/* * This file is part of the flashrom project. * * Copyright (C) 2009,2010 Carl-Daniel Hailfinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "platform.h" #include #include #include #include #include #if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__) /* No file access needed/possible to get hardware access permissions. */ #include #include #endif #include "flash.h" #include "programmer.h" #include "hwaccess.h" #if USE_IOPERM #include #endif #if IS_X86 && USE_DEV_IO int io_fd; #endif /* Prevent reordering and/or merging of reads/writes to hardware. * Such reordering and/or merging would break device accesses which depend on the exact access order. */ static inline void sync_primitive(void) { /* This is not needed for... * - x86: uses uncached accesses which have a strongly ordered memory model. * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model. * - ARM: uses a strongly ordered memory model for device memories. * * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt */ #if IS_PPC // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h asm("eieio" : : : "memory"); #elif IS_SPARC #if defined(__sparc_v9__) || defined(__sparcv9) /* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we * use the strongest hardware memory barriers that exist on Sparc V9. */ asm volatile ("membar #Sync" ::: "memory"); #elif defined(__sparc_v8__) || defined(__sparcv8) /* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable * operation in the V8 instruction set anyway. If you know better then please tell us. */ asm volatile ("stbar"); #else #error Unknown and/or unsupported SPARC instruction set version detected. #endif #endif } #if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__)) static int release_io_perms(void *p) { #if defined (__sun) sysi86(SI86V86, V86SC_IOPL, 0); #elif USE_DEV_IO close(io_fd); #elif USE_IOPERM ioperm(0, 65536, 0); #elif USE_IOPL iopl(0); #endif return 0; } #endif /* Get I/O permissions with automatic permission release on shutdown. */ int rget_io_perms(void) { #if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__)) #if defined (__sun) if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) { #elif USE_DEV_IO if ((io_fd = open("/dev/io", O_RDWR)) < 0) { #elif USE_IOPERM if (ioperm(0, 65536, 1) != 0) { #elif USE_IOPL if (iopl(3) != 0) { #endif msg_perr("ERROR: Could not get I/O privileges (%s).\n", strerror(errno)); msg_perr("You need to be root.\n"); #if defined (__OpenBSD__) msg_perr("If you are root already please set securelevel=-1 in /etc/rc.securelevel and\n" "reboot, or reboot into single user mode.\n"); #elif defined(__NetBSD__) msg_perr("If you are root already please reboot into single user mode or make sure\n" "that your kernel configuration has the option INSECURE enabled.\n"); #endif return 1; } else { register_shutdown(release_io_perms, NULL); } #else /* DJGPP and libpayload environments have full PCI port I/O permissions by default. */ /* PCI port I/O support is unimplemented on PPC/MIPS and unavailable on ARM. */ #endif return 0; } void mmio_writeb(uint8_t val, void *addr) { *(volatile uint8_t *) addr = val; sync_primitive(); } void mmio_writew(uint16_t val, void *addr) { *(volatile uint16_t *) addr = val; sync_primitive(); } void mmio_writel(uint32_t val, void *addr) { *(volatile uint32_t *) addr = val; sync_primitive(); } uint8_t mmio_readb(const void *addr) { return *(volatile const uint8_t *) addr; } uint16_t mmio_readw(const void *addr) { return *(volatile const uint16_t *) addr; } uint32_t mmio_readl(const void *addr) { return *(volatile const uint32_t *) addr; } void mmio_readn(const void *addr, uint8_t *buf, size_t len) { memcpy(buf, addr, len); return; } void mmio_le_writeb(uint8_t val, void *addr) { mmio_writeb(cpu_to_le8(val), addr); } void mmio_le_writew(uint16_t val, void *addr) { mmio_writew(cpu_to_le16(val), addr); } void mmio_le_writel(uint32_t val, void *addr) { mmio_writel(cpu_to_le32(val), addr); } uint8_t mmio_le_readb(const void *addr) { return le_to_cpu8(mmio_readb(addr)); } uint16_t mmio_le_readw(const void *addr) { return le_to_cpu16(mmio_readw(addr)); } uint32_t mmio_le_readl(const void *addr) { return le_to_cpu32(mmio_readl(addr)); } enum mmio_write_type { mmio_write_type_b, mmio_write_type_w, mmio_write_type_l, }; struct undo_mmio_write_data { void *addr; int reg; enum mmio_write_type type; union { uint8_t bdata; uint16_t wdata; uint32_t ldata; }; }; static int undo_mmio_write(void *p) { struct undo_mmio_write_data *data = p; msg_pdbg("Restoring MMIO space at %p\n", data->addr); switch (data->type) { case mmio_write_type_b: mmio_writeb(data->bdata, data->addr); break; case mmio_write_type_w: mmio_writew(data->wdata, data->addr); break; case mmio_write_type_l: mmio_writel(data->ldata, data->addr); break; } /* p was allocated in register_undo_mmio_write. */ free(p); return 0; } #define register_undo_mmio_write(a, c) \ { \ struct undo_mmio_write_data *undo_mmio_write_data; \ undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \ if (!undo_mmio_write_data) { \ msg_gerr("Out of memory!\n"); \ exit(1); \ } \ undo_mmio_write_data->addr = a; \ undo_mmio_write_data->type = mmio_write_type_##c; \ undo_mmio_write_data->c##data = mmio_read##c(a); \ register_shutdown(undo_mmio_write, undo_mmio_write_data); \ } #define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b) #define register_undo_mmio_writew(a) register_undo_mmio_write(a, w) #define register_undo_mmio_writel(a) register_undo_mmio_write(a, l) void rmmio_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_writeb(val, addr); } void rmmio_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_writew(val, addr); } void rmmio_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_writel(val, addr); } void rmmio_le_writeb(uint8_t val, void *addr) { register_undo_mmio_writeb(addr); mmio_le_writeb(val, addr); } void rmmio_le_writew(uint16_t val, void *addr) { register_undo_mmio_writew(addr); mmio_le_writew(val, addr); } void rmmio_le_writel(uint32_t val, void *addr) { register_undo_mmio_writel(addr); mmio_le_writel(val, addr); } void rmmio_valb(void *addr) { register_undo_mmio_writeb(addr); } void rmmio_valw(void *addr) { register_undo_mmio_writew(addr); } void rmmio_vall(void *addr) { register_undo_mmio_writel(addr); }