // set to one to skip simplification of the clause database
int fProofLogging; // enable proof-logging
int fVerbose;
// clauses
Sat_Mem_t Mem;
veci* wlists; // watcher lists (for each literal)
veci act_clas; // clause activities
veci claProofs; // clause proofs
// rollback
int iVarPivot; // the pivot for variables
int iTrailPivot; // the pivot for trail
int hProofPivot; // the pivot for proof records
// internal state
varinfo2 * vi; // variable information
int* levels; //
char* assigns; //
lit* trail; // sequence of assignment and implications
int* orderpos; // Index in variable order.
cla* reasons; // reason clauses
cla* units; // unit clauses
int* model; // If problem is solved, this vector contains the model (contains: lbool).
veci tagged; // (contains: var)
veci stack; // (contains: var)
veci order; // Variable order. (heap) (contains: var)
veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int)
veci temp_clause; // temporary storage for a CNF clause
veci conf_final; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
veci mark_levels; // temporary storage for labeled levels
veci min_lit_order; // ordering of removable literals
veci min_step_order; // ordering of resolution steps
veci learnt_live; // remaining clauses after reduce DB
// proof logging
Vec_Set_t * pPrf1; // sequence of proof records
veci temp_proof; // temporary place to store proofs
int hLearntLast; // in proof-logging mode, the ID of the final conflict clause (conf_final)
int hProofLast; // in proof-logging mode, the ID of the final conflict clause (conf_final)
Prf_Man_t * pPrf2; // another proof manager
double dPrfMemory; // memory used by the proof-logger
// statistics
stats_t stats;
ABC_INT64_T nConfLimit; // external limit on the number of conflicts
ABC_INT64_T nInsLimit; // external limit on the number of implications
clock_t nRuntimeLimit; // external limit on runtime
};
static inline clause * clause2_read( sat_solver2 * s, cla h ) { return Sat_MemClauseHand( &s->Mem, h ); }
static inline int clause2_proofid(sat_solver2* s, clause* c, int partA) { return c->lrn ? (veci_begin(&s->claProofs)[clause_id(c)]<<2) | (partA<<1) : (clause_id(c)<<2) | (partA<<1) | 1; }
// these two only work after creating a clause before the solver is called
static inline int clause2_is_partA (sat_solver2* s, int h) { return clause2_read(s, h)->partA; }
static inline void clause2_set_partA(sat_solver2* s, int h, int partA) { clause2_read(s, h)->partA = partA; }
static inline int clause2_id(sat_solver2* s, int h) { return clause_id(clause2_read(s, h)); }
static inline void clause2_set_id(sat_solver2* s, int h, int id) { clause_set_id(clause2_read(s, h), id); }
//=================================================================================================
// Public APIs:
static inline int sat_solver2_nvars(sat_solver2* s)
{
return s->size;
}
static inline int sat_solver2_nclauses(sat_solver2* s)
{
return (int)s->stats.clauses;
}
static inline int sat_solver2_nlearnts(sat_solver2* s)
{
return (int)s->stats.learnts;
}
static inline int sat_solver2_nconflicts(sat_solver2* s)
{
return (int)s->stats.conflicts;
}
static inline int sat_solver2_var_value( sat_solver2* s, int v )
{
assert( v >= 0 && v < s->size );
return (int)(s->model[v] == l_True);
}
static inline int sat_solver2_var_literal( sat_solver2* s, int v )
{
assert( v >= 0 && v < s->size );
return toLitCond( v, s->model[v] != l_True );
}
static inline void sat_solver2_act_var_clear(sat_solver2* s)
{
int i;
for (i = 0; i < s->size; i++)
s->activity[i] = 0;//.0;
s->var_inc = 1.0;
}
static inline int sat_solver2_final(sat_solver2* s, int ** ppArray)
{
*ppArray = s->conf_final.ptr;
return s->conf_final.size;
}
static inline clock_t sat_solver2_set_runtime_limit(sat_solver2* s, clock_t Limit)
{
clock_t temp = s->nRuntimeLimit;
s->nRuntimeLimit = Limit;
return temp;
}
static inline int sat_solver2_set_learntmax(sat_solver2* s, int nLearntMax)
{
int temp = s->nLearntMax;
s->nLearntMax = nLearntMax;
return temp;
}
static inline void sat_solver2_bookmark(sat_solver2* s)
{
assert( s->qhead == s->qtail );
s->iVarPivot = s->size;
s->iTrailPivot = s->qhead;
if ( s->pPrf1 )
s->hProofPivot = Vec_SetHandCurrent(s->pPrf1);
Sat_MemBookMark( &s->Mem );
if ( s->activity2 )
{
s->var_inc2 = s->var_inc;
memcpy( s->activity2, s->activity, sizeof(unsigned) * s->iVarPivot );
}
}
static inline int sat_solver2_add_const( sat_solver2 * pSat, int iVar, int fCompl, int fMark, int Id )
{
lit Lits[1];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 1, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
return 1;
}
static inline int sat_solver2_add_buffer( sat_solver2 * pSat, int iVarA, int iVarB, int fCompl, int fMark, int Id )
{
lit Lits[2];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 );
Lits[0] = toLitCond( iVarA, 0 );
Lits[1] = toLitCond( iVarB, !fCompl );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVarA, 1 );
Lits[1] = toLitCond( iVarB, fCompl );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
return 2;
}
static inline int sat_solver2_add_and( sat_solver2 * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fMark, int Id )
{
lit Lits[3];
int Cid;
Lits[0] = toLitCond( iVar, 1 );
Lits[1] = toLitCond( iVar0, fCompl0 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVar, 1 );
Lits[1] = toLitCond( iVar1, fCompl1 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVar, 0 );
Lits[1] = toLitCond( iVar0, !fCompl0 );
Lits[2] = toLitCond( iVar1, !fCompl1 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
return 3;
}
static inline int sat_solver2_add_xor( sat_solver2 * pSat, int iVarA, int iVarB, int iVarC, int fCompl, int fMark, int Id )
{
lit Lits[3];
int Cid;
assert( iVarA >= 0 && iVarB >= 0 && iVarC >= 0 );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVarA, !fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 1 );
Lits[2] = toLitCond( iVarC, 0 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVarA, fCompl );
Lits[1] = toLitCond( iVarB, 0 );
Lits[2] = toLitCond( iVarC, 1 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 3, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
return 4;
}
static inline int sat_solver2_add_constraint( sat_solver2 * pSat, int iVar, int iVar2, int fCompl, int fMark, int Id )
{
lit Lits[2];
int Cid;
assert( iVar >= 0 );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 0 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
Lits[0] = toLitCond( iVar, fCompl );
Lits[1] = toLitCond( iVar2, 1 );
Cid = sat_solver2_addclause( pSat, Lits, Lits + 2, Id );
if ( fMark )
clause2_set_partA( pSat, Cid, 1 );
return 2;
}
ABC_NAMESPACE_HEADER_END
#endif
|