1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
/**CFile****************************************************************
FileName [satSolver2i.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT solver.]
Synopsis [Records the trace of SAT solving in the CNF form.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - September 2, 2013.]
Revision [$Id: satSolver2i.c,v 1.4 2013/09/02 00:00:00 casem Exp $]
***********************************************************************/
#include "satSolver2.h"
#include "aig/gia/gia.h"
#include "aig/gia/giaAig.h"
#include "sat/cnf/cnf.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
struct Int2_Man_t_
{
sat_solver2 * pSat; // user's SAT solver
Vec_Int_t * vGloVars; // IDs of global variables
Vec_Int_t * vVar2Glo; // mapping of SAT variables into their global IDs
Gia_Man_t * pGia; // AIG manager to store the interpolant
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Managing interpolation manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Int2_Man_t * Int2_ManStart( sat_solver2 * pSat, int * pGloVars, int nGloVars )
{
Int2_Man_t * p;
int i;
p = ABC_CALLOC( Int2_Man_t, 1 );
p->pSat = pSat;
p->vGloVars = Vec_IntAllocArrayCopy( pGloVars, nGloVars );
p->vVar2Glo = Vec_IntInvert( p->vGloVars, -1 );
p->pGia = Gia_ManStart( 10 * Vec_IntSize(p->vGloVars) );
p->pGia->pName = Abc_UtilStrsav( "interpolant" );
for ( i = 0; i < nGloVars; i++ )
Gia_ManAppendCi( p->pGia );
Gia_ManHashStart( p->pGia );
return p;
}
void Int2_ManStop( Int2_Man_t * p )
{
if ( p == NULL )
return;
Gia_ManStopP( &p->pGia );
Vec_IntFree( p->vGloVars );
Vec_IntFree( p->vVar2Glo );
ABC_FREE( p );
}
void * Int2_ManReadInterpolant( sat_solver2 * pSat )
{
Int2_Man_t * p = pSat->pInt2;
Gia_Man_t * pTemp, * pGia = p->pGia; p->pGia = NULL;
// return NULL, if the interpolant is not ready (for example, when the solver returned 'sat')
if ( pSat->hProofLast == -1 )
return NULL;
// create AIG with one primary output
assert( Gia_ManPoNum(pGia) == 0 );
Gia_ManAppendCo( pGia, pSat->hProofLast );
pSat->hProofLast = -1;
// cleanup the resulting AIG
pGia = Gia_ManCleanup( pTemp = pGia );
Gia_ManStop( pTemp );
return (void *)pGia;
}
/**Function*************************************************************
Synopsis [Computing interpolant for a clause.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Int2_ManChainStart( Int2_Man_t * p, clause * c )
{
if ( c->lrn )
return veci_begin(&p->pSat->claProofs)[clause_id(c)];
if ( !c->partA )
return 1;
if ( c->lits[c->size] < 0 )
{
int i, Var, CiId, Res = 0;
for ( i = 0; i < (int)c->size; i++ )
{
// get ID of the global variable
if ( Abc_Lit2Var(c->lits[i]) >= Vec_IntSize(p->vVar2Glo) )
continue;
Var = Vec_IntEntry( p->vVar2Glo, Abc_Lit2Var(c->lits[i]) );
if ( Var < 0 )
continue;
// get literal of the AIG node
CiId = Gia_ObjId( p->pGia, Gia_ManCi(p->pGia, Var) );
// compute interpolant of the clause
Res = Gia_ManHashOr( p->pGia, Res, Abc_Var2Lit(CiId, Abc_LitIsCompl(c->lits[i])) );
}
c->lits[c->size] = Res;
}
return c->lits[c->size];
}
int Int2_ManChainResolve( Int2_Man_t * p, clause * c, int iLit, int varA )
{
int iLit2 = Int2_ManChainStart( p, c );
assert( iLit >= 0 );
if ( varA )
iLit = Gia_ManHashOr( p->pGia, iLit, iLit2 );
else
iLit = Gia_ManHashAnd( p->pGia, iLit, iLit2 );
return iLit;
}
/**Function*************************************************************
Synopsis [Test for the interpolation procedure.]
Description [The input AIG can be any n-input comb circuit with one PO
(not necessarily a comb miter). The interpolant depends on n+1 variables
and equal to the relation f = F(x0,x1,...,xn).]
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Gia_ManInterTest( Gia_Man_t * p )
{
sat_solver2 * pSat;
Gia_Man_t * pInter;
Aig_Man_t * pMan;
Vec_Int_t * vGVars;
Cnf_Dat_t * pCnf;
Aig_Obj_t * pObj;
int Lit, Cid, Var, status, i;
abctime clk = Abc_Clock();
assert( Gia_ManRegNum(p) == 0 );
assert( Gia_ManCoNum(p) == 1 );
// derive CNFs
pMan = Gia_ManToAigSimple( p );
pCnf = Cnf_Derive( pMan, 1 );
// start the solver
pSat = sat_solver2_new();
pSat->fVerbose = 1;
sat_solver2_setnvars( pSat, 2*pCnf->nVars+1 );
// set A-variables (all used except PI/PO, which will be global variables)
Aig_ManForEachObj( pMan, pObj, i )
if ( pCnf->pVarNums[pObj->Id] >= 0 && !Aig_ObjIsCi(pObj) && !Aig_ObjIsCo(pObj) )
var_set_partA( pSat, pCnf->pVarNums[pObj->Id], 1 );
// add clauses of A
for ( i = 0; i < pCnf->nClauses; i++ )
{
Cid = sat_solver2_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1], -1 );
clause2_set_partA( pSat, Cid, 1 ); // this API should be called for each clause of A
}
// add clauses of B (after shifting all CNF variables by pCnf->nVars)
Cnf_DataLift( pCnf, pCnf->nVars );
for ( i = 0; i < pCnf->nClauses; i++ )
sat_solver2_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1], -1 );
Cnf_DataLift( pCnf, -pCnf->nVars );
// add PI equality clauses
vGVars = Vec_IntAlloc( Aig_ManCoNum(pMan)+1 );
Aig_ManForEachCi( pMan, pObj, i )
{
Var = pCnf->pVarNums[pObj->Id];
sat_solver2_add_buffer( pSat, Var, pCnf->nVars + Var, 0, 0, -1 );
Vec_IntPush( vGVars, Var );
}
// add an XOR clause in the end
Var = pCnf->pVarNums[Aig_ManCo(pMan,0)->Id];
sat_solver2_add_xor( pSat, Var, pCnf->nVars + Var, 2*pCnf->nVars, 0, 0, -1 );
Vec_IntPush( vGVars, Var );
// start the interpolation manager
pSat->pInt2 = Int2_ManStart( pSat, Vec_IntArray(vGVars), Vec_IntSize(vGVars) );
// solve the problem
Lit = toLitCond( 2*pCnf->nVars, 0 );
status = sat_solver2_solve( pSat, &Lit, &Lit + 1, 0, 0, 0, 0 );
assert( status == l_False );
Sat_Solver2PrintStats( stdout, pSat );
// derive interpolant
pInter = (Gia_Man_t *)Int2_ManReadInterpolant( pSat );
Gia_ManPrintStats( pInter, NULL );
Abc_PrintTime( 1, "Total interpolation time", Abc_Clock() - clk );
// clean up
Vec_IntFree( vGVars );
Cnf_DataFree( pCnf );
Aig_ManStop( pMan );
sat_solver2_delete( pSat );
// return interpolant
return pInter;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|