-- Expressions synthesis. -- Copyright (C) 2017 Tristan Gingold -- -- This file is part of GHDL. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, -- MA 02110-1301, USA. with Types_Utils; use Types_Utils; with Name_Table; with Std_Names; with Str_Table; with Mutils; use Mutils; with Vhdl.Types; with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164; with Vhdl.Std_Package; with Vhdl.Errors; use Vhdl.Errors; with Vhdl.Utils; use Vhdl.Utils; with Vhdl.Evaluation; use Vhdl.Evaluation; with Vhdl.Annotations; use Vhdl.Annotations; with PSL.Nodes; with PSL.Errors; with Netlists.Gates; use Netlists.Gates; with Netlists.Folds; use Netlists.Folds; with Netlists.Utils; use Netlists.Utils; with Netlists.Locations; with Synth.Errors; use Synth.Errors; with Synth.Environment; with Synth.Decls; with Synth.Stmts; use Synth.Stmts; with Synth.Oper; use Synth.Oper; with Synth.Heap; use Synth.Heap; with Synth.Debugger; with Synth.Aggr; with Grt.Types; with Grt.To_Strings; package body Synth.Expr is function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Node) return Valtyp; procedure Set_Location (N : Net; Loc : Node) renames Synth.Source.Set_Location; function Get_Value_Memtyp (V : Valtyp) return Memtyp is begin case V.Val.Kind is when Value_Memory => return (V.Typ, V.Val.Mem); when Value_Const => return Get_Memtyp (V); when Value_Wire => return Synth.Environment.Get_Static_Wire (V.Val.W); when Value_Alias => declare Res : Memtyp; begin Res := Get_Value_Memtyp ((V.Val.A_Typ, V.Val.A_Obj)); return (V.Typ, Res.Mem + V.Val.A_Off.Mem_Off); end; when others => raise Internal_Error; end case; end Get_Value_Memtyp; function Get_Static_Discrete (V : Valtyp) return Int64 is begin case V.Val.Kind is when Value_Memory => return Read_Discrete (V); when Value_Const => return Read_Discrete (Get_Memtyp (V)); when Value_Wire => return Read_Discrete (Synth.Environment.Get_Static_Wire (V.Val.W)); when others => raise Internal_Error; end case; end Get_Static_Discrete; function Is_Positive (V : Valtyp) return Boolean is N : Net; Inst : Instance; begin pragma Assert (V.Typ.Kind = Type_Discrete); case V.Val.Kind is when Value_Const | Value_Memory => return Read_Discrete (Get_Memtyp (V)) >= 0; when Value_Net => N := V.Val.N; when Value_Wire => if Synth.Environment.Is_Static_Wire (V.Val.W) then return Read_Discrete (Synth.Environment.Get_Static_Wire (V.Val.W)) >= 0; else return False; end if; when others => raise Internal_Error; end case; Inst := Get_Net_Parent (N); case Get_Id (Inst) is when Id_Uextend | Id_Const_UB32 => return True; when others => -- Be conservative. return False; end case; end Is_Positive; procedure From_Std_Logic (Enum : Int64; Val : out Uns32; Zx : out Uns32) is begin case Enum is when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos | Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos => Val := 0; Zx := 0; when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos | Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos => Val := 1; Zx := 0; when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos | Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos | Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos => Val := 1; Zx := 1; when Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos | Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos => Val := 0; Zx := 1; when others => -- Only 9 values. raise Internal_Error; end case; end From_Std_Logic; procedure From_Bit (Enum : Int64; Val : out Uns32) is begin if Enum = 0 then Val := 0; elsif Enum = 1 then Val := 1; else raise Internal_Error; end if; end From_Bit; procedure To_Logic (Enum : Int64; Etype : Type_Acc; Val : out Uns32; Zx : out Uns32) is begin if Etype = Logic_Type then pragma Assert (Etype.Kind = Type_Logic); From_Std_Logic (Enum, Val, Zx); elsif Etype = Boolean_Type or Etype = Bit_Type then pragma Assert (Etype.Kind = Type_Bit); From_Bit (Enum, Val); Zx := 0; else raise Internal_Error; end if; end To_Logic; procedure Uns2logvec (Val : Uns64; W : Width; Vec : in out Logvec_Array; Off : in out Uns32) is begin if W = 0 then return; end if; for I in 0 .. W - 1 loop declare B : constant Uns32 := Uns32 (Shift_Right (Val, Natural (I)) and 1); Idx : constant Digit_Index := Digit_Index (Off / 32); Pos : constant Natural := Natural (Off mod 32); begin Vec (Idx).Val := Vec (Idx).Val or Shift_Left (B, Pos); end; Off := Off + 1; end loop; end Uns2logvec; procedure Bit2logvec (Val : Uns32; Vec : in out Logvec_Array; Off : in out Uns32) is pragma Assert (Val <= 1); Idx : constant Digit_Index := Digit_Index (Off / 32); Pos : constant Natural := Natural (Off mod 32); Va : Uns32; begin Va := Shift_Left (Val, Pos); Vec (Idx).Val := Vec (Idx).Val or Va; Vec (Idx).Zx := 0; Off := Off + 1; end Bit2logvec; procedure Logic2logvec (Val : Int64; Vec : in out Logvec_Array; Off : in out Uns32; Has_Zx : in out Boolean) is pragma Assert (Val <= 8); Idx : constant Digit_Index := Digit_Index (Off / 32); Pos : constant Natural := Natural (Off mod 32); Va : Uns32; Zx : Uns32; begin From_Std_Logic (Val, Va, Zx); Has_Zx := Has_Zx or Zx /= 0; Va := Shift_Left (Va, Pos); Zx := Shift_Left (Zx, Pos); Vec (Idx).Val := Vec (Idx).Val or Va; Vec (Idx).Zx := Vec (Idx).Zx or Zx; Off := Off + 1; end Logic2logvec; procedure Value2logvec (Mem : Memory_Ptr; Typ : Type_Acc; Off : in out Uns32; W : in out Width; Vec : in out Logvec_Array; Vec_Off : in out Uns32; Has_Zx : in out Boolean) is begin if Off >= Typ.W then -- Offset not yet reached. Off := Off - Typ.W; return; end if; if W = 0 then return; end if; case Typ.Kind is when Type_Bit => -- Scalar bits cannot be cut. pragma Assert (Off = 0 and W >= Typ.W); Bit2logvec (Uns32 (Read_U8 (Mem)), Vec, Vec_Off); W := W - Typ.W; when Type_Logic => -- Scalar bits cannot be cut. pragma Assert (Off = 0 and W >= Typ.W); Logic2logvec (Int64 (Read_U8 (Mem)), Vec, Vec_Off, Has_Zx); W := W - Typ.W; when Type_Discrete => -- Scalar bits cannot be cut. pragma Assert (Off = 0 and W >= Typ.W); Uns2logvec (To_Uns64 (Read_Discrete (Memtyp'(Typ, Mem))), Typ.W, Vec, Vec_Off); W := W - Typ.W; when Type_Float => -- Fp64 is for sure 64 bits. Assume the endianness of floats is -- the same as integers endianness. -- Scalar bits cannot be cut. pragma Assert (Off = 0 and W >= Typ.W); Uns2logvec (To_Uns64 (Read_Fp64 (Mem)), 64, Vec, Vec_Off); W := W - Typ.W; when Type_Vector => declare Vlen : Uns32; begin Vlen := Uns32 (Vec_Length (Typ)); pragma Assert (Off < Vlen); pragma Assert (Vlen > 0); if Vlen > Off + W then Vlen := Off + W; end if; case Typ.Vec_El.Kind is when Type_Bit => -- TODO: optimize off mod 32 = 0. for I in reverse Off + 1 .. Vlen loop Bit2logvec (Uns32 (Read_U8 (Mem + Size_Type (I - 1))), Vec, Vec_Off); end loop; when Type_Logic => for I in reverse Off + 1 .. Vlen loop Logic2logvec (Int64 (Read_U8 (Mem + Size_Type (I - 1))), Vec, Vec_Off, Has_Zx); end loop; when others => raise Internal_Error; end case; W := W - (Vlen - Off); Off := 0; end; when Type_Array => declare Alen : constant Iir_Index32 := Get_Array_Flat_Length (Typ); El_Typ : constant Type_Acc := Typ.Arr_El; begin for I in reverse 1 .. Alen loop Value2logvec (Mem + Size_Type (I - 1) * El_Typ.Sz, El_Typ, Off, W, Vec, Vec_Off, Has_Zx); exit when W = 0; end loop; end; when Type_Record => for I in Typ.Rec.E'Range loop Value2logvec (Mem + Typ.Rec.E (I).Moff, Typ.Rec.E (I).Typ, Off, W, Vec, Vec_Off, Has_Zx); exit when W = 0; end loop; when others => raise Internal_Error; end case; end Value2logvec; procedure Value2logvec (Val : Memtyp; Off : Uns32; W : Width; Vec : in out Logvec_Array; Vec_Off : in out Uns32; Has_Zx : in out Boolean) is Off1 : Uns32; W1 : Width; begin Off1 := Off; W1 := W; Value2logvec (Val.Mem, Val.Typ, Off1, W1, Vec, Vec_Off, Has_Zx); pragma Assert (Off1 = 0); pragma Assert (W1 = 0); end Value2logvec; -- Resize for a discrete value. function Synth_Resize (Ctxt : Context_Acc; Val : Valtyp; W : Width; Loc : Node) return Net is Wn : constant Width := Val.Typ.W; N : Net; Res : Net; V : Int64; begin if Is_Static (Val.Val) and then Wn /= W then -- Optimization: resize directly. V := Read_Discrete (Val); if Val.Typ.Drange.Is_Signed then Res := Build2_Const_Int (Ctxt, V, W); else Res := Build2_Const_Uns (Ctxt, To_Uns64 (V), W); end if; Set_Location (Res, Loc); return Res; end if; N := Get_Net (Ctxt, Val); if Wn > W then return Build2_Trunc (Ctxt, Id_Utrunc, N, W, Get_Location (Loc)); elsif Wn < W then if Val.Typ.Drange.Is_Signed then Res := Build_Extend (Ctxt, Id_Sextend, N, W); else Res := Build_Extend (Ctxt, Id_Uextend, N, W); end if; Set_Location (Res, Loc); return Res; else return N; end if; end Synth_Resize; procedure Concat_Array (Ctxt : Context_Acc; Arr : in out Net_Array) is Last : Int32; Idx, New_Idx : Int32; begin Last := Arr'Last; while Last > Arr'First loop Idx := Arr'First; New_Idx := Arr'First - 1; while Idx <= Last loop -- Gather at most 4 nets. New_Idx := New_Idx + 1; if Idx = Last then Arr (New_Idx) := Arr (Idx); Idx := Idx + 1; elsif Idx + 1 = Last then Arr (New_Idx) := Build_Concat2 (Ctxt, Arr (Idx), Arr (Idx + 1)); Idx := Idx + 2; elsif Idx + 2 = Last then Arr (New_Idx) := Build_Concat3 (Ctxt, Arr (Idx), Arr (Idx + 1), Arr (Idx + 2)); Idx := Idx + 3; else Arr (New_Idx) := Build_Concat4 (Ctxt, Arr (Idx), Arr (Idx + 1), Arr (Idx + 2), Arr (Idx + 3)); Idx := Idx + 4; end if; end loop; Last := New_Idx; end loop; end Concat_Array; procedure Concat_Array (Ctxt : Context_Acc; Arr : in out Net_Array; N : out Net) is begin Concat_Array (Ctxt, Arr); N := Arr (Arr'First); end Concat_Array; function Synth_Discrete_Range_Expression (L : Int64; R : Int64; Dir : Direction_Type) return Discrete_Range_Type is begin return (Dir => Dir, Left => L, Right => R, Is_Signed => L < 0 or R < 0); end Synth_Discrete_Range_Expression; function Synth_Discrete_Range_Expression (Syn_Inst : Synth_Instance_Acc; Rng : Node) return Discrete_Range_Type is L, R : Valtyp; Lval, Rval : Int64; begin -- Static values. L := Synth_Expression_With_Basetype (Syn_Inst, Get_Left_Limit (Rng)); R := Synth_Expression_With_Basetype (Syn_Inst, Get_Right_Limit (Rng)); Strip_Const (L); Strip_Const (R); if not (Is_Static (L.Val) and Is_Static (R.Val)) then Error_Msg_Synth (+Rng, "limits of range are not constant"); Set_Error (Syn_Inst); return (Dir => Get_Direction (Rng), Left => 0, Right => 0, Is_Signed => False); end if; Lval := Read_Discrete (L); Rval := Read_Discrete (R); return (Dir => Get_Direction (Rng), Left => Lval, Right => Rval, Is_Signed => Lval < 0 or Rval < 0); end Synth_Discrete_Range_Expression; function Synth_Float_Range_Expression (Syn_Inst : Synth_Instance_Acc; Rng : Node) return Float_Range_Type is L, R : Valtyp; begin -- Static values (so no enable). L := Synth_Expression (Syn_Inst, Get_Left_Limit (Rng)); R := Synth_Expression (Syn_Inst, Get_Right_Limit (Rng)); return (Get_Direction (Rng), Read_Fp64 (L), Read_Fp64 (R)); end Synth_Float_Range_Expression; -- Return the type of EXPR without evaluating it. function Synth_Type_Of_Object (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Type_Acc is begin case Get_Kind (Expr) is when Iir_Kinds_Object_Declaration => declare Val : constant Valtyp := Get_Value (Syn_Inst, Expr); begin return Val.Typ; end; when Iir_Kind_Simple_Name => return Synth_Type_Of_Object (Syn_Inst, Get_Named_Entity (Expr)); when Iir_Kind_Slice_Name => declare Pfx_Typ : Type_Acc; Pfx_Bnd : Bound_Type; El_Typ : Type_Acc; Res_Bnd : Bound_Type; Sl_Voff : Net; Sl_Off : Value_Offsets; begin Pfx_Typ := Synth_Type_Of_Object (Syn_Inst, Get_Prefix (Expr)); Get_Onedimensional_Array_Bounds (Pfx_Typ, Pfx_Bnd, El_Typ); Synth_Slice_Suffix (Syn_Inst, Expr, Pfx_Bnd, El_Typ, Res_Bnd, Sl_Voff, Sl_Off); if Sl_Voff /= No_Net then raise Internal_Error; end if; return Create_Onedimensional_Array_Subtype (Pfx_Typ, Res_Bnd); end; when Iir_Kind_Indexed_Name => declare Pfx_Typ : Type_Acc; begin Pfx_Typ := Synth_Type_Of_Object (Syn_Inst, Get_Prefix (Expr)); return Get_Array_Element (Pfx_Typ); end; when Iir_Kind_Selected_Element => declare Idx : constant Iir_Index32 := Get_Element_Position (Get_Named_Entity (Expr)); Pfx_Typ : Type_Acc; begin Pfx_Typ := Synth_Type_Of_Object (Syn_Inst, Get_Prefix (Expr)); return Pfx_Typ.Rec.E (Idx + 1).Typ; end; when Iir_Kind_Implicit_Dereference | Iir_Kind_Dereference => declare Val : Valtyp; Res : Valtyp; begin -- Maybe do not dereference it if its type is known ? Val := Synth_Expression (Syn_Inst, Get_Prefix (Expr)); Res := Heap.Synth_Dereference (Read_Access (Val)); return Res.Typ; end; when others => Vhdl.Errors.Error_Kind ("synth_type_of_object", Expr); end case; return null; end Synth_Type_Of_Object; function Synth_Array_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node) return Bound_Type is Prefix_Name : constant Iir := Get_Prefix (Attr); Prefix : constant Iir := Strip_Denoting_Name (Prefix_Name); Dim : constant Natural := Vhdl.Evaluation.Eval_Attribute_Parameter_Or_1 (Attr); Typ : Type_Acc; Val : Valtyp; begin -- Prefix is an array object or an array subtype. if Get_Kind (Prefix) = Iir_Kind_Subtype_Declaration then -- TODO: does this cover all the cases ? Typ := Get_Subtype_Object (Syn_Inst, Get_Subtype_Indication (Prefix)); else Val := Synth_Expression_With_Basetype (Syn_Inst, Prefix_Name); Typ := Val.Typ; end if; return Get_Array_Bound (Typ, Dim_Type (Dim)); end Synth_Array_Attribute; procedure Synth_Discrete_Range (Syn_Inst : Synth_Instance_Acc; Bound : Node; Rng : out Discrete_Range_Type) is begin case Get_Kind (Bound) is when Iir_Kind_Range_Expression => Rng := Synth_Discrete_Range_Expression (Syn_Inst, Bound); when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Enumeration_Subtype_Definition => if Get_Type_Declarator (Bound) /= Null_Node then declare Typ : Type_Acc; begin -- This is a named subtype, so it has been evaluated. Typ := Get_Subtype_Object (Syn_Inst, Bound); Rng := Typ.Drange; end; else Synth_Discrete_Range (Syn_Inst, Get_Range_Constraint (Bound), Rng); end if; when Iir_Kind_Range_Array_Attribute => declare B : Bound_Type; begin B := Synth_Array_Attribute (Syn_Inst, Bound); Rng := Discrete_Range_Type'(Dir => B.Dir, Is_Signed => True, Left => Int64 (B.Left), Right => Int64 (B.Right)); end; when Iir_Kind_Reverse_Range_Array_Attribute => declare B : Bound_Type; T : Int32; begin B := Synth_Array_Attribute (Syn_Inst, Bound); -- Reverse case B.Dir is when Dir_To => B.Dir := Dir_Downto; when Dir_Downto => B.Dir := Dir_To; end case; T := B.Right; B.Right := B.Left; B.Left := T; Rng := Discrete_Range_Type'(Dir => B.Dir, Is_Signed => True, Left => Int64 (B.Left), Right => Int64 (B.Right)); end; when Iir_Kinds_Denoting_Name => -- A discrete subtype name. Synth_Discrete_Range (Syn_Inst, Get_Subtype_Indication (Get_Named_Entity (Bound)), Rng); when others => Error_Kind ("synth_discrete_range", Bound); end case; end Synth_Discrete_Range; function Synth_Array_Bounds (Syn_Inst : Synth_Instance_Acc; Atype : Node; Dim : Dim_Type) return Bound_Type is Info : constant Sim_Info_Acc := Get_Info (Atype); begin if Info = null then pragma Assert (Get_Type_Declarator (Atype) = Null_Node); declare Index_Type : constant Node := Get_Index_Type (Atype, Natural (Dim - 1)); begin return Synth_Bounds_From_Range (Syn_Inst, Index_Type); end; else declare Bnds : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Atype); begin case Bnds.Kind is when Type_Vector => pragma Assert (Dim = 1); return Bnds.Vbound; when Type_Array => return Bnds.Abounds.D (Dim); when others => raise Internal_Error; end case; end; end if; end Synth_Array_Bounds; function Synth_Bounds_From_Range (Syn_Inst : Synth_Instance_Acc; Atype : Node) return Bound_Type is Rng : Discrete_Range_Type; begin Synth_Discrete_Range (Syn_Inst, Atype, Rng); return (Dir => Rng.Dir, Left => Int32 (Rng.Left), Right => Int32 (Rng.Right), Len => Get_Range_Length (Rng)); end Synth_Bounds_From_Range; function Synth_Bounds_From_Length (Atype : Node; Len : Int32) return Bound_Type is Rng : constant Node := Get_Range_Constraint (Atype); Limit : Int32; begin Limit := Int32 (Eval_Pos (Get_Left_Limit (Rng))); case Get_Direction (Rng) is when Dir_To => return (Dir => Dir_To, Left => Limit, Right => Limit + Len - 1, Len => Uns32 (Len)); when Dir_Downto => return (Dir => Dir_Downto, Left => Limit, Right => Limit - Len + 1, Len => Uns32 (Len)); end case; end Synth_Bounds_From_Length; function Synth_Simple_Aggregate (Syn_Inst : Synth_Instance_Acc; Aggr : Node) return Valtyp is Aggr_Type : constant Node := Get_Type (Aggr); pragma Assert (Get_Nbr_Dimensions (Aggr_Type) = 1); El_Type : constant Node := Get_Element_Subtype (Aggr_Type); El_Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, El_Type); Els : constant Iir_Flist := Get_Simple_Aggregate_List (Aggr); Last : constant Natural := Flist_Last (Els); Bnd : Bound_Type; Bnds : Bound_Array_Acc; Res_Type : Type_Acc; Val : Valtyp; Res : Valtyp; begin -- Allocate the result. Bnd := Synth_Array_Bounds (Syn_Inst, Aggr_Type, 1); pragma Assert (Bnd.Len = Uns32 (Last + 1)); if El_Typ.Kind in Type_Nets then Res_Type := Create_Vector_Type (Bnd, El_Typ); else Bnds := Create_Bound_Array (1); Bnds.D (1) := Bnd; Res_Type := Create_Array_Type (Bnds, El_Typ); end if; Res := Create_Value_Memory (Res_Type); for I in Flist_First .. Last loop -- Elements are supposed to be static, so no need for enable. Val := Synth_Expression_With_Type (Syn_Inst, Get_Nth_Element (Els, I), El_Typ); pragma Assert (Is_Static (Val.Val)); Write_Value (Res.Val.Mem + Size_Type (I) * El_Typ.Sz, Val); end loop; return Res; end Synth_Simple_Aggregate; -- Change the bounds of VAL. function Reshape_Value (Val : Valtyp; Ntype : Type_Acc) return Valtyp is begin case Val.Val.Kind is when Value_Wire => return Create_Value_Wire (Val.Val.W, Ntype); when Value_Net => return Create_Value_Net (Val.Val.N, Ntype); when Value_Alias => return Create_Value_Alias ((Val.Val.A_Typ, Val.Val.A_Obj), Val.Val.A_Off, Ntype); when Value_Const => return Reshape_Value ((Val.Typ, Val.Val.C_Val), Ntype); when Value_Memory => return (Ntype, Val.Val); when others => raise Internal_Error; end case; end Reshape_Value; function Synth_Subtype_Conversion (Ctxt : Context_Acc; Vt : Valtyp; Dtype : Type_Acc; Bounds : Boolean; Loc : Source.Syn_Src) return Valtyp is Vtype : constant Type_Acc := Vt.Typ; begin if Vt = No_Valtyp then -- Propagate error. return No_Valtyp; end if; if Dtype = Vtype then return Vt; end if; case Dtype.Kind is when Type_Bit => pragma Assert (Vtype.Kind = Type_Bit); return Vt; when Type_Logic => pragma Assert (Vtype.Kind = Type_Logic); return Vt; when Type_Discrete => pragma Assert (Vtype.Kind in Type_All_Discrete); case Vt.Val.Kind is when Value_Net | Value_Wire | Value_Alias => if Vtype.W /= Dtype.W then -- Truncate. -- TODO: check overflow. declare N : Net; begin if Is_Static_Val (Vt.Val) then return Create_Value_Discrete (Get_Static_Discrete (Vt), Dtype); end if; N := Get_Net (Ctxt, Vt); if Vtype.Drange.Is_Signed then N := Build2_Sresize (Ctxt, N, Dtype.W, Get_Location (Loc)); else N := Build2_Uresize (Ctxt, N, Dtype.W, Get_Location (Loc)); end if; return Create_Value_Net (N, Dtype); end; else return Vt; end if; when Value_Const => return Synth_Subtype_Conversion (Ctxt, (Vt.Typ, Vt.Val.C_Val), Dtype, Bounds, Loc); when Value_Memory => -- Check for overflow. declare Val : constant Int64 := Read_Discrete (Vt); begin if not In_Range (Dtype.Drange, Val) then Error_Msg_Synth (+Loc, "value out of range"); return No_Valtyp; end if; return Create_Value_Discrete (Val, Dtype); end; when others => raise Internal_Error; end case; when Type_Float => pragma Assert (Vtype.Kind = Type_Float); -- TODO: check range return Vt; when Type_Vector => pragma Assert (Vtype.Kind = Type_Vector or Vtype.Kind = Type_Slice); if Dtype.W /= Vtype.W then Error_Msg_Synth (+Loc, "mismatching vector length"); return No_Valtyp; end if; if Bounds then return Reshape_Value (Vt, Dtype); else return Vt; end if; when Type_Slice => -- TODO: check width return Vt; when Type_Array => pragma Assert (Vtype.Kind = Type_Array); -- Check bounds. for I in Vtype.Abounds.D'Range loop if Vtype.Abounds.D (I).Len /= Dtype.Abounds.D (I).Len then Error_Msg_Synth (+Loc, "mismatching array bounds"); return No_Valtyp; end if; end loop; -- TODO: check element. if Bounds then return Reshape_Value (Vt, Dtype); else return Vt; end if; when Type_Unbounded_Array => pragma Assert (Vtype.Kind = Type_Array); return Vt; when Type_Unbounded_Vector => pragma Assert (Vtype.Kind = Type_Vector or else Vtype.Kind = Type_Slice); return Vt; when Type_Record => pragma Assert (Vtype.Kind = Type_Record); -- TODO: handle elements. return Vt; when Type_Unbounded_Record => pragma Assert (Vtype.Kind = Type_Record); return Vt; when Type_Access => return Vt; when Type_File | Type_Protected => -- No conversion expected. -- As the subtype is identical, it is already handled by the -- above check. raise Internal_Error; end case; end Synth_Subtype_Conversion; function Synth_Value_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node) return Valtyp is Param : constant Node := Get_Parameter (Attr); Etype : constant Node := Get_Type (Attr); Btype : constant Node := Get_Base_Type (Etype); V : Valtyp; Dtype : Type_Acc; begin -- The value is supposed to be static. V := Synth_Expression (Syn_Inst, Param); if V = No_Valtyp then return No_Valtyp; end if; Dtype := Get_Subtype_Object (Syn_Inst, Etype); if not Is_Static (V.Val) then Error_Msg_Synth (+Attr, "parameter of 'value must be static"); return No_Valtyp; end if; declare Str : constant String := Value_To_String (V); Res_N : Node; Val : Int64; begin case Get_Kind (Btype) is when Iir_Kind_Enumeration_Type_Definition => Res_N := Eval_Value_Attribute (Str, Etype, Attr); Val := Int64 (Get_Enum_Pos (Res_N)); Free_Iir (Res_N); when Iir_Kind_Integer_Type_Definition => Val := Int64'Value (Str); when others => Error_Msg_Synth (+Attr, "unhandled type for 'value"); return No_Valtyp; end case; return Create_Value_Discrete (Val, Dtype); end; end Synth_Value_Attribute; function Synth_Image_Attribute_Str (Val : Valtyp; Expr_Type : Iir) return String is use Grt.Types; begin case Get_Kind (Expr_Type) is when Iir_Kind_Floating_Type_Definition | Iir_Kind_Floating_Subtype_Definition => declare Str : String (1 .. 24); Last : Natural; begin Grt.To_Strings.To_String (Str, Last, Ghdl_F64 (Read_Fp64 (Val))); return Str (Str'First .. Last); end; when Iir_Kind_Integer_Type_Definition | Iir_Kind_Integer_Subtype_Definition => declare Str : String (1 .. 21); First : Natural; begin Grt.To_Strings.To_String (Str, First, Ghdl_I64 (Read_Discrete (Val))); return Str (First .. Str'Last); end; when Iir_Kind_Enumeration_Type_Definition | Iir_Kind_Enumeration_Subtype_Definition => declare Lits : constant Iir_Flist := Get_Enumeration_Literal_List (Get_Base_Type (Expr_Type)); begin return Name_Table.Image (Get_Identifier (Get_Nth_Element (Lits, Natural (Read_Discrete (Val))))); end; when Iir_Kind_Physical_Type_Definition | Iir_Kind_Physical_Subtype_Definition => declare Str : String (1 .. 21); First : Natural; Id : constant Name_Id := Get_Identifier (Get_Primary_Unit (Get_Base_Type (Expr_Type))); begin Grt.To_Strings.To_String (Str, First, Ghdl_I64 (Read_Discrete (Val))); return Str (First .. Str'Last) & ' ' & Name_Table.Image (Id); end; when others => Error_Kind ("execute_image_attribute", Expr_Type); end case; end Synth_Image_Attribute_Str; function String_To_Valtyp (Str : String; Styp : Type_Acc) return Valtyp is Len : constant Natural := Str'Length; Bnd : Bound_Array_Acc; Typ : Type_Acc; Res : Valtyp; begin Bnd := Create_Bound_Array (1); Bnd.D (1) := (Dir => Dir_To, Left => 1, Right => Int32 (Len), Len => Width (Len)); Typ := Create_Array_Type (Bnd, Styp.Uarr_El); Res := Create_Value_Memory (Typ); for I in Str'Range loop Write_U8 (Res.Val.Mem + Size_Type (I - Str'First), Character'Pos (Str (I))); end loop; return Res; end String_To_Valtyp; function Synth_Image_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node) return Valtyp is Param : constant Node := Get_Parameter (Attr); Etype : constant Node := Get_Type (Attr); V : Valtyp; Dtype : Type_Acc; begin -- The parameter is expected to be static. V := Synth_Expression (Syn_Inst, Param); if V = No_Valtyp then return No_Valtyp; end if; Dtype := Get_Subtype_Object (Syn_Inst, Etype); if not Is_Static (V.Val) then Error_Msg_Synth (+Attr, "parameter of 'image must be static"); return No_Valtyp; end if; Strip_Const (V); return String_To_Valtyp (Synth_Image_Attribute_Str (V, Get_Type (Param)), Dtype); end Synth_Image_Attribute; function Synth_Instance_Name_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node) return Valtyp is Atype : constant Node := Get_Type (Attr); Atyp : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Atype); Name : constant Path_Instance_Name_Type := Get_Path_Instance_Name_Suffix (Attr); begin -- Return a truncated name, as the prefix is not completly known. return String_To_Valtyp (Name.Suffix, Atyp); end Synth_Instance_Name_Attribute; function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Node) return Valtyp is begin case Get_Kind (Name) is when Iir_Kind_Simple_Name | Iir_Kind_Selected_Name => return Synth_Name (Syn_Inst, Get_Named_Entity (Name)); when Iir_Kind_Interface_Signal_Declaration | Iir_Kind_Variable_Declaration | Iir_Kind_Interface_Variable_Declaration | Iir_Kind_Signal_Declaration | Iir_Kind_Interface_Constant_Declaration | Iir_Kind_Constant_Declaration | Iir_Kind_Iterator_Declaration | Iir_Kind_Object_Alias_Declaration | Iir_Kind_File_Declaration | Iir_Kind_Interface_File_Declaration => return Get_Value (Syn_Inst, Name); when Iir_Kind_Enumeration_Literal => declare Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Get_Type (Name)); Res : Valtyp; begin Res := Create_Value_Memory (Typ); Write_Discrete (Res, Int64 (Get_Enum_Pos (Name))); return Res; end; when Iir_Kind_Unit_Declaration => declare Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Get_Type (Name)); begin return Create_Value_Discrete (Vhdl.Evaluation.Get_Physical_Value (Name), Typ); end; when Iir_Kind_Implicit_Dereference | Iir_Kind_Dereference => declare Val : Valtyp; begin Val := Synth_Expression (Syn_Inst, Get_Prefix (Name)); return Heap.Synth_Dereference (Read_Access (Val)); end; when others => Error_Kind ("synth_name", Name); end case; end Synth_Name; -- Convert index IDX in PFX to an offset. -- SYN_INST and LOC are used in case of error. function Index_To_Offset (Syn_Inst : Synth_Instance_Acc; Bnd : Bound_Type; Idx : Int64; Loc : Node) return Value_Offsets is Res : Value_Offsets; begin if not In_Bounds (Bnd, Int32 (Idx)) then Error_Msg_Synth (+Loc, "index not within bounds"); Synth.Debugger.Debug_Error (Syn_Inst, Loc); return (0, 0); end if; -- The offset is from the LSB (bit 0). Bit 0 is the rightmost one. case Bnd.Dir is when Dir_To => Res.Net_Off := Uns32 (Bnd.Right - Int32 (Idx)); Res.Mem_Off := Size_Type (Int32 (Idx) - Bnd.Left); when Dir_Downto => Res.Net_Off := Uns32 (Int32 (Idx) - Bnd.Right); Res.Mem_Off := Size_Type (Bnd.Left - Int32 (Idx)); end case; return Res; end Index_To_Offset; function Dyn_Index_To_Offset (Ctxt : Context_Acc; Bnd : Bound_Type; Idx_Val : Valtyp; Loc : Node) return Net is Idx2 : Net; Off : Net; Right : Net; Wbounds : Width; begin Wbounds := Clog2 (Bnd.Len); Idx2 := Synth_Resize (Ctxt, Idx_Val, Wbounds, Loc); if Bnd.Right = 0 and then Bnd.Dir = Dir_Downto then -- Simple case without adjustments. return Idx2; end if; Right := Build_Const_UB32 (Ctxt, To_Uns32 (Bnd.Right), Wbounds); Set_Location (Right, Loc); case Bnd.Dir is when Dir_To => -- L <= I <= R --> off = R - I Off := Build_Dyadic (Ctxt, Id_Sub, Right, Idx2); when Dir_Downto => -- L >= I >= R --> off = I - R Off := Build_Dyadic (Ctxt, Id_Sub, Idx2, Right); end case; Set_Location (Off, Loc); return Off; end Dyn_Index_To_Offset; -- Return the bounds of a one dimensional array/vector type and the -- width of the element. procedure Get_Onedimensional_Array_Bounds (Typ : Type_Acc; Bnd : out Bound_Type; El_Typ : out Type_Acc) is begin case Typ.Kind is when Type_Vector => El_Typ := Typ.Vec_El; Bnd := Typ.Vbound; when Type_Array => El_Typ := Typ.Arr_El; Bnd := Typ.Abounds.D (1); when others => raise Internal_Error; end case; end Get_Onedimensional_Array_Bounds; function Create_Onedimensional_Array_Subtype (Btyp : Type_Acc; Bnd : Bound_Type) return Type_Acc is Res : Type_Acc; Bnds : Bound_Array_Acc; begin case Btyp.Kind is when Type_Vector => Res := Create_Vector_Type (Bnd, Btyp.Vec_El); when Type_Unbounded_Vector => Res := Create_Vector_Type (Bnd, Btyp.Uvec_El); when Type_Array => pragma Assert (Btyp.Abounds.Ndim = 1); Bnds := Create_Bound_Array (1); Bnds.D (1) := Bnd; Res := Create_Array_Type (Bnds, Btyp.Arr_El); when Type_Unbounded_Array => pragma Assert (Btyp.Uarr_Ndim = 1); Bnds := Create_Bound_Array (1); Bnds.D (1) := Bnd; Res := Create_Array_Type (Bnds, Btyp.Uarr_El); when others => raise Internal_Error; end case; return Res; end Create_Onedimensional_Array_Subtype; procedure Synth_Indexed_Name (Syn_Inst : Synth_Instance_Acc; Name : Node; Pfx_Type : Type_Acc; Voff : out Net; Off : out Value_Offsets) is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Indexes : constant Iir_Flist := Get_Index_List (Name); El_Typ : constant Type_Acc := Get_Array_Element (Pfx_Type); Idx_Expr : Node; Idx_Val : Valtyp; Bnd : Bound_Type; Stride : Uns32; Ivoff : Net; Idx_Off : Value_Offsets; begin Voff := No_Net; Off := (0, 0); Stride := 1; for I in reverse Flist_First .. Flist_Last (Indexes) loop Idx_Expr := Get_Nth_Element (Indexes, I); -- Use the base type as the subtype of the index is not synth-ed. Idx_Val := Synth_Expression_With_Basetype (Syn_Inst, Idx_Expr); Strip_Const (Idx_Val); Bnd := Get_Array_Bound (Pfx_Type, Dim_Type (I + 1)); if Is_Static_Val (Idx_Val.Val) then Idx_Off := Index_To_Offset (Syn_Inst, Bnd, Get_Static_Discrete (Idx_Val), Name); Off.Net_Off := Off.Net_Off + Idx_Off.Net_Off * Stride * El_Typ.W; Off.Mem_Off := Off.Mem_Off + Idx_Off.Mem_Off * Size_Type (Stride) * El_Typ.Sz; else Ivoff := Dyn_Index_To_Offset (Ctxt, Bnd, Idx_Val, Name); Ivoff := Build_Memidx (Get_Build (Syn_Inst), Ivoff, El_Typ.W * Stride, Bnd.Len - 1, Width (Clog2 (Uns64 (Stride * Bnd.Len)))); Set_Location (Ivoff, Idx_Expr); if Voff = No_Net then Voff := Ivoff; else Voff := Build_Addidx (Get_Build (Syn_Inst), Ivoff, Voff); Set_Location (Voff, Idx_Expr); end if; end if; Stride := Stride * Bnd.Len; end loop; end Synth_Indexed_Name; function Is_Static (N : Net) return Boolean is begin case Get_Id (Get_Module (Get_Net_Parent (N))) is when Id_Const_UB32 => return True; when others => return False; end case; end Is_Static; function Get_Const (N : Net) return Int32 is Inst : constant Instance := Get_Net_Parent (N); begin case Get_Id (Get_Module (Inst)) is when Id_Const_UB32 => return To_Int32 (Get_Param_Uns32 (Inst, 0)); when others => raise Internal_Error; end case; end Get_Const; -- Decompose VAL as FACTOR * INP + ADDEND (where only INP is non-static). procedure Decompose_Mul_Add (Val : Net; Inp : out Net; Factor : out Int32; Addend : out Int32) is Inst : Instance; Val_I0, Val_I1 : Net; begin Factor := 1; Addend := 0; Inp := Val; loop Inst := Get_Net_Parent (Inp); case Get_Id (Get_Module (Inst)) is when Id_Add => Val_I0 := Get_Input_Net (Inst, 0); Val_I1 := Get_Input_Net (Inst, 1); if Is_Static (Val_I0) then Addend := Addend + Get_Const (Val_I0) * Factor; Inp := Val_I1; elsif Is_Static (Val_I1) then Addend := Addend + Get_Const (Val_I1) * Factor; Inp := Val_I0; else -- It's an addition, but without any constant value. return; end if; when Id_Sub => Val_I0 := Get_Input_Net (Inst, 0); Val_I1 := Get_Input_Net (Inst, 1); if Is_Static (Val_I1) then Addend := Addend - Get_Const (Val_I1) * Factor; Inp := Val_I0; elsif Is_Static (Val_I0) then Addend := Addend + Get_Const (Val_I0) * Factor; Factor := -Factor; Inp := Val_I1; else -- It's a substraction, but without any constant value. return; end if; when Id_Smul => Val_I0 := Get_Input_Net (Inst, 0); Val_I1 := Get_Input_Net (Inst, 1); if Is_Static (Val_I0) then Factor := Factor * Get_Const (Val_I0); Inp := Val_I1; elsif Is_Static (Val_I1) then Factor := Factor * Get_Const (Val_I1); Inp := Val_I0; else -- A mul but without any constant value. return; end if; when Id_Utrunc | Id_Uextend => Inp := Get_Input_Net (Inst, 0); when others => -- Cannot decompose it. return; end case; end loop; end Decompose_Mul_Add; -- Identify LEFT to/downto RIGHT as: -- INP * STEP + WIDTH - 1 + OFF to/downto INP * STEP + OFF procedure Synth_Extract_Dyn_Suffix (Ctxt : Context_Acc; Loc : Node; Pfx_Bnd : Bound_Type; Left : Net; Right : Net; Inp : out Net; Step : out Uns32; Off : out Uns32; Width : out Uns32) is L_Inp, R_Inp : Net; L_Fac, R_Fac : Int32; L_Add, R_Add : Int32; begin Inp := No_Net; Step := 0; Off := 0; Width := 0; if Left = Right then L_Inp := Left; R_Inp := Right; L_Fac := 1; R_Fac := 1; L_Add := 0; R_Add := 0; else Decompose_Mul_Add (Left, L_Inp, L_Fac, L_Add); Decompose_Mul_Add (Right, R_Inp, R_Fac, R_Add); end if; if not Same_Net (L_Inp, R_Inp) then Error_Msg_Synth (+Loc, "cannot extract same variable part for dynamic slice"); return; end if; Inp := L_Inp; if L_Fac /= R_Fac then Error_Msg_Synth (+Loc, "cannot extract same constant factor for dynamic slice"); return; end if; if L_Fac < 0 then Step := Uns32 (-L_Fac); Inp := Build_Monadic (Ctxt, Id_Neg, Inp); Set_Location (Inp, Loc); else Step := Uns32 (L_Fac); end if; case Pfx_Bnd.Dir is when Dir_To => Width := Uns32 (R_Add - L_Add + 1); Off := Uns32 (L_Add - Pfx_Bnd.Left); when Dir_Downto => Width := Uns32 (L_Add - R_Add + 1); if R_Add >= Pfx_Bnd.Right then Off := Uns32 (R_Add - Pfx_Bnd.Right); else -- Handle biased values. declare Bias : constant Uns32 := (Uns32 (Pfx_Bnd.Right - R_Add) + Step - 1) / Step; Bias_Net : Net; begin -- Add bias to INP and adjust the offset. Bias_Net := Build2_Const_Uns (Ctxt, Uns64 (Bias), Get_Width (Inp)); Inp := Build_Dyadic (Ctxt, Id_Add, Inp, Bias_Net); Set_Location (Inp, Loc); Off := Uns32 (Int32 (Bias * Step) + R_Add - Pfx_Bnd.Right); end; end if; end case; end Synth_Extract_Dyn_Suffix; procedure Synth_Slice_Const_Suffix (Syn_Inst: Synth_Instance_Acc; Expr : Node; Name : Node; Pfx_Bnd : Bound_Type; L, R : Int64; Dir : Direction_Type; El_Typ : Type_Acc; Res_Bnd : out Bound_Type; Off : out Value_Offsets) is Is_Null : Boolean; Len : Uns32; begin if Pfx_Bnd.Dir /= Dir then Error_Msg_Synth (+Name, "direction mismatch in slice"); Off := (0, 0); if Dir = Dir_To then Res_Bnd := (Dir => Dir_To, Left => 1, Right => 0, Len => 0); else Res_Bnd := (Dir => Dir_Downto, Left => 0, Right => 1, Len => 0); end if; return; end if; -- Might be a null slice. case Pfx_Bnd.Dir is when Dir_To => Is_Null := L > R; when Dir_Downto => Is_Null := L < R; end case; if Is_Null then Len := 0; Off := (0, 0); else if not In_Bounds (Pfx_Bnd, Int32 (L)) or else not In_Bounds (Pfx_Bnd, Int32 (R)) then Error_Msg_Synth (+Name, "index not within bounds"); Synth.Debugger.Debug_Error (Syn_Inst, Expr); Off := (0, 0); return; end if; case Pfx_Bnd.Dir is when Dir_To => Len := Uns32 (R - L + 1); Off.Net_Off := Uns32 (Pfx_Bnd.Right - Int32 (R)) * El_Typ.W; Off.Mem_Off := Size_Type (Int32 (L) - Pfx_Bnd.Left) * El_Typ.Sz; when Dir_Downto => Len := Uns32 (L - R + 1); Off.Net_Off := Uns32 (Int32 (R) - Pfx_Bnd.Right) * El_Typ.W; Off.Mem_Off := Size_Type (Pfx_Bnd.Left - Int32 (L)) * El_Typ.Sz; end case; end if; Res_Bnd := (Dir => Pfx_Bnd.Dir, Len => Len, Left => Int32 (L), Right => Int32 (R)); end Synth_Slice_Const_Suffix; procedure Synth_Slice_Suffix (Syn_Inst : Synth_Instance_Acc; Name : Node; Pfx_Bnd : Bound_Type; El_Typ : Type_Acc; Res_Bnd : out Bound_Type; Inp : out Net; Off : out Value_Offsets) is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Expr : constant Node := Get_Suffix (Name); Left, Right : Valtyp; Dir : Direction_Type; Step : Uns32; Max : Uns32; Inp_W : Width; begin Off := (0, 0); Inp := No_Net; case Get_Kind (Expr) is when Iir_Kind_Range_Expression => -- As the range may be dynamic, cannot use synth_discrete_range. Left := Synth_Expression_With_Basetype (Syn_Inst, Get_Left_Limit (Expr)); Right := Synth_Expression_With_Basetype (Syn_Inst, Get_Right_Limit (Expr)); Dir := Get_Direction (Expr); when Iir_Kind_Range_Array_Attribute | Iir_Kind_Reverse_Range_Array_Attribute | Iir_Kinds_Denoting_Name => declare Rng : Discrete_Range_Type; begin Synth_Discrete_Range (Syn_Inst, Expr, Rng); Synth_Slice_Const_Suffix (Syn_Inst, Expr, Name, Pfx_Bnd, Rng.Left, Rng.Right, Rng.Dir, El_Typ, Res_Bnd, Off); return; end; when others => Error_Msg_Synth (+Expr, "only range expression supported for slices"); Res_Bnd := (Dir => Dir_To, Left => 1, Right => 0, Len => 0); return; end case; if Is_Static_Val (Left.Val) and then Is_Static_Val (Right.Val) then Synth_Slice_Const_Suffix (Syn_Inst, Expr, Name, Pfx_Bnd, Get_Static_Discrete (Left), Get_Static_Discrete (Right), Dir, El_Typ, Res_Bnd, Off); else if Pfx_Bnd.Dir /= Dir then Error_Msg_Synth (+Name, "direction mismatch in slice"); if Dir = Dir_To then Res_Bnd := (Dir => Dir_To, Left => 1, Right => 0, Len => 0); else Res_Bnd := (Dir => Dir_Downto, Left => 0, Right => 1, Len => 0); end if; return; end if; if Is_Static (Left.Val) or else Is_Static (Right.Val) then Error_Msg_Synth (+Name, "left and right bounds of a slice must be " & "either constant or dynamic"); return; end if; Synth_Extract_Dyn_Suffix (Ctxt, Name, Pfx_Bnd, Get_Net (Ctxt, Left), Get_Net (Ctxt, Right), Inp, Step, Off.Net_Off, Res_Bnd.Len); if Inp = No_Net then return; end if; Inp_W := Get_Width (Inp); -- FIXME: convert range to offset. -- Extract max from the range. -- example: len=128 wd=8 step=8 => max=16 -- len=8 wd=4 step=1 => max=4 -- max so that max*step+wd <= len - off -- max <= (len - off - wd) / step Max := (Pfx_Bnd.Len - Off.Net_Off - Res_Bnd.Len) / Step; if Clog2 (Uns64 (Max)) > Natural (Inp_W) then -- The width of Inp limits the max. Max := 2**Natural (Inp_W) - 1; end if; Inp := Build_Memidx (Ctxt, Inp, Step * El_Typ.W, Max, Inp_W + Width (Clog2 (Uns64 (Step * El_Typ.W)))); Set_Location (Inp, Name); end if; end Synth_Slice_Suffix; -- Match: clk_signal_name'event -- and return clk_signal_name. function Extract_Event_Expr_Prefix (Expr : Node) return Node is begin if Get_Kind (Expr) = Iir_Kind_Event_Attribute then return Get_Prefix (Expr); else return Null_Node; end if; end Extract_Event_Expr_Prefix; function Is_Same_Node (Left, Right : Node) return Boolean is begin if Get_Kind (Left) /= Get_Kind (Right) then return False; end if; case Get_Kind (Left) is when Iir_Kind_Simple_Name => return Get_Named_Entity (Left) = Get_Named_Entity (Right); when others => Error_Kind ("is_same_node", Left); end case; end Is_Same_Node; -- Match: clk_signal_name = '1' | clk_signal_name = '0' function Extract_Clock_Level (Syn_Inst : Synth_Instance_Acc; Expr : Node; Prefix : Node) return Net is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Clk : Net; Imp : Node; Left, Right : Node; Lit : Valtyp; Lit_Type : Node; Posedge : Boolean; Res : Net; begin Clk := Get_Net (Ctxt, Synth_Name (Syn_Inst, Prefix)); if Get_Kind (Expr) /= Iir_Kind_Equality_Operator then Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected"); Res := Build_Posedge (Ctxt, Clk); Set_Location (Res, Expr); return Res; end if; Imp := Get_Implementation (Expr); if Get_Implicit_Definition (Imp) /= Iir_Predefined_Enum_Equality then Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected"); Res := Build_Posedge (Ctxt, Clk); Set_Location (Res, Expr); return Res; end if; Left := Get_Left (Expr); if not Is_Same_Node (Prefix, Left) then Error_Msg_Synth (+Left, "clock signal name doesn't match"); end if; Right := Get_Right (Expr); Lit_Type := Get_Base_Type (Get_Type (Right)); Lit := Synth_Expression (Syn_Inst, Right); if Lit.Val.Kind /= Value_Memory then Error_Msg_Synth (+Right, "clock-level is not a constant"); Posedge := True; else if Lit_Type = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_Type then case Read_U8 (Lit.Val.Mem) is when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos => Posedge := False; when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos => Posedge := True; when others => Error_Msg_Synth (+Right, "clock-level must be either '0' or '1'"); Posedge := True; end case; else pragma Assert (Lit_Type = Vhdl.Std_Package.Bit_Type_Definition); case Read_U8 (Lit.Val.Mem) is when 0 => Posedge := False; when 1 => Posedge := True; when others => raise Internal_Error; end case; end if; end if; if Posedge then Res := Build_Posedge (Ctxt, Clk); else Res := Build_Negedge (Ctxt, Clk); end if; Set_Location (Res, Expr); return Res; end Extract_Clock_Level; -- Try to match: clk'event and clk = X -- or: clk = X and clk'event -- where X is '0' or '1'. function Synth_Clock_Edge (Syn_Inst : Synth_Instance_Acc; Left, Right : Node) return Net is Prefix : Node; begin -- Try with left. Prefix := Extract_Event_Expr_Prefix (Left); if Is_Valid (Prefix) then return Extract_Clock_Level (Syn_Inst, Right, Prefix); end if; -- Try with right. Prefix := Extract_Event_Expr_Prefix (Right); if Is_Valid (Prefix) then return Extract_Clock_Level (Syn_Inst, Left, Prefix); end if; return No_Net; end Synth_Clock_Edge; function Synth_Type_Conversion (Syn_Inst : Synth_Instance_Acc; Conv : Node) return Valtyp is Expr : constant Node := Get_Expression (Conv); Conv_Type : constant Node := Get_Type (Conv); Conv_Typ : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Conv_Type); Val : Valtyp; begin Val := Synth_Expression_With_Basetype (Syn_Inst, Expr); if Val = No_Valtyp then return No_Valtyp; end if; Strip_Const (Val); case Get_Kind (Conv_Type) is when Iir_Kind_Integer_Subtype_Definition => if Val.Typ.Kind = Type_Discrete then -- Int to int. return Val; elsif Val.Typ.Kind = Type_Float then return Create_Value_Discrete (Int64 (Read_Fp64 (Val)), Conv_Typ); else Error_Msg_Synth (+Conv, "unhandled type conversion (to int)"); return No_Valtyp; end if; when Iir_Kind_Floating_Subtype_Definition => if Is_Static (Val.Val) then return Create_Value_Float (Fp64 (Read_Discrete (Val)), Conv_Typ); else Error_Msg_Synth (+Conv, "unhandled type conversion (to float)"); return No_Valtyp; end if; when Iir_Kind_Array_Type_Definition | Iir_Kind_Array_Subtype_Definition => case Conv_Typ.Kind is when Type_Vector | Type_Unbounded_Vector => return Val; when others => Error_Msg_Synth (+Conv, "unhandled type conversion (to array)"); return No_Valtyp; end case; when Iir_Kind_Enumeration_Type_Definition | Iir_Kind_Enumeration_Subtype_Definition => pragma Assert (Get_Base_Type (Get_Type (Expr)) = Get_Base_Type (Conv_Type)); return Val; when others => Error_Msg_Synth (+Conv, "unhandled type conversion"); return No_Valtyp; end case; end Synth_Type_Conversion; procedure Error_Ieee_Operator (Imp : Node; Loc : Node) is use Std_Names; Parent : constant Iir := Get_Parent (Imp); begin if Get_Kind (Parent) = Iir_Kind_Package_Declaration and then (Get_Identifier (Get_Library (Get_Design_File (Get_Design_Unit (Parent)))) = Name_Ieee) then case Get_Identifier (Parent) is when Name_Std_Logic_1164 | Name_Std_Logic_Arith | Name_Std_Logic_Signed | Name_Std_Logic_Unsigned | Name_Std_Logic_Misc | Name_Numeric_Std | Name_Numeric_Bit | Name_Math_Real => Error_Msg_Synth (+Loc, "unhandled predefined IEEE operator %i", +Imp); Error_Msg_Synth (+Imp, " declared here"); when others => -- ieee 2008 packages are handled like regular packages. null; end case; end if; end Error_Ieee_Operator; function Synth_String_Literal (Syn_Inst : Synth_Instance_Acc; Str : Node; Str_Typ : Type_Acc) return Valtyp is pragma Assert (Get_Kind (Str) = Iir_Kind_String_Literal8); Id : constant String8_Id := Get_String8_Id (Str); Str_Type : constant Node := Get_Type (Str); El_Type : Type_Acc; Bounds : Bound_Type; Bnds : Bound_Array_Acc; Res_Type : Type_Acc; Res : Valtyp; Pos : Nat8; begin case Str_Typ.Kind is when Type_Vector => Bounds := Str_Typ.Vbound; when Type_Array => Bounds := Str_Typ.Abounds.D (1); when Type_Unbounded_Vector | Type_Unbounded_Array => Bounds := Synth_Bounds_From_Length (Get_Index_Type (Str_Type, 0), Get_String_Length (Str)); when others => raise Internal_Error; end case; El_Type := Get_Subtype_Object (Syn_Inst, Get_Element_Subtype (Str_Type)); if El_Type.Kind in Type_Nets then Res_Type := Create_Vector_Type (Bounds, El_Type); else Bnds := Create_Bound_Array (1); Bnds.D (1) := Bounds; Res_Type := Create_Array_Type (Bnds, El_Type); end if; Res := Create_Value_Memory (Res_Type); -- Only U8 are handled. pragma Assert (El_Type.Sz = 1); -- From left to right. for I in 1 .. Bounds.Len loop -- FIXME: use literal from type ?? Pos := Str_Table.Element_String8 (Id, Pos32 (I)); Write_U8 (Res.Val.Mem + Size_Type (I - 1), Nat8'Pos (Pos)); end loop; return Res; end Synth_String_Literal; -- Return the left bound if the direction of the range is LEFT_DIR. function Synth_Low_High_Type_Attribute (Syn_Inst : Synth_Instance_Acc; Expr : Node; Left_Dir : Direction_Type) return Valtyp is Typ : Type_Acc; R : Int64; begin Typ := Get_Subtype_Object (Syn_Inst, Get_Type (Get_Prefix (Expr))); pragma Assert (Typ.Kind = Type_Discrete); if Typ.Drange.Dir = Left_Dir then R := Typ.Drange.Left; else R := Typ.Drange.Right; end if; return Create_Value_Discrete (R, Typ); end Synth_Low_High_Type_Attribute; function Synth_PSL_Expression (Syn_Inst : Synth_Instance_Acc; Expr : PSL.Types.PSL_Node) return Net is use PSL.Types; use PSL.Nodes; Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Loc : constant Location_Type := Get_Location (Expr); Res : Net; begin case Get_Kind (Expr) is when N_HDL_Bool => declare E : constant Vhdl.Types.Vhdl_Node := Get_HDL_Node (Expr); begin return Get_Net (Ctxt, Synth_Expression (Syn_Inst, E)); end; when N_Not_Bool => pragma Assert (Loc /= No_Location); Res := Build_Monadic (Ctxt, Id_Not, Synth_PSL_Expression (Syn_Inst, Get_Boolean (Expr))); when N_And_Bool => pragma Assert (Loc /= No_Location); declare L : constant PSL_Node := Get_Left (Expr); R : constant PSL_Node := Get_Right (Expr); Edge : Net; begin -- Handle edge (as it can be in default clock). if Get_Kind (L) in N_HDLs and then Get_Kind (R) in N_HDLs then Edge := Synth_Clock_Edge (Syn_Inst, Get_HDL_Node (L), Get_HDL_Node (R)); if Edge /= No_Net then return Edge; end if; end if; if Get_Kind (R) = N_EOS then -- It is never EOS! Res := Build_Const_UB32 (Ctxt, 0, 1); else Res := Build_Dyadic (Ctxt, Id_And, Synth_PSL_Expression (Syn_Inst, L), Synth_PSL_Expression (Syn_Inst, R)); end if; end; when N_Or_Bool => pragma Assert (Loc /= No_Location); Res := Build_Dyadic (Ctxt, Id_Or, Synth_PSL_Expression (Syn_Inst, Get_Left (Expr)), Synth_PSL_Expression (Syn_Inst, Get_Right (Expr))); when N_True => Res := Build_Const_UB32 (Ctxt, 1, 1); when N_False | N_EOS => Res := Build_Const_UB32 (Ctxt, 0, 1); when others => PSL.Errors.Error_Kind ("synth_psl_expr", Expr); return No_Net; end case; Netlists.Locations.Set_Location (Get_Net_Parent (Res), Loc); return Res; end Synth_PSL_Expression; function Synth_Psl_Function_Clock (Syn_Inst : Synth_Instance_Acc; Call : Node; Ctxt : Context_Acc) return Net is Clock : Node; Clk : Valtyp; Clk_Net : Net; begin Clock := Get_Clock_Expression (Call); if Clock /= Null_Node then Clk := Synth_Expression (Syn_Inst, Clock); Clk_Net := Get_Net (Ctxt, Clk); else Clock := Get_Default_Clock (Call); pragma Assert (Clock /= Null_Node); Clk_Net := Synth_PSL_Expression (Syn_Inst, Get_Psl_Boolean (Clock)); end if; return Clk_Net; end Synth_Psl_Function_Clock; function Synth_Psl_Prev (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Count : constant Node := Get_Count_Expression (Call); Count_Val : Valtyp; Dff : Net; Expr : Valtyp; Clk_Net : Net; Num : Int64; begin Expr := Synth_Expression_With_Basetype (Syn_Inst, Get_Expression (Call)); Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt); if Count /= Null_Node then Count_Val := Synth_Expression (Syn_Inst, Count); Num := Read_Discrete (Count_Val); pragma Assert (Num >= 1); else Num := 1; end if; Dff := Get_Net (Ctxt, Expr); for I in 1 .. Num loop Dff := Build_Dff (Ctxt, Clk_Net, Dff); Set_Location (Dff, Call); end loop; return Create_Value_Net (Dff, Expr.Typ); end Synth_Psl_Prev; function Synth_Psl_Stable (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); DffCurr : Net; Dff : Net; Expr : Valtyp; Clk_Net : Net; Res : Net; begin Expr := Synth_Expression_With_Basetype (Syn_Inst, Get_Expression (Call)); Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt); DffCurr := Get_Net (Ctxt, Expr); Set_Location (DffCurr, Call); Dff := Build_Dff (Ctxt, Clk_Net, DffCurr); Set_Location (Dff, Call); Res := Build_Compare(Ctxt, Id_Eq, DffCurr, Dff); Set_Location (Res, Call); return Create_Value_Net (Res, Boolean_Type); end Synth_Psl_Stable; function Synth_Psl_Rose (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); DffCurr : Net; Dff : Net; NotDff : Net; Clk_Net : Net; Expr : Valtyp; Res : Net; begin Expr := Synth_Expression (Syn_Inst, Get_Expression (Call)); Clk_Net := Synth_Psl_Function_Clock (Syn_Inst, Call, Ctxt); DffCurr := Get_Net (Ctxt, Expr); Set_Location (DffCurr, Call); Dff := Build_Dff (Ctxt, Clk_Net, DffCurr); Set_Location (Dff, Call); NotDff := Build_Monadic (Ctxt, Id_Not, Dff); Set_Location (NotDff, Call); Res := Build_Dyadic (Ctxt, Id_And, NotDff, DffCurr); Set_Location (Res, Call); return Create_Value_Net (Res, Boolean_Type); end Synth_Psl_Rose; function Synth_Psl_Fell (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); DffCurr : Net; NotDffCurr : Net; Dff : Net; Clk_Net : Net; Expr : Valtyp; Res : Net; begin Expr := Synth_Expression (Syn_Inst, Get_Expression (Call)); Clk_Net := Synth_Psl_Function_Clock(Syn_Inst, Call, Ctxt); DffCurr := Get_Net (Ctxt, Expr); Set_Location (DffCurr, Call); Dff := Build_Dff (Ctxt, Clk_Net, DffCurr); Set_Location (Dff, Call); NotDffCurr := Build_Monadic (Ctxt, Id_Not, DffCurr); Set_Location (NotDffCurr, Call); Res := Build_Dyadic (Ctxt, Id_And, Dff, NotDffCurr); Set_Location (Res, Call); return Create_Value_Net (Res, Boolean_Type); end Synth_Psl_Fell; subtype And_Or_Module_Id is Module_Id range Id_And .. Id_Or; function Synth_Short_Circuit (Syn_Inst : Synth_Instance_Acc; Id : And_Or_Module_Id; Left_Expr : Node; Right_Expr : Node; Typ : Type_Acc; Expr : Node) return Valtyp is Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Left : Valtyp; Right : Valtyp; Val : Int64; N : Net; begin -- The short-circuit value. case Id is when Id_And => Val := 0; when Id_Or => Val := 1; end case; Left := Synth_Expression_With_Type (Syn_Inst, Left_Expr, Typ); if Left = No_Valtyp then return No_Valtyp; end if; if Is_Static_Val (Left.Val) and then Get_Static_Discrete (Left) = Val then return Create_Value_Discrete (Val, Boolean_Type); end if; Strip_Const (Left); Right := Synth_Expression_With_Type (Syn_Inst, Right_Expr, Typ); if Right = No_Valtyp then return No_Valtyp; end if; Strip_Const (Right); -- Return a static value if both operands are static. -- Note: we know the value of left if it is not constant. if Is_Static_Val (Left.Val) and then Is_Static_Val (Right.Val) then Val := Get_Static_Discrete (Right); return Create_Value_Discrete (Val, Boolean_Type); end if; N := Build_Dyadic (Ctxt, Id, Get_Net (Ctxt, Left), Get_Net (Ctxt, Right)); Set_Location (N, Expr); return Create_Value_Net (N, Boolean_Type); end Synth_Short_Circuit; function Synth_Expression_With_Type (Syn_Inst : Synth_Instance_Acc; Expr : Node; Expr_Type : Type_Acc) return Valtyp is begin case Get_Kind (Expr) is when Iir_Kinds_Dyadic_Operator => declare Imp : constant Node := Get_Implementation (Expr); Def : constant Iir_Predefined_Functions := Get_Implicit_Definition (Imp); Edge : Net; begin -- Match clock-edge if Def = Iir_Predefined_Boolean_And then Edge := Synth_Clock_Edge (Syn_Inst, Get_Left (Expr), Get_Right (Expr)); if Edge /= No_Net then return Create_Value_Net (Edge, Boolean_Type); end if; end if; -- Specially handle short-circuit operators. case Def is when Iir_Predefined_Boolean_And => return Synth_Short_Circuit (Syn_Inst, Id_And, Get_Left (Expr), Get_Right (Expr), Boolean_Type, Expr); when Iir_Predefined_Boolean_Or => return Synth_Short_Circuit (Syn_Inst, Id_Or, Get_Left (Expr), Get_Right (Expr), Boolean_Type, Expr); when Iir_Predefined_Bit_And => return Synth_Short_Circuit (Syn_Inst, Id_And, Get_Left (Expr), Get_Right (Expr), Bit_Type, Expr); when Iir_Predefined_Bit_Or => return Synth_Short_Circuit (Syn_Inst, Id_Or, Get_Left (Expr), Get_Right (Expr), Bit_Type, Expr); when Iir_Predefined_None => Error_Ieee_Operator (Imp, Expr); return Synth_User_Operator (Syn_Inst, Get_Left (Expr), Get_Right (Expr), Expr); when others => return Synth_Dyadic_Operation (Syn_Inst, Imp, Get_Left (Expr), Get_Right (Expr), Expr); end case; end; when Iir_Kinds_Monadic_Operator => declare Imp : constant Node := Get_Implementation (Expr); Def : constant Iir_Predefined_Functions := Get_Implicit_Definition (Imp); begin if Def = Iir_Predefined_None then Error_Ieee_Operator (Imp, Expr); return Synth_User_Operator (Syn_Inst, Get_Operand (Expr), Null_Node, Expr); else return Synth_Monadic_Operation (Syn_Inst, Imp, Get_Operand (Expr), Expr); end if; end; when Iir_Kind_Simple_Name | Iir_Kind_Selected_Name | Iir_Kind_Interface_Signal_Declaration -- For PSL. | Iir_Kind_Signal_Declaration -- For PSL. | Iir_Kind_Implicit_Dereference | Iir_Kind_Dereference => return Synth_Name (Syn_Inst, Expr); when Iir_Kind_Reference_Name => -- Only used for anonymous signals in internal association. return Synth_Expression_With_Type (Syn_Inst, Get_Named_Entity (Expr), Expr_Type); when Iir_Kind_Anonymous_Signal_Declaration => return Synth_Expression_With_Type (Syn_Inst, Get_Expression (Expr), Expr_Type); when Iir_Kind_Indexed_Name | Iir_Kind_Slice_Name => declare Base : Valtyp; Typ : Type_Acc; Off : Value_Offsets; Res : Valtyp; Dyn : Dyn_Name; begin Synth_Assignment_Prefix (Syn_Inst, Expr, Base, Typ, Off, Dyn); if Dyn.Voff = No_Net and then Is_Static (Base.Val) then Res := Create_Value_Memory (Typ); Copy_Memory (Res.Val.Mem, Base.Val.Mem + Off.Mem_Off, Typ.Sz); return Res; end if; return Synth_Read_Memory (Syn_Inst, Base, Typ, Off.Net_Off, Dyn, Expr); end; when Iir_Kind_Selected_Element => declare Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Idx : constant Iir_Index32 := Get_Element_Position (Get_Named_Entity (Expr)); Pfx : constant Node := Get_Prefix (Expr); Res_Typ : Type_Acc; N : Net; Val : Valtyp; Res : Valtyp; begin Val := Synth_Expression (Syn_Inst, Pfx); Strip_Const (Val); Res_Typ := Val.Typ.Rec.E (Idx + 1).Typ; if Is_Static (Val.Val) then Res := Create_Value_Memory (Res_Typ); Copy_Memory (Res.Val.Mem, Val.Val.Mem + Val.Typ.Rec.E (Idx + 1).Moff, Res_Typ.Sz); return Res; else N := Build_Extract (Ctxt, Get_Net (Ctxt, Val), Val.Typ.Rec.E (Idx + 1).Boff, Get_Type_Width (Res_Typ)); Set_Location (N, Expr); return Create_Value_Net (N, Res_Typ); end if; end; when Iir_Kind_Character_Literal => return Synth_Expression_With_Type (Syn_Inst, Get_Named_Entity (Expr), Expr_Type); when Iir_Kind_Integer_Literal => declare Res : Valtyp; begin Res := Create_Value_Memory (Expr_Type); Write_Discrete (Res, Get_Value (Expr)); return Res; end; when Iir_Kind_Floating_Point_Literal => return Create_Value_Float (Get_Fp_Value (Expr), Expr_Type); when Iir_Kind_Physical_Int_Literal | Iir_Kind_Physical_Fp_Literal => return Create_Value_Discrete (Get_Physical_Value (Expr), Expr_Type); when Iir_Kind_String_Literal8 => return Synth_String_Literal (Syn_Inst, Expr, Expr_Type); when Iir_Kind_Enumeration_Literal => return Synth_Name (Syn_Inst, Expr); when Iir_Kind_Type_Conversion => return Synth_Type_Conversion (Syn_Inst, Expr); when Iir_Kind_Qualified_Expression => return Synth_Expression_With_Type (Syn_Inst, Get_Expression (Expr), Get_Subtype_Object (Syn_Inst, Get_Type (Get_Type_Mark (Expr)))); when Iir_Kind_Function_Call => declare Imp : constant Node := Get_Implementation (Expr); begin case Get_Implicit_Definition (Imp) is when Iir_Predefined_Pure_Functions | Iir_Predefined_Ieee_Numeric_Std_Binary_Operators => return Synth_Operator_Function_Call (Syn_Inst, Expr); when Iir_Predefined_None => return Synth_User_Function_Call (Syn_Inst, Expr); when others => return Synth_Predefined_Function_Call (Syn_Inst, Expr); end case; end; when Iir_Kind_Aggregate => return Synth.Aggr.Synth_Aggregate (Syn_Inst, Expr, Expr_Type); when Iir_Kind_Simple_Aggregate => return Synth_Simple_Aggregate (Syn_Inst, Expr); when Iir_Kind_Parenthesis_Expression => return Synth_Expression_With_Type (Syn_Inst, Get_Expression (Expr), Expr_Type); when Iir_Kind_Left_Array_Attribute => declare B : Bound_Type; begin B := Synth_Array_Attribute (Syn_Inst, Expr); return Create_Value_Discrete (Int64 (B.Left), Expr_Type); end; when Iir_Kind_Right_Array_Attribute => declare B : Bound_Type; begin B := Synth_Array_Attribute (Syn_Inst, Expr); return Create_Value_Discrete (Int64 (B.Right), Expr_Type); end; when Iir_Kind_High_Array_Attribute => declare B : Bound_Type; V : Int32; begin B := Synth_Array_Attribute (Syn_Inst, Expr); case B.Dir is when Dir_To => V := B.Right; when Dir_Downto => V := B.Left; end case; return Create_Value_Discrete (Int64 (V), Expr_Type); end; when Iir_Kind_Low_Array_Attribute => declare B : Bound_Type; V : Int32; begin B := Synth_Array_Attribute (Syn_Inst, Expr); case B.Dir is when Dir_To => V := B.Left; when Dir_Downto => V := B.Right; end case; return Create_Value_Discrete (Int64 (V), Expr_Type); end; when Iir_Kind_Length_Array_Attribute => declare B : Bound_Type; begin B := Synth_Array_Attribute (Syn_Inst, Expr); return Create_Value_Discrete (Int64 (B.Len), Expr_Type); end; when Iir_Kind_Ascending_Array_Attribute => declare B : Bound_Type; V : Int64; begin B := Synth_Array_Attribute (Syn_Inst, Expr); case B.Dir is when Dir_To => V := 1; when Dir_Downto => V := 0; end case; return Create_Value_Discrete (V, Expr_Type); end; when Iir_Kind_Pos_Attribute | Iir_Kind_Val_Attribute => declare Ctxt : constant Context_Acc := Get_Build (Syn_Inst); Param : constant Node := Get_Parameter (Expr); V : Valtyp; Dtype : Type_Acc; begin V := Synth_Expression (Syn_Inst, Param); Dtype := Get_Subtype_Object (Syn_Inst, Get_Type (Expr)); -- FIXME: to be generalized. Not always as simple as a -- subtype conversion. return Synth_Subtype_Conversion (Ctxt, V, Dtype, False, Expr); end; when Iir_Kind_Low_Type_Attribute => return Synth_Low_High_Type_Attribute (Syn_Inst, Expr, Dir_To); when Iir_Kind_High_Type_Attribute => return Synth_Low_High_Type_Attribute (Syn_Inst, Expr, Dir_Downto); when Iir_Kind_Value_Attribute => return Synth_Value_Attribute (Syn_Inst, Expr); when Iir_Kind_Image_Attribute => return Synth_Image_Attribute (Syn_Inst, Expr); when Iir_Kind_Instance_Name_Attribute => return Synth_Instance_Name_Attribute (Syn_Inst, Expr); when Iir_Kind_Null_Literal => return Create_Value_Access (Null_Heap_Index, Expr_Type); when Iir_Kind_Allocator_By_Subtype => declare T : Type_Acc; Acc : Heap_Index; begin T := Synth.Decls.Synth_Subtype_Indication (Syn_Inst, Get_Subtype_Indication (Expr)); Acc := Allocate_By_Type (T); return Create_Value_Access (Acc, Expr_Type); end; when Iir_Kind_Allocator_By_Expression => declare V : Valtyp; Acc : Heap_Index; begin V := Synth_Expression_With_Type (Syn_Inst, Get_Expression (Expr), Expr_Type.Acc_Acc); Acc := Allocate_By_Value (V); return Create_Value_Access (Acc, Expr_Type); end; when Iir_Kind_Stable_Attribute => Error_Msg_Synth (+Expr, "signal attribute not supported"); return No_Valtyp; when Iir_Kind_Psl_Prev => return Synth_Psl_Prev (Syn_Inst, Expr); when Iir_Kind_Psl_Stable => return Synth_Psl_Stable (Syn_Inst, Expr); when Iir_Kind_Psl_Rose => return Synth_Psl_Rose(Syn_Inst, Expr); when Iir_Kind_Psl_Fell => return Synth_Psl_Fell(Syn_Inst, Expr); when Iir_Kind_Overflow_Literal => Error_Msg_Synth (+Expr, "out of bound expression"); return No_Valtyp; when others => Error_Kind ("synth_expression_with_type", Expr); end case; end Synth_Expression_With_Type; function Synth_Expression (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Valtyp is Etype : Node; begin Etype := Get_Type (Expr); case Get_Kind (Expr) is when Iir_Kind_High_Array_Attribute | Iir_Kind_Low_Array_Attribute | Iir_Kind_Integer_Literal => -- The type of this attribute is the type of the index, which is -- not synthesized as atype (only as an index). -- For integer_literal, the type is not really needed, and it -- may be created by static evaluation of an array attribute. Etype := Get_Base_Type (Etype); when others => null; end case; return Synth_Expression_With_Type (Syn_Inst, Expr, Get_Subtype_Object (Syn_Inst, Etype)); end Synth_Expression; function Synth_Expression_With_Basetype (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Valtyp is Basetype : Type_Acc; begin Basetype := Get_Subtype_Object (Syn_Inst, Get_Base_Type (Get_Type (Expr))); return Synth_Expression_With_Type (Syn_Inst, Expr, Basetype); end Synth_Expression_With_Basetype; end Synth.Expr;