1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/************************************************************************************[SimpSolver.h]
Copyright (c) 2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Glucose_SimpSolver_h
#define Glucose_SimpSolver_h
#include "sat/glucose/Queue.h"
#include "sat/glucose/Solver.h"
ABC_NAMESPACE_CXX_HEADER_START
namespace Gluco {
//=================================================================================================
class SimpSolver : public Solver {
public:
// Constructor/Destructor:
//
SimpSolver();
~SimpSolver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true);
void addVar (Var v);
bool addClause (const vec<Lit>& ps);
bool addEmptyClause(); // Add the empty clause to the solver.
bool addClause (Lit p); // Add a unit clause to the solver.
bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
bool addClause_( vec<Lit>& ps);
bool substitute(Var v, Lit x); // Replace all occurences of v with x (may cause a contradiction).
// Variable mode:
//
void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
bool isEliminated(Var v) const;
// Solving:
//
bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
lbool solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
bool solve ( bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p , bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p, Lit q, bool do_simp = true, bool turn_off_simp = false);
bool solve (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
// Memory managment:
//
virtual void reset();
virtual void garbageCollect();
// Generate a (possibly simplified) DIMACS file:
//
#if 0
void toDimacs (const char* file, const vec<Lit>& assumps);
void toDimacs (const char* file);
void toDimacs (const char* file, Lit p);
void toDimacs (const char* file, Lit p, Lit q);
void toDimacs (const char* file, Lit p, Lit q, Lit r);
#endif
// Mode of operation:
//
int parsing;
int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
int clause_lim; // Variables are not eliminated if it produces a resolvent with a length above this limit.
// -1 means no limit.
int subsumption_lim; // Do not check if subsumption against a clause larger than this. -1 means no limit.
double simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').
bool use_asymm; // Shrink clauses by asymmetric branching.
bool use_rcheck; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
bool use_elim; // Perform variable elimination.
// Statistics:
//
int merges;
int asymm_lits;
int eliminated_vars;
int eliminated_clauses;
protected:
// Helper structures:
//
struct ElimLt {
const vec<int>& n_occ;
explicit ElimLt(const vec<int>& no) : n_occ(no) {}
// TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
// 32-bit implementation instead then, but this will have to do for now.
uint64_t cost (Var x) const { return (uint64_t)n_occ[toInt(mkLit(x))] * (uint64_t)n_occ[toInt(~mkLit(x))]; }
bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
// TODO: investigate this order alternative more.
// bool operator()(Var x, Var y) const {
// int c_x = cost(x);
// int c_y = cost(y);
// return c_x < c_y || c_x == c_y && x < y; }
};
struct ClauseDeleted {
const ClauseAllocator& ca;
explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };
// Solver state:
//
int elimorder;
bool use_simplification;
vec<uint32_t> elimclauses;
vec<char> touched;
OccLists<Var, vec<CRef>, ClauseDeleted>
occurs;
vec<int> n_occ;
Heap<ElimLt> elim_heap;
Queue<CRef> subsumption_queue;
vec<char> frozen;
vec<char> eliminated;
int bwdsub_assigns;
int n_touched;
// Temporaries:
//
CRef bwdsub_tmpunit;
// Main internal methods:
//
lbool solve_ (bool do_simp = true, bool turn_off_simp = false);
bool asymm (Var v, CRef cr);
bool asymmVar (Var v);
void updateElimHeap (Var v);
void gatherTouchedClauses ();
bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
bool merge (const Clause& _ps, const Clause& _qs, Var v, int& size);
bool backwardSubsumptionCheck (bool verbose = false);
bool eliminateVar (Var v);
void extendModel ();
void removeClause (CRef cr);
bool strengthenClause (CRef cr, Lit l);
void cleanUpClauses ();
bool implied (const vec<Lit>& c);
void relocAll (ClauseAllocator& to);
};
//=================================================================================================
// Implementation of inline methods:
//inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
inline bool SimpSolver::isEliminated (Var v) const { return eliminated.size() > 0 ? eliminated[v] != 0 : 0; }
inline void SimpSolver::updateElimHeap(Var v) {
assert(use_simplification);
// if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
elim_heap.update(v); }
inline bool SimpSolver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
inline bool SimpSolver::addEmptyClause() { add_tmp.clear(); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
inline bool SimpSolver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }
inline bool SimpSolver::solve ( bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p , bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p, Lit q, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
inline bool SimpSolver::solve (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }
inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }
inline void SimpSolver::addVar(Var v) { while (v >= nVars()) newVar(); }
//=================================================================================================
}
ABC_NAMESPACE_CXX_HEADER_END
#endif
|