diff options
Diffstat (limited to 'hwaccess_physmap.c')
-rw-r--r-- | hwaccess_physmap.c | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/hwaccess_physmap.c b/hwaccess_physmap.c index dcc6ed77..b1b9c648 100644 --- a/hwaccess_physmap.c +++ b/hwaccess_physmap.c @@ -18,16 +18,20 @@ #include <unistd.h> #include <stdbool.h> +#include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include "flash.h" +#include "hwaccess.h" #include "hwaccess_physmap.h" #if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__) /* No file access needed/possible to get mmap access permissions or access MSR. */ +#include <unistd.h> #include <sys/stat.h> +#include <sys/types.h> #include <fcntl.h> #endif @@ -361,3 +365,212 @@ void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len) { return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT); } + +/* Prevent reordering and/or merging of reads/writes to hardware. + * Such reordering and/or merging would break device accesses which depend on the exact access order. + */ +static inline void sync_primitive(void) +{ +/* This is not needed for... + * - x86: uses uncached accesses which have a strongly ordered memory model. + * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model. + * - ARM: uses a strongly ordered memory model for device memories. + * + * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt + */ +// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h +#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \ + defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \ + defined(_ARCH_PPC64) || defined(__ppc) + asm("eieio" : : : "memory"); +#elif (__sparc__) || defined (__sparc) +#if defined(__sparc_v9__) || defined(__sparcv9) + /* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like + * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we + * use the strongest hardware memory barriers that exist on Sparc V9. */ + asm volatile ("membar #Sync" ::: "memory"); +#elif defined(__sparc_v8__) || defined(__sparcv8) + /* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run + * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable + * operation in the V8 instruction set anyway. If you know better then please tell us. */ + asm volatile ("stbar"); +#else + #error Unknown and/or unsupported SPARC instruction set version detected. +#endif +#endif +} + +void mmio_writeb(uint8_t val, void *addr) +{ + *(volatile uint8_t *) addr = val; + sync_primitive(); +} + +void mmio_writew(uint16_t val, void *addr) +{ + *(volatile uint16_t *) addr = val; + sync_primitive(); +} + +void mmio_writel(uint32_t val, void *addr) +{ + *(volatile uint32_t *) addr = val; + sync_primitive(); +} + +uint8_t mmio_readb(const void *addr) +{ + return *(volatile const uint8_t *) addr; +} + +uint16_t mmio_readw(const void *addr) +{ + return *(volatile const uint16_t *) addr; +} + +uint32_t mmio_readl(const void *addr) +{ + return *(volatile const uint32_t *) addr; +} + +void mmio_readn(const void *addr, uint8_t *buf, size_t len) +{ + memcpy(buf, addr, len); + return; +} + +void mmio_le_writeb(uint8_t val, void *addr) +{ + mmio_writeb(cpu_to_le8(val), addr); +} + +void mmio_le_writew(uint16_t val, void *addr) +{ + mmio_writew(cpu_to_le16(val), addr); +} + +void mmio_le_writel(uint32_t val, void *addr) +{ + mmio_writel(cpu_to_le32(val), addr); +} + +uint8_t mmio_le_readb(const void *addr) +{ + return le_to_cpu8(mmio_readb(addr)); +} + +uint16_t mmio_le_readw(const void *addr) +{ + return le_to_cpu16(mmio_readw(addr)); +} + +uint32_t mmio_le_readl(const void *addr) +{ + return le_to_cpu32(mmio_readl(addr)); +} + +enum mmio_write_type { + mmio_write_type_b, + mmio_write_type_w, + mmio_write_type_l, +}; + +struct undo_mmio_write_data { + void *addr; + int reg; + enum mmio_write_type type; + union { + uint8_t bdata; + uint16_t wdata; + uint32_t ldata; + }; +}; + +static int undo_mmio_write(void *p) +{ + struct undo_mmio_write_data *data = p; + msg_pdbg("Restoring MMIO space at %p\n", data->addr); + switch (data->type) { + case mmio_write_type_b: + mmio_writeb(data->bdata, data->addr); + break; + case mmio_write_type_w: + mmio_writew(data->wdata, data->addr); + break; + case mmio_write_type_l: + mmio_writel(data->ldata, data->addr); + break; + } + /* p was allocated in register_undo_mmio_write. */ + free(p); + return 0; +} + +#define register_undo_mmio_write(a, c) \ +{ \ + struct undo_mmio_write_data *undo_mmio_write_data; \ + undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \ + if (!undo_mmio_write_data) { \ + msg_gerr("Out of memory!\n"); \ + exit(1); \ + } \ + undo_mmio_write_data->addr = a; \ + undo_mmio_write_data->type = mmio_write_type_##c; \ + undo_mmio_write_data->c##data = mmio_read##c(a); \ + register_shutdown(undo_mmio_write, undo_mmio_write_data); \ +} + +#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b) +#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w) +#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l) + +void rmmio_writeb(uint8_t val, void *addr) +{ + register_undo_mmio_writeb(addr); + mmio_writeb(val, addr); +} + +void rmmio_writew(uint16_t val, void *addr) +{ + register_undo_mmio_writew(addr); + mmio_writew(val, addr); +} + +void rmmio_writel(uint32_t val, void *addr) +{ + register_undo_mmio_writel(addr); + mmio_writel(val, addr); +} + +void rmmio_le_writeb(uint8_t val, void *addr) +{ + register_undo_mmio_writeb(addr); + mmio_le_writeb(val, addr); +} + +void rmmio_le_writew(uint16_t val, void *addr) +{ + register_undo_mmio_writew(addr); + mmio_le_writew(val, addr); +} + +void rmmio_le_writel(uint32_t val, void *addr) +{ + register_undo_mmio_writel(addr); + mmio_le_writel(val, addr); +} + +void rmmio_valb(void *addr) +{ + register_undo_mmio_writeb(addr); +} + +void rmmio_valw(void *addr) +{ + register_undo_mmio_writew(addr); +} + +void rmmio_vall(void *addr) +{ + register_undo_mmio_writel(addr); +} |