// // Copyright (C) 2015 Clifford Wolf // // Based on a reference implementation provided by Mathias Lasser // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // #if !defined(_WIN32) && !defined(_GNU_SOURCE) // for vasprintf() #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef __EMSCRIPTEN__ #include #endif #ifdef _WIN32 #define __PRETTY_FUNCTION__ __FUNCTION__ #endif using std::vector; using std::string; int log_level = 0; #define log(...) fprintf(stderr, __VA_ARGS__); #define info(...) do { if (log_level > 0) fprintf(stderr, __VA_ARGS__); } while (0) #define debug(...) do { if (log_level > 1) fprintf(stderr, __VA_ARGS__); } while (0) #define error(...) do { fprintf(stderr, "Error: " __VA_ARGS__); exit(1); } while (0) #define panic(fmt, ...) do { fprintf(stderr, "Internal Error at %s:%d: " fmt, __FILE__, __LINE__, ##__VA_ARGS__); abort(); } while (0) string vstringf(const char *fmt, va_list ap) { string string; char *str = NULL; #ifdef _WIN32 int sz = 64, rc; while (1) { va_list apc; va_copy(apc, ap); str = (char*)realloc(str, sz); rc = vsnprintf(str, sz, fmt, apc); va_end(apc); if (rc >= 0 && rc < sz) break; sz *= 2; } #else if (vasprintf(&str, fmt, ap) < 0) str = NULL; #endif if (str != NULL) { string = str; free(str); } return string; } string stringf(const char *fmt, ...) { string string; va_list ap; va_start(ap, fmt); string = vstringf(fmt, ap); va_end(ap); return string; } // ================================================================== // FpgaConfig stuff struct FpgaConfig { string device; string freqrange; string nosleep; string warmboot; // cram[BANK][X][Y] int cram_width, cram_height; vector>> cram; // bram[BANK][X][Y] int bram_width, bram_height; vector>> bram; bool skip_bram_initialization; // data before preamble vector initblop; // bitstream i/o void read_bits(std::istream &ifs); void write_bits(std::ostream &ofs) const; // icebox i/o void read_ascii(std::istream &ifs, bool nosleep); void write_ascii(std::ostream &ofs) const; // netpbm i/o void write_cram_pbm(std::ostream &ofs, int bank_num = -1) const; void write_bram_pbm(std::ostream &ofs, int bank_num = -1) const; // query chip type metadata int chip_width() const; int chip_height() const; vector chip_cols() const; // query tile metadata string tile_type(int x, int y) const; int tile_width(const string &type) const; // cram bit manipulation void cram_clear(); void cram_fill_tiles(); void cram_checkerboard(int m = 0); }; struct CramIndexConverter { const FpgaConfig *fpga; int tile_x, tile_y; string tile_type; int tile_width; int column_width; bool left_right_io; bool right_half; bool top_half; int bank_num; int bank_tx; int bank_ty; int bank_xoff; int bank_yoff; CramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y); void get_cram_index(int bit_x, int bit_y, int &cram_bank, int &cram_x, int &cram_y) const; }; struct BramIndexConverter { const FpgaConfig *fpga; int tile_x, tile_y; int bank_num; int bank_off; BramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y); void get_bram_index(int bit_x, int bit_y, int &bram_bank, int &bram_x, int &bram_y) const; }; static void update_crc16(uint16_t &crc, uint8_t byte) { // CRC-16-CCITT, Initialize to 0xFFFF, No zero padding for (int i = 7; i >= 0; i--) { uint16_t xor_value = ((crc >> 15) ^ ((byte >> i) & 1)) ? 0x1021 : 0; crc = (crc << 1) ^ xor_value; } } static uint8_t read_byte(std::istream &ifs, uint16_t &crc_value, int &file_offset) { int byte = ifs.get(); if (byte < 0) error("Unexpected end of file.\n"); file_offset++; update_crc16(crc_value, byte); return byte; } static void write_byte(std::ostream &ofs, uint16_t &crc_value, int &file_offset, uint8_t byte) { ofs << byte; file_offset++; update_crc16(crc_value, byte); } void FpgaConfig::read_bits(std::istream &ifs) { int file_offset = 0; uint16_t crc_value = 0; debug("## %s\n", __PRETTY_FUNCTION__); info("Parsing bitstream file..\n"); // skip initial comments until preamble is found uint32_t preamble = 0; while (1) { uint8_t byte = read_byte(ifs, crc_value, file_offset); preamble = (preamble << 8) | byte; if (preamble == 0xffffffff) error("No preamble found in bitstream.\n"); if (preamble == 0x7EAA997E) { info("Found preamble at offset %d.\n", file_offset-4); break; } initblop.push_back(byte); } initblop.pop_back(); initblop.pop_back(); initblop.pop_back(); // main parser loop int current_bank = 0; int current_width = 0; int current_height = 0; int current_offset = 0; bool wakeup = false; this->cram_width = 0; this->cram_height = 0; this->bram_width = 0; this->bram_height = 0; while (!wakeup) { // one command byte. the lower 4 bits of the command byte specify // the length of the command payload. uint8_t command = read_byte(ifs, crc_value, file_offset); uint32_t payload = 0; for (int i = 0; i < (command & 0x0f); i++) payload = (payload << 8) | read_byte(ifs, crc_value, file_offset); debug("Next command at offset %d: 0x%02x 0x%0*x\n", file_offset - 1 - (command & 0x0f), command, 2*(command & 0x0f), payload); uint16_t end_token; switch (command & 0xf0) { case 0x00: switch (payload) { case 0x01: info("CRAM Data [%d]: %d x %d bits = %d bits = %d bytes\n", current_bank, current_width, current_height, current_height*current_width, (current_height*current_width)/8); this->cram_width = std::max(this->cram_width, current_width); this->cram_height = std::max(this->cram_height, current_offset + current_height); this->cram.resize(4); this->cram[current_bank].resize(this->cram_width); for (int x = 0; x < current_width; x++) this->cram[current_bank][x].resize(this->cram_height); for (int i = 0; i < (current_height*current_width)/8; i++) { uint8_t byte = read_byte(ifs, crc_value, file_offset); for (int j = 0; j < 8; j++) { int x = (i*8 + j) % current_width; int y = (i*8 + j) / current_width + current_offset; this->cram[current_bank][x][y] = ((byte << j) & 0x80) != 0; } } end_token = read_byte(ifs, crc_value, file_offset); end_token = (end_token << 8) | read_byte(ifs, crc_value, file_offset); if (end_token) error("Expeded 0x0000 after CRAM data, got 0x%04x\n", end_token); break; case 0x03: info("BRAM Data [%d]: %d x %d bits = %d bits = %d bytes\n", current_bank, current_width, current_height, current_height*current_width, (current_height*current_width)/8); this->bram_width = std::max(this->bram_width, current_width); this->bram_height = std::max(this->bram_height, current_offset + current_height); this->bram.resize(4); this->bram[current_bank].resize(this->bram_width); for (int x = 0; x < current_width; x++) this->bram[current_bank][x].resize(this->bram_height); for (int i = 0; i < (current_height*current_width)/8; i++) { uint8_t byte = read_byte(ifs, crc_value, file_offset); for (int j = 0; j < 8; j++) { int x = (i*8 + j) % current_width; int y = (i*8 + j) / current_width + current_offset; this->bram[current_bank][x][y] = ((byte << j) & 0x80) != 0; } } end_token = read_byte(ifs, crc_value, file_offset); end_token = (end_token << 8) | read_byte(ifs, crc_value, file_offset); if (end_token) error("Expected 0x0000 after BRAM data, got 0x%04x\n", end_token); break; case 0x05: debug("Resetting CRC.\n"); crc_value = 0xffff; break; case 0x06: info("Wakeup.\n"); wakeup = true; break; default: error("Unknown command: 0x%02x 0x%02x\n", command, payload); } break; case 0x10: current_bank = payload; debug("Set bank to %d.\n", current_bank); break; case 0x20: if (crc_value != 0) error("CRC Check FAILED.\n"); info("CRC Check OK.\n"); break; case 0x50: if (payload == 0) this->freqrange = "low"; else if (payload == 1) this->freqrange = "medium"; else if (payload == 2) this->freqrange = "high"; else error("Unknown freqrange payload 0x%02x\n", payload); info("Setting freqrange to '%s'.\n", this->freqrange.c_str()); break; case 0x60: current_width = payload + 1; debug("Setting bank width to %d.\n", current_width); break; case 0x70: current_height = payload; debug("Setting bank height to %d.\n", current_height); break; case 0x80: current_offset = payload; debug("Setting bank offset to %d.\n", current_offset); break; case 0x90: switch(payload) { case 0: this->warmboot = "disabled"; this->nosleep = "disabled"; break; case 1: this->warmboot = "disabled"; this->nosleep = "enabled"; break; case 32: this->warmboot = "enabled"; this->nosleep = "disabled"; break; case 33: this->warmboot = "enabled"; this->nosleep = "enabled"; break; default: error("Unknown warmboot/nosleep payload 0x%02x\n", payload); } info("Setting warmboot to '%s', nosleep to '%s'.\n", this->warmboot.c_str(), this->nosleep.c_str()); break; default: error("Unknown command: 0x%02x 0x%02x\n", command, payload); } } if (this->cram_width == 182 && this->cram_height == 80) this->device = "384"; else if (this->cram_width == 332 && this->cram_height == 144) this->device = "1k"; else if (this->cram_width == 872 && this->cram_height == 272) this->device = "8k"; else if (this->cram_width == 692 && this->cram_height == 336) this->device = "5k"; else if (this->cram_width == 692 && this->cram_height == 176) this->device = "u4k"; else if (this->cram_width == 656 && this->cram_height == 176) this->device = "lm4k"; else error("Failed to detect chip type.\n"); info("Chip type is '%s'.\n", this->device.c_str()); } void FpgaConfig::write_bits(std::ostream &ofs) const { int file_offset = 0; uint16_t crc_value = 0; debug("## %s\n", __PRETTY_FUNCTION__); info("Writing bitstream file..\n"); for (auto byte : this->initblop) ofs << byte; debug("Writing preamble.\n"); write_byte(ofs, crc_value, file_offset, 0x7E); write_byte(ofs, crc_value, file_offset, 0xAA); write_byte(ofs, crc_value, file_offset, 0x99); write_byte(ofs, crc_value, file_offset, 0x7E); debug("Setting freqrange to '%s'.\n", this->freqrange.c_str()); write_byte(ofs, crc_value, file_offset, 0x51); if (this->freqrange == "low") write_byte(ofs, crc_value, file_offset, 0x00); else if (this->freqrange == "medium") write_byte(ofs, crc_value, file_offset, 0x01); else if (this->freqrange == "high") write_byte(ofs, crc_value, file_offset, 0x02); else error("Unknown freqrange '%s'.\n", this->freqrange.c_str()); debug("Resetting CRC.\n"); write_byte(ofs, crc_value, file_offset, 0x01); write_byte(ofs, crc_value, file_offset, 0x05); crc_value = 0xffff; { uint8_t nosleep_flag; debug("Setting warmboot to '%s', nosleep to '%s'.\n", this->warmboot.c_str(), this->nosleep.c_str()); write_byte(ofs, crc_value, file_offset, 0x92); write_byte(ofs, crc_value, file_offset, 0x00); if (this->nosleep == "disabled") nosleep_flag = 0; else if (this->nosleep == "enabled") nosleep_flag = 1; else error("Unknown nosleep setting '%s'.\n", this->nosleep.c_str()); if (this->warmboot == "disabled") write_byte(ofs, crc_value, file_offset, 0x00 | nosleep_flag); else if (this->warmboot == "enabled") write_byte(ofs, crc_value, file_offset, 0x20 | nosleep_flag); else error("Unknown warmboot setting '%s'.\n", this->warmboot.c_str()); } debug("CRAM: Setting bank width to %d.\n", this->cram_width); write_byte(ofs, crc_value, file_offset, 0x62); write_byte(ofs, crc_value, file_offset, (this->cram_width-1) >> 8); write_byte(ofs, crc_value, file_offset, (this->cram_width-1)); if(this->device != "5k") { debug("CRAM: Setting bank height to %d.\n", this->cram_height); write_byte(ofs, crc_value, file_offset, 0x72); write_byte(ofs, crc_value, file_offset, this->cram_height >> 8); write_byte(ofs, crc_value, file_offset, this->cram_height); } debug("CRAM: Setting bank offset to 0.\n"); write_byte(ofs, crc_value, file_offset, 0x82); write_byte(ofs, crc_value, file_offset, 0x00); write_byte(ofs, crc_value, file_offset, 0x00); for (int cram_bank = 0; cram_bank < 4; cram_bank++) { vector cram_bits; int height = this->cram_height; if(this->device == "5k" && ((cram_bank % 2) == 1)) height = height / 2 + 8; for (int cram_y = 0; cram_y < height; cram_y++) for (int cram_x = 0; cram_x < this->cram_width; cram_x++) cram_bits.push_back(this->cram[cram_bank][cram_x][cram_y]); if(this->device == "5k") { debug("CRAM: Setting bank height to %d.\n", height); write_byte(ofs, crc_value, file_offset, 0x72); write_byte(ofs, crc_value, file_offset, height >> 8); write_byte(ofs, crc_value, file_offset, height); } debug("CRAM: Setting bank %d.\n", cram_bank); write_byte(ofs, crc_value, file_offset, 0x11); write_byte(ofs, crc_value, file_offset, cram_bank); debug("CRAM: Writing bank %d data.\n", cram_bank); write_byte(ofs, crc_value, file_offset, 0x01); write_byte(ofs, crc_value, file_offset, 0x01); for (int i = 0; i < int(cram_bits.size()); i += 8) { uint8_t byte = 0; for (int j = 0; j < 8; j++) byte = (byte << 1) | (cram_bits[i+j] ? 1 : 0); write_byte(ofs, crc_value, file_offset, byte); } write_byte(ofs, crc_value, file_offset, 0x00); write_byte(ofs, crc_value, file_offset, 0x00); } int bram_chunk_size = 128; if (this->bram_width && this->bram_height) { if(this->device != "5k") { debug("BRAM: Setting bank width to %d.\n", this->bram_width); write_byte(ofs, crc_value, file_offset, 0x62); write_byte(ofs, crc_value, file_offset, (this->bram_width-1) >> 8); write_byte(ofs, crc_value, file_offset, (this->bram_width-1)); } debug("BRAM: Setting bank height to %d.\n", this->bram_height); write_byte(ofs, crc_value, file_offset, 0x72); write_byte(ofs, crc_value, file_offset, bram_chunk_size >> 8); write_byte(ofs, crc_value, file_offset, bram_chunk_size); for (int bram_bank = 0; bram_bank < 4; bram_bank++) { debug("BRAM: Setting bank %d.\n", bram_bank); write_byte(ofs, crc_value, file_offset, 0x11); write_byte(ofs, crc_value, file_offset, bram_bank); for (int offset = 0; offset < this->bram_height; offset += bram_chunk_size) { vector bram_bits; int width = this->bram_width; if(this->device == "5k" && ((bram_bank % 2) == 1)) width = width / 2; for (int bram_y = 0; bram_y < bram_chunk_size; bram_y++) for (int bram_x = 0; bram_x < width; bram_x++) bram_bits.push_back(this->bram[bram_bank][bram_x][bram_y+offset]); debug("BRAM: Setting bank offset to %d.\n", offset); write_byte(ofs, crc_value, file_offset, 0x82); write_byte(ofs, crc_value, file_offset, offset >> 8); write_byte(ofs, crc_value, file_offset, offset); if(this->device == "5k") { debug("BRAM: Setting bank width to %d.\n", width); write_byte(ofs, crc_value, file_offset, 0x62); write_byte(ofs, crc_value, file_offset, (width-1) >> 8); write_byte(ofs, crc_value, file_offset, (width-1)); } if (!this->skip_bram_initialization) { debug("BRAM: Writing bank %d data.\n", bram_bank); write_byte(ofs, crc_value, file_offset, 0x01); write_byte(ofs, crc_value, file_offset, 0x03); for (int i = 0; i < int(bram_bits.size()); i += 8) { uint8_t byte = 0; for (int j = 0; j < 8; j++) byte = (byte << 1) | (bram_bits[i+j] ? 1 : 0); write_byte(ofs, crc_value, file_offset, byte); } write_byte(ofs, crc_value, file_offset, 0x00); write_byte(ofs, crc_value, file_offset, 0x00); } } } } debug("Writing CRC value.\n"); write_byte(ofs, crc_value, file_offset, 0x22); uint8_t crc_hi = crc_value >> 8, crc_lo = crc_value; write_byte(ofs, crc_value, file_offset, crc_hi); write_byte(ofs, crc_value, file_offset, crc_lo); debug("Wakeup.\n"); write_byte(ofs, crc_value, file_offset, 0x01); write_byte(ofs, crc_value, file_offset, 0x06); debug("Padding byte.\n"); write_byte(ofs, crc_value, file_offset, 0x00); } void FpgaConfig::read_ascii(std::istream &ifs, bool nosleep) { debug("## %s\n", __PRETTY_FUNCTION__); info("Parsing ascii file..\n"); bool got_device = false; this->cram.clear(); this->bram.clear(); this->freqrange = "low"; this->warmboot = "enabled"; bool reuse_line = true; string line, command; while (reuse_line || getline(ifs, line)) { reuse_line = false; std::istringstream is(line); is >> command; if (command.empty()) continue; debug("Next command: %s\n", line.c_str()); if (command == ".comment") { this->initblop.clear(); this->initblop.push_back(0xff); this->initblop.push_back(0x00); while (getline(ifs, line)) { if (line.substr(0, 1) == ".") { reuse_line = true; break; } for (auto ch : line) this->initblop.push_back(ch); this->initblop.push_back(0); } this->initblop.push_back(0x00); this->initblop.push_back(0xff); continue; } if (command == ".device") { if (got_device) error("More than one .device statement.\n"); is >> this->device; if (this->device == "384") { this->cram_width = 182; this->cram_height = 80; this->bram_width = 0; this->bram_height = 0; } else if (this->device == "1k") { this->cram_width = 332; this->cram_height = 144; this->bram_width = 64; this->bram_height = 2 * 128; } else if (this->device == "8k") { this->cram_width = 872; this->cram_height = 272; this->bram_width = 128; this->bram_height = 2 * 128; } else if (this->device == "5k") { this->cram_width = 692; this->cram_height = 336; this->bram_width = 160; this->bram_height = 2 * 128; } else if (this->device == "u4k") { this->cram_width = 692; this->cram_height = 176; this->bram_width = 80; this->bram_height = 2 * 128; } else if (this->device == "lm4k") { this->cram_width = 656; this->cram_height = 176; this->bram_width = 80; this->bram_height = 2 * 128; } else error("Unsupported chip type '%s'.\n", this->device.c_str()); this->cram.resize(4); if(this->device == "5k") { for (int i = 0; i < 4; i++) { this->cram[i].resize(this->cram_width); for (int x = 0; x < this->cram_width; x++) this->cram[i][x].resize(((i % 2) == 1) ? (this->cram_height / 2 + 8) : this->cram_height); } this->bram.resize(4); for (int i = 0; i < 4; i++) { int width = ((i % 2) == 1) ? (this->bram_width / 2) : this->bram_width; this->bram[i].resize(width); for (int x = 0; x < width; x++) this->bram[i][x].resize(this->bram_height); } } else { for (int i = 0; i < 4; i++) { this->cram[i].resize(this->cram_width); for (int x = 0; x < this->cram_width; x++) this->cram[i][x].resize(this->cram_height); } this->bram.resize(4); for (int i = 0; i < 4; i++) { this->bram[i].resize(this->bram_width); for (int x = 0; x < this->bram_width; x++) this->bram[i][x].resize(this->bram_height); } } got_device = true; continue; } if (command == ".warmboot") { is >> this->warmboot; if (this->warmboot != "disabled" && this->warmboot != "enabled") error("Unknown warmboot setting '%s'.\n", this->warmboot.c_str()); continue; } // No ".nosleep" section despite sharing the same byte as .warmboot. // ".nosleep" is specified when icepack is invoked, which is too late. // So we inject the section based on command line argument. if (nosleep) this->nosleep = "enabled"; else this->nosleep = "disabled"; if (command == ".io_tile" || command == ".logic_tile" || command == ".ramb_tile" || command == ".ramt_tile" || command.substr(0, 4) == ".dsp" || command == ".ipcon_tile") { if (!got_device) error("Missing .device statement before %s.\n", command.c_str()); int tile_x, tile_y; is >> tile_x >> tile_y; CramIndexConverter cic(this, tile_x, tile_y); if (("." + cic.tile_type + "_tile") != command) error("Got %s statement for %s tile %d %d.\n", command.c_str(), cic.tile_type.c_str(), tile_x, tile_y); for (int bit_y = 0; bit_y < 16 && getline(ifs, line); bit_y++) { if (line.substr(0, 1) == ".") { reuse_line = true; break; } for (int bit_x = 0; bit_x < int(line.size()) && bit_x < cic.tile_width; bit_x++) if (line[bit_x] == '1') { int cram_bank, cram_x, cram_y; cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y); this->cram[cram_bank][cram_x][cram_y] = true; } } continue; } if (command == ".ram_data") { if (!got_device) error("Missing .device statement before %s.\n", command.c_str()); int tile_x, tile_y; is >> tile_x >> tile_y; BramIndexConverter bic(this, tile_x, tile_y); for (int bit_y = 0; bit_y < 16 && getline(ifs, line); bit_y++) { if (line.substr(0, 1) == ".") { reuse_line = true; break; } for (int bit_x = 256-4, ch_idx = 0; ch_idx < int(line.size()) && bit_x >= 0; bit_x -= 4, ch_idx++) { int value = -1; if ('0' <= line[ch_idx] && line[ch_idx] <= '9') value = line[ch_idx] - '0'; if ('a' <= line[ch_idx] && line[ch_idx] <= 'f') value = line[ch_idx] - 'a' + 10; if ('A' <= line[ch_idx] && line[ch_idx] <= 'F') value = line[ch_idx] - 'A' + 10; if (value < 0) error("Not a hex character: '%c' (in line '%s')\n", line[ch_idx], line.c_str()); for (int i = 0; i < 4; i++) if ((value & (1 << i)) != 0) { int bram_bank, bram_x, bram_y; bic.get_bram_index(bit_x+i, bit_y, bram_bank, bram_x, bram_y); this->bram[bram_bank][bram_x][bram_y] = true; } } } continue; } if (command == ".extra_bit") { if (!got_device) error("Missing .device statement before %s.\n", command.c_str()); int cram_bank, cram_x, cram_y; is >> cram_bank >> cram_x >> cram_y; this->cram[cram_bank][cram_x][cram_y] = true; continue; } if (command == ".sym") continue; if (command.substr(0, 1) == ".") error("Unknown statement: %s\n", command.c_str()); error("Unexpected data line: %s\n", line.c_str()); } } void FpgaConfig::write_ascii(std::ostream &ofs) const { debug("## %s\n", __PRETTY_FUNCTION__); info("Writing ascii file..\n"); ofs << ".comment"; bool insert_newline = true; for (auto ch : this->initblop) { if (ch == 0) { insert_newline = true; } else if (ch == 0xff) { insert_newline = false; } else { if (insert_newline) ofs << '\n'; ofs << ch; insert_newline = false; } } ofs << stringf("\n.device %s\n", this->device.c_str()); if (this->warmboot != "enabled") ofs << stringf(".warmboot %s\n", this->warmboot.c_str()); // As "nosleep" is an icepack command, we do not write out a ".nosleep" // section. However, we parse it in read_bits() and notify the user in // info. typedef std::tuple tile_bit_t; std::set tile_bits; for (int y = 0; y <= this->chip_height()+1; y++) for (int x = 0; x <= this->chip_width()+1; x++) { CramIndexConverter cic(this, x, y); if (cic.tile_type == "corner" || cic.tile_type == "unsupported") continue; ofs << stringf(".%s_tile %d %d\n", cic.tile_type.c_str(), x, y); for (int bit_y = 0; bit_y < 16; bit_y++) { for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) { int cram_bank, cram_x, cram_y; cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y); tile_bits.insert(tile_bit_t(cram_bank, cram_x, cram_y)); if (cram_x > int(this->cram[cram_bank].size())) { error("cram_x %d (bit %d, %d) larger than bank size %lu\n", cram_x, bit_x, bit_y, this->cram[cram_bank].size()); } if (cram_y > int(this->cram[cram_bank][cram_x].size())) { error("cram_y %d (bit %d, %d) larger than bank %d size %lu\n", cram_y, bit_x, bit_y, cram_bank, this->cram[cram_bank][cram_x].size()); } ofs << (this->cram[cram_bank][cram_x][cram_y] ? '1' : '0'); } ofs << '\n'; } if (cic.tile_type == "ramb" && !this->bram.empty()) { BramIndexConverter bic(this, x, y); ofs << stringf(".ram_data %d %d\n", x, y); for (int bit_y = 0; bit_y < 16; bit_y++) { for (int bit_x = 256-4; bit_x >= 0; bit_x -= 4) { int value = 0; for (int i = 0; i < 4; i++) { int bram_bank, bram_x, bram_y; bic.get_bram_index(bit_x+i, bit_y, bram_bank, bram_x, bram_y); if (bram_x >= int(this->bram[bram_bank].size())) { error("%d %d bram_x %d higher than loaded bram size %lu\n",bit_x+i, bit_y, bram_x, this->bram[bram_bank].size()); break; } if (bram_y >= int(this->bram[bram_bank][bram_x].size())) { error("bram_y %d higher than loaded bram size %lu\n", bram_y, this->bram[bram_bank][bram_x].size()); break; } if (this->bram[bram_bank][bram_x][bram_y]) value += 1 << i; } ofs << "0123456789abcdef"[value]; } ofs << '\n'; } } } for (int i = 0; i < 4; i++) for (int x = 0; x < this->cram_width; x++) for (int y = 0; y < this->cram_height; y++) if (this->cram[i][x][y] && tile_bits.count(tile_bit_t(i, x, y)) == 0) ofs << stringf(".extra_bit %d %d %d\n", i, x, y); #if 0 for (int i = 0; i < 4; i++) { ofs << stringf(".bram_bank %d\n", i); for (int x = 0; x < this->bram_width; x++) { for (int y = 0; y < this->bram_height; y += 4) ofs << "0123456789abcdef"[(this->bram[i][x][y] ? 1 : 0) + (this->bram[i][x][y+1] ? 2 : 0) + (this->bram[i][x][y+2] ? 4 : 0) + (this->bram[i][x][y+3] ? 8 : 0)]; ofs << '\n'; } } #endif } void FpgaConfig::write_cram_pbm(std::ostream &ofs, int bank_num) const { debug("## %s\n", __PRETTY_FUNCTION__); info("Writing cram pbm file..\n"); ofs << "P3\n"; ofs << stringf("%d %d\n", 2*this->cram_width, 2*this->cram_height); ofs << "255\n"; vector> tile_type[4]; // We require random access to tile_type, so ensure that each column of each // bank is initialised so that all possible indices are valid for (int bank = 0; bank < 4; bank++) { tile_type[bank].resize(this->cram_width); for (int x = 0; x < this->cram_width; x++) tile_type[bank][x].resize(this->cram_height); } for (int y = 0; y <= this->chip_height()+1; y++) for (int x = 0; x <= this->chip_width()+1; x++) { CramIndexConverter cic(this, x, y); uint32_t color = 0x000000; if (cic.tile_type == "io") { color = 0x00aa00; } else if (cic.tile_type == "logic") { if ((x + y) % 2 == 0) { color = 0x0000ff; } else { color = 0x0000aa; } if (x == 12 && y == 25) { color = 0xaa00aa; } if (x == 12 && y == 24) { color = 0x888888; } } else if (cic.tile_type == "ramt") { color = 0xff0000; } else if (cic.tile_type == "ramb") { color = 0xaa0000; } else if (cic.tile_type == "unsupported") { color = 0x333333; } else { info("%s\n", cic.tile_type.c_str()); } for (int bit_y = 0; bit_y < 16; bit_y++) for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) { int cram_bank, cram_x, cram_y; cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y); tile_type[cram_bank][cram_x][cram_y] = color; } } for (int y = 2*this->cram_height-1; y >= 0; y--) { for (int x = 0; x < 2*this->cram_width; x++) { int bank = 0, bank_x = x, bank_y = y; if (bank_x >= this->cram_width) bank |= 1, bank_x = 2*this->cram_width - bank_x - 1; if (bank_y >= this->cram_height) bank |= 2, bank_y = 2*this->cram_height - bank_y - 1; if (bank_num >= 0 && bank != bank_num) ofs << " 255 255 255"; else if (this->cram[bank][bank_x][bank_y]) { ofs << " 255 255 255"; } else { uint32_t color = tile_type[bank][bank_x][bank_y]; uint8_t r = color >> 16; uint8_t g = color >> 8; uint8_t b = color & 0xff; ofs << stringf(" %d %d %d", r, g, b); } } ofs << '\n'; } } void FpgaConfig::write_bram_pbm(std::ostream &ofs, int bank_num) const { debug("## %s\n", __PRETTY_FUNCTION__); info("Writing bram pbm file..\n"); ofs << "P1\n"; ofs << stringf("%d %d\n", 2*this->bram_width, 2*this->bram_height); for (int y = 2*this->bram_height-1; y >= 0; y--) { for (int x = 0; x < 2*this->bram_width; x++) { int bank = 0, bank_x = x, bank_y = y; if (bank_x >= this->bram_width) bank |= 1, bank_x = 2*this->bram_width - bank_x - 1; if (bank_y >= this->bram_height) bank |= 2, bank_y = 2*this->bram_height - bank_y - 1; info("%d %d %d\n", bank, bank_x, bank_y); if (bank_num >= 0 && bank != bank_num) ofs << " 0"; else ofs << (this->bram[bank][bank_x][bank_y] ? " 1" : " 0"); } ofs << '\n'; } } int FpgaConfig::chip_width() const { if (this->device == "384") return 6; if (this->device == "1k") return 12; if (this->device == "5k") return 24; if (this->device == "u4k") return 24; if (this->device == "lm4k") return 24; if (this->device == "8k") return 32; panic("Unknown chip type '%s'.\n", this->device.c_str()); } int FpgaConfig::chip_height() const { if (this->device == "384") return 8; if (this->device == "1k") return 16; if (this->device == "5k") return 30; if (this->device == "u4k") return 20; if (this->device == "lm4k") return 20; if (this->device == "8k") return 32; panic("Unknown chip type '%s'.\n", this->device.c_str()); } vector FpgaConfig::chip_cols() const { if (this->device == "384") return vector({18, 54, 54, 54, 54}); if (this->device == "1k") return vector({18, 54, 54, 42, 54, 54, 54}); if (this->device == "u4k") return vector({54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54}); if (this->device == "lm4k") return vector({18, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54}); // Its IPConnect or Mutiplier block, five logic, ram, six logic. if (this->device == "5k") return vector({54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54}); if (this->device == "8k") return vector({18, 54, 54, 54, 54, 54, 54, 54, 42, 54, 54, 54, 54, 54, 54, 54, 54}); panic("Unknown chip type '%s'.\n", this->device.c_str()); } string FpgaConfig::tile_type(int x, int y) const { if ((x == 0 || x == this->chip_width()+1) && (y == 0 || y == this->chip_height()+1)) return "corner"; // The sides on the 5k devices are IPConnect or DSP tiles if (this->device == "5k" && (x == 0 || x == this->chip_width()+1)) { if( (y == 5) || (y == 10) || (y == 15) || (y == 23)) return "dsp0"; if( (y == 6) || (y == 11) || (y == 16) || (y == 24)) return "dsp1"; if( (y == 7) || (y == 12) || (y == 17) || (y == 25)) return "dsp2"; if( (y == 8) || (y == 13) || (y == 18) || (y == 26)) return "dsp3"; return "ipcon"; } if (this->device == "u4k" && (x == 0 || x == this->chip_width()+1)) { if( (y == 5) || (y == 13)) return "dsp0"; if( (y == 6) || (y == 14)) return "dsp1"; if( (y == 7) || (y == 15)) return "dsp2"; if( (y == 8) || (y == 16)) return "dsp3"; return "ipcon"; } if ((x == 0 || x == this->chip_width()+1) || (y == 0 || y == this->chip_height()+1)) return "io"; if (this->device == "384") return "logic"; if (this->device == "1k") { if (x == 3 || x == 10) return y % 2 == 1 ? "ramb" : "ramt"; return "logic"; } if (this->device == "5k" || this->device == "u4k" || this->device == "lm4k") { if (x == 6 || x == 19) return y % 2 == 1 ? "ramb" : "ramt"; return "logic"; } if (this->device == "8k") { if (x == 8 || x == 25) return y % 2 == 1 ? "ramb" : "ramt"; return "logic"; } panic("Unknown chip type '%s'.\n", this->device.c_str()); } int FpgaConfig::tile_width(const string &type) const { if (type == "corner") return 0; if (type == "logic") return 54; if (type == "ramb") return 42; if (type == "ramt") return 42; if (type == "io") return 18; if (type.substr(0, 3) == "dsp") return 54; if (type == "ipcon") return 54; panic("Unknown tile type '%s'.\n", type.c_str()); } void FpgaConfig::cram_clear() { for (int i = 0; i < 4; i++) for (int x = 0; x < this->cram_width; x++) for (int y = 0; y < this->cram_height; y++) this->cram[i][x][y] = false; } void FpgaConfig::cram_fill_tiles() { for (int y = 0; y <= this->chip_height()+1; y++) for (int x = 0; x <= this->chip_width()+1; x++) { CramIndexConverter cic(this, x, y); for (int bit_y = 0; bit_y < 16; bit_y++) for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) { int cram_bank, cram_x, cram_y; cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y); this->cram[cram_bank][cram_x][cram_y] = true; } } } void FpgaConfig::cram_checkerboard(int m) { for (int y = 0; y <= this->chip_height()+1; y++) for (int x = 0; x <= this->chip_width()+1; x++) { if ((x+y) % 2 == m) continue; CramIndexConverter cic(this, x, y); for (int bit_y = 0; bit_y < 16; bit_y++) for (int bit_x = 0; bit_x < cic.tile_width; bit_x++) { int cram_bank, cram_x, cram_y; cic.get_cram_index(bit_x, bit_y, cram_bank, cram_x, cram_y); this->cram[cram_bank][cram_x][cram_y] = true; } } } CramIndexConverter::CramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y) { this->fpga = fpga; this->tile_x = tile_x; this->tile_y = tile_y; this->tile_type = fpga->tile_type(this->tile_x, this->tile_y); this->tile_width = fpga->tile_width(this->tile_type); auto chip_width = fpga->chip_width(); auto chip_height = fpga->chip_height(); auto chip_cols = fpga->chip_cols(); this->left_right_io = this->tile_x == 0 || this->tile_x == chip_width+1; this->right_half = this->tile_x > chip_width / 2; if (this->fpga->device == "5k") { this->top_half = this->tile_y > (chip_height * 2 / 3); } else { this->top_half = this->tile_y > chip_height / 2; } this->bank_num = 0; if (this->top_half) this->bank_num |= 1; if (this->right_half) this->bank_num |= 2; this->bank_tx = this->right_half ? chip_width + 1 - this->tile_x : this->tile_x; this->bank_ty = this->top_half ? chip_height + 1 - this->tile_y : this->tile_y; this->bank_xoff = 0; for (int i = 0; i < this->bank_tx; i++) this->bank_xoff += chip_cols.at(i); this->bank_yoff = 16 * this->bank_ty; this->column_width = chip_cols.at(this->bank_tx); } void CramIndexConverter::get_cram_index(int bit_x, int bit_y, int &cram_bank, int &cram_x, int &cram_y) const { static const int io_top_bottom_permx[18] = {23, 25, 26, 27, 16, 17, 18, 19, 20, 14, 32, 33, 34, 35, 36, 37, 4, 5}; static const int io_top_bottom_permy[16] = {0, 1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, 13, 15, 14}; cram_bank = bank_num; if (tile_type == "io") { if (left_right_io) { cram_x = bank_xoff + column_width - 1 - bit_x; if (top_half) cram_y = bank_yoff + 15 - bit_y; else cram_y = bank_yoff + bit_y; } else { cram_y = bank_yoff + 15 - io_top_bottom_permy[bit_y]; if (right_half) cram_x = bank_xoff + column_width - 1 - io_top_bottom_permx[bit_x]; else cram_x = bank_xoff + io_top_bottom_permx[bit_x]; } } else { if (right_half) cram_x = bank_xoff + column_width - 1 - bit_x; else cram_x = bank_xoff + bit_x; if (top_half) cram_y = bank_yoff + (15 - bit_y); else cram_y = bank_yoff + bit_y; } } BramIndexConverter::BramIndexConverter(const FpgaConfig *fpga, int tile_x, int tile_y) { this->fpga = fpga; this->tile_x = tile_x; this->tile_y = tile_y; auto chip_width = fpga->chip_width(); auto chip_height = fpga->chip_height(); bool right_half = this->tile_x > chip_width / 2; bool top_half = this->tile_y > chip_height / 2; // The UltraPlus 5k line is special because the top quarter of the chip is // used for SRAM instead of logic. Therefore the bitstream for the top two // quadrants are half the height of the bottom. if (this->fpga->device == "5k") { top_half = this->tile_y > (2 * chip_height / 3); } this->bank_num = 0; int y_offset = this->tile_y - 1; if (this->fpga->device == "5k") { if (top_half) { this->bank_num |= 1; y_offset = this->tile_y - (2 * chip_height / 3); } else { //y_offset = this->tile_y - (2 * chip_height / 3); } } else if (top_half) { this->bank_num |= 1; y_offset = this->tile_y - chip_height / 2; } if (right_half) this->bank_num |= 2; this->bank_off = 16 * (y_offset / 2); } void BramIndexConverter::get_bram_index(int bit_x, int bit_y, int &bram_bank, int &bram_x, int &bram_y) const { int index = 256 * bit_y + (16*(bit_x/16) + 15 - bit_x%16); bram_bank = bank_num; bram_x = bank_off + index % 16; bram_y = index / 16; } // ================================================================== // Main program void usage(const char *cmd) { log("\n"); log("Usage: %s [options] [input-file [output-file]]\n", cmd); log("\n"); log(" -u\n"); log(" unpack mode (implied when called as 'iceunpack')\n"); log("\n"); log(" -v\n"); log(" verbose (repeat to increase verbosity)\n"); log("\n"); log(" -s\n"); log(" disable final deep-sleep SPI flash command after bitstream is loaded\n"); log("\n"); log(" -b\n"); log(" write cram bitmap as netpbm file\n"); log("\n"); log(" -f\n"); log(" write cram bitmap (fill tiles) as netpbm file\n"); log("\n"); log(" -c\n"); log(" write cram bitmap (checkerboard) as netpbm file\n"); log(" repeat to flip the selection of tiles\n"); log("\n"); log(" -r\n"); log(" write bram data, not cram, to the netpbm file\n"); log("\n"); log(" -B0, -B1, -B2, -B3\n"); log(" only include the specified bank in the netpbm file\n"); log("\n"); log(" -n\n"); log(" skip initializing BRAM\n"); log("\n"); exit(1); } int main(int argc, char **argv) { #ifdef __EMSCRIPTEN__ EM_ASM( if (ENVIRONMENT_IS_NODE) { FS.mkdir('/hostcwd'); FS.mount(NODEFS, { root: '.' }, '/hostcwd'); FS.mkdir('/hostfs'); FS.mount(NODEFS, { root: '/' }, '/hostfs'); } ); #endif vector parameters; bool unpack_mode = false; bool nosleep_mode = false; bool netpbm_mode = false; bool netpbm_bram = false; bool netpbm_fill_tiles = false; bool netpbm_checkerboard = false; bool skip_bram_initialization = false; int netpbm_banknum = -1; int checkerboard_m = 1; for (int i = 0; argv[0][i]; i++) if (string(argv[0]+i) == "iceunpack") unpack_mode = true; for (int i = 1; i < argc; i++) { string arg(argv[i]); if (arg[0] == '-' && arg.size() > 1) { for (int i = 1; i < int(arg.size()); i++) if (arg[i] == 'u') { unpack_mode = true; } else if (arg[i] == 'b') { netpbm_mode = true; } else if (arg[i] == 'r') { netpbm_mode = true; netpbm_bram = true; } else if (arg[i] == 'f') { netpbm_mode = true; netpbm_fill_tiles = true; } else if (arg[i] == 'c') { netpbm_mode = true; netpbm_checkerboard = true; checkerboard_m = !checkerboard_m; } else if (arg[i] == 'B') { netpbm_mode = true; netpbm_banknum = arg[++i] - '0'; } else if (arg[i] == 's') { nosleep_mode = true; } else if (arg[i] == 'v') { log_level++; } else if (arg[i] == 'n') { skip_bram_initialization = true; } else usage(argv[0]); continue; } parameters.push_back(arg); } std::ifstream ifs; std::ofstream ofs; std::istream *isp; std::ostream *osp; if (parameters.size() >= 1 && parameters[0] != "-") { ifs.open(parameters[0], std::ios::binary); if (!ifs.is_open()) error("Failed to open input file.\n"); isp = &ifs; } else { isp = &std::cin; } if (parameters.size() >= 2 && parameters[1] != "-") { ofs.open(parameters[1], std::ios::binary); if (!ofs.is_open()) error("Failed to open output file.\n"); osp = &ofs; } else { osp = &std::cout; } if (parameters.size() > 2) usage(argv[0]); FpgaConfig fpga_config; fpga_config.skip_bram_initialization = skip_bram_initialization; if (unpack_mode) { fpga_config.read_bits(*isp); if (!netpbm_mode) fpga_config.write_ascii(*osp); } else { fpga_config.read_ascii(*isp, nosleep_mode); if (!netpbm_mode) fpga_config.write_bits(*osp); } if (netpbm_checkerboard) { fpga_config.cram_clear(); fpga_config.cram_checkerboard(checkerboard_m); } info("netpbm\n"); if (netpbm_fill_tiles) fpga_config.cram_fill_tiles(); info("fill done\n"); if (netpbm_mode) { if (netpbm_bram) fpga_config.write_bram_pbm(*osp, netpbm_banknum); else fpga_config.write_cram_pbm(*osp, netpbm_banknum); } info("Done.\n"); return 0; }