aboutsummaryrefslogtreecommitdiffstats
path: root/3rdparty/pybind11/docs/advanced/classes.rst
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/pybind11/docs/advanced/classes.rst')
-rw-r--r--3rdparty/pybind11/docs/advanced/classes.rst1126
1 files changed, 1126 insertions, 0 deletions
diff --git a/3rdparty/pybind11/docs/advanced/classes.rst b/3rdparty/pybind11/docs/advanced/classes.rst
new file mode 100644
index 00000000..ae5907de
--- /dev/null
+++ b/3rdparty/pybind11/docs/advanced/classes.rst
@@ -0,0 +1,1126 @@
+Classes
+#######
+
+This section presents advanced binding code for classes and it is assumed
+that you are already familiar with the basics from :doc:`/classes`.
+
+.. _overriding_virtuals:
+
+Overriding virtual functions in Python
+======================================
+
+Suppose that a C++ class or interface has a virtual function that we'd like to
+to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
+given as a specific example of how one would do this with traditional C++
+code).
+
+.. code-block:: cpp
+
+ class Animal {
+ public:
+ virtual ~Animal() { }
+ virtual std::string go(int n_times) = 0;
+ };
+
+ class Dog : public Animal {
+ public:
+ std::string go(int n_times) override {
+ std::string result;
+ for (int i=0; i<n_times; ++i)
+ result += "woof! ";
+ return result;
+ }
+ };
+
+Let's also suppose that we are given a plain function which calls the
+function ``go()`` on an arbitrary ``Animal`` instance.
+
+.. code-block:: cpp
+
+ std::string call_go(Animal *animal) {
+ return animal->go(3);
+ }
+
+Normally, the binding code for these classes would look as follows:
+
+.. code-block:: cpp
+
+ PYBIND11_MODULE(example, m) {
+ py::class_<Animal>(m, "Animal")
+ .def("go", &Animal::go);
+
+ py::class_<Dog, Animal>(m, "Dog")
+ .def(py::init<>());
+
+ m.def("call_go", &call_go);
+ }
+
+However, these bindings are impossible to extend: ``Animal`` is not
+constructible, and we clearly require some kind of "trampoline" that
+redirects virtual calls back to Python.
+
+Defining a new type of ``Animal`` from within Python is possible but requires a
+helper class that is defined as follows:
+
+.. code-block:: cpp
+
+ class PyAnimal : public Animal {
+ public:
+ /* Inherit the constructors */
+ using Animal::Animal;
+
+ /* Trampoline (need one for each virtual function) */
+ std::string go(int n_times) override {
+ PYBIND11_OVERLOAD_PURE(
+ std::string, /* Return type */
+ Animal, /* Parent class */
+ go, /* Name of function in C++ (must match Python name) */
+ n_times /* Argument(s) */
+ );
+ }
+ };
+
+The macro :c:macro:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
+functions, and :c:macro:`PYBIND11_OVERLOAD` should be used for functions which have
+a default implementation. There are also two alternate macros
+:c:macro:`PYBIND11_OVERLOAD_PURE_NAME` and :c:macro:`PYBIND11_OVERLOAD_NAME` which
+take a string-valued name argument between the *Parent class* and *Name of the
+function* slots, which defines the name of function in Python. This is required
+when the C++ and Python versions of the
+function have different names, e.g. ``operator()`` vs ``__call__``.
+
+The binding code also needs a few minor adaptations (highlighted):
+
+.. code-block:: cpp
+ :emphasize-lines: 2,3
+
+ PYBIND11_MODULE(example, m) {
+ py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
+ .def(py::init<>())
+ .def("go", &Animal::go);
+
+ py::class_<Dog, Animal>(m, "Dog")
+ .def(py::init<>());
+
+ m.def("call_go", &call_go);
+ }
+
+Importantly, pybind11 is made aware of the trampoline helper class by
+specifying it as an extra template argument to :class:`class_`. (This can also
+be combined with other template arguments such as a custom holder type; the
+order of template types does not matter). Following this, we are able to
+define a constructor as usual.
+
+Bindings should be made against the actual class, not the trampoline helper class.
+
+.. code-block:: cpp
+ :emphasize-lines: 3
+
+ py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
+ .def(py::init<>())
+ .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
+
+Note, however, that the above is sufficient for allowing python classes to
+extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
+necessary steps required to providing proper overload support for inherited
+classes.
+
+The Python session below shows how to override ``Animal::go`` and invoke it via
+a virtual method call.
+
+.. code-block:: pycon
+
+ >>> from example import *
+ >>> d = Dog()
+ >>> call_go(d)
+ u'woof! woof! woof! '
+ >>> class Cat(Animal):
+ ... def go(self, n_times):
+ ... return "meow! " * n_times
+ ...
+ >>> c = Cat()
+ >>> call_go(c)
+ u'meow! meow! meow! '
+
+If you are defining a custom constructor in a derived Python class, you *must*
+ensure that you explicitly call the bound C++ constructor using ``__init__``,
+*regardless* of whether it is a default constructor or not. Otherwise, the
+memory for the C++ portion of the instance will be left uninitialized, which
+will generally leave the C++ instance in an invalid state and cause undefined
+behavior if the C++ instance is subsequently used.
+
+Here is an example:
+
+.. code-block:: python
+
+ class Dachshund(Dog):
+ def __init__(self, name):
+ Dog.__init__(self) # Without this, undefined behavior may occur if the C++ portions are referenced.
+ self.name = name
+ def bark(self):
+ return "yap!"
+
+Note that a direct ``__init__`` constructor *should be called*, and ``super()``
+should not be used. For simple cases of linear inheritance, ``super()``
+may work, but once you begin mixing Python and C++ multiple inheritance,
+things will fall apart due to differences between Python's MRO and C++'s
+mechanisms.
+
+Please take a look at the :ref:`macro_notes` before using this feature.
+
+.. note::
+
+ When the overridden type returns a reference or pointer to a type that
+ pybind11 converts from Python (for example, numeric values, std::string,
+ and other built-in value-converting types), there are some limitations to
+ be aware of:
+
+ - because in these cases there is no C++ variable to reference (the value
+ is stored in the referenced Python variable), pybind11 provides one in
+ the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
+ Note that this means that invoking the overloaded method on *any*
+ instance will change the referenced value stored in *all* instances of
+ that type.
+
+ - Attempts to modify a non-const reference will not have the desired
+ effect: it will change only the static cache variable, but this change
+ will not propagate to underlying Python instance, and the change will be
+ replaced the next time the overload is invoked.
+
+.. seealso::
+
+ The file :file:`tests/test_virtual_functions.cpp` contains a complete
+ example that demonstrates how to override virtual functions using pybind11
+ in more detail.
+
+.. _virtual_and_inheritance:
+
+Combining virtual functions and inheritance
+===========================================
+
+When combining virtual methods with inheritance, you need to be sure to provide
+an override for each method for which you want to allow overrides from derived
+python classes. For example, suppose we extend the above ``Animal``/``Dog``
+example as follows:
+
+.. code-block:: cpp
+
+ class Animal {
+ public:
+ virtual std::string go(int n_times) = 0;
+ virtual std::string name() { return "unknown"; }
+ };
+ class Dog : public Animal {
+ public:
+ std::string go(int n_times) override {
+ std::string result;
+ for (int i=0; i<n_times; ++i)
+ result += bark() + " ";
+ return result;
+ }
+ virtual std::string bark() { return "woof!"; }
+ };
+
+then the trampoline class for ``Animal`` must, as described in the previous
+section, override ``go()`` and ``name()``, but in order to allow python code to
+inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
+overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
+methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
+override the ``name()`` method):
+
+.. code-block:: cpp
+
+ class PyAnimal : public Animal {
+ public:
+ using Animal::Animal; // Inherit constructors
+ std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
+ std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
+ };
+ class PyDog : public Dog {
+ public:
+ using Dog::Dog; // Inherit constructors
+ std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, Dog, go, n_times); }
+ std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
+ std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
+ };
+
+.. note::
+
+ Note the trailing commas in the ``PYBIND11_OVERLOAD`` calls to ``name()``
+ and ``bark()``. These are needed to portably implement a trampoline for a
+ function that does not take any arguments. For functions that take
+ a nonzero number of arguments, the trailing comma must be omitted.
+
+A registered class derived from a pybind11-registered class with virtual
+methods requires a similar trampoline class, *even if* it doesn't explicitly
+declare or override any virtual methods itself:
+
+.. code-block:: cpp
+
+ class Husky : public Dog {};
+ class PyHusky : public Husky {
+ public:
+ using Husky::Husky; // Inherit constructors
+ std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
+ std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
+ std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
+ };
+
+There is, however, a technique that can be used to avoid this duplication
+(which can be especially helpful for a base class with several virtual
+methods). The technique involves using template trampoline classes, as
+follows:
+
+.. code-block:: cpp
+
+ template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
+ public:
+ using AnimalBase::AnimalBase; // Inherit constructors
+ std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
+ std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
+ };
+ template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
+ public:
+ using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
+ // Override PyAnimal's pure virtual go() with a non-pure one:
+ std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
+ std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
+ };
+
+This technique has the advantage of requiring just one trampoline method to be
+declared per virtual method and pure virtual method override. It does,
+however, require the compiler to generate at least as many methods (and
+possibly more, if both pure virtual and overridden pure virtual methods are
+exposed, as above).
+
+The classes are then registered with pybind11 using:
+
+.. code-block:: cpp
+
+ py::class_<Animal, PyAnimal<>> animal(m, "Animal");
+ py::class_<Dog, PyDog<>> dog(m, "Dog");
+ py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
+ // ... add animal, dog, husky definitions
+
+Note that ``Husky`` did not require a dedicated trampoline template class at
+all, since it neither declares any new virtual methods nor provides any pure
+virtual method implementations.
+
+With either the repeated-virtuals or templated trampoline methods in place, you
+can now create a python class that inherits from ``Dog``:
+
+.. code-block:: python
+
+ class ShihTzu(Dog):
+ def bark(self):
+ return "yip!"
+
+.. seealso::
+
+ See the file :file:`tests/test_virtual_functions.cpp` for complete examples
+ using both the duplication and templated trampoline approaches.
+
+.. _extended_aliases:
+
+Extended trampoline class functionality
+=======================================
+
+.. _extended_class_functionality_forced_trampoline:
+
+Forced trampoline class initialisation
+--------------------------------------
+The trampoline classes described in the previous sections are, by default, only
+initialized when needed. More specifically, they are initialized when a python
+class actually inherits from a registered type (instead of merely creating an
+instance of the registered type), or when a registered constructor is only
+valid for the trampoline class but not the registered class. This is primarily
+for performance reasons: when the trampoline class is not needed for anything
+except virtual method dispatching, not initializing the trampoline class
+improves performance by avoiding needing to do a run-time check to see if the
+inheriting python instance has an overloaded method.
+
+Sometimes, however, it is useful to always initialize a trampoline class as an
+intermediate class that does more than just handle virtual method dispatching.
+For example, such a class might perform extra class initialization, extra
+destruction operations, and might define new members and methods to enable a
+more python-like interface to a class.
+
+In order to tell pybind11 that it should *always* initialize the trampoline
+class when creating new instances of a type, the class constructors should be
+declared using ``py::init_alias<Args, ...>()`` instead of the usual
+``py::init<Args, ...>()``. This forces construction via the trampoline class,
+ensuring member initialization and (eventual) destruction.
+
+.. seealso::
+
+ See the file :file:`tests/test_virtual_functions.cpp` for complete examples
+ showing both normal and forced trampoline instantiation.
+
+Different method signatures
+---------------------------
+The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
+use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
+to create a direct one-on-one mapping between the arguments and method return
+type.
+
+An example would be when the C++ signature contains output arguments using
+references (See also :ref:`faq_reference_arguments`). Another way of solving
+this is to use the method body of the trampoline class to do conversions to the
+input and return of the Python method.
+
+The main building block to do so is the :func:`get_overload`, this function
+allows retrieving a method implemented in Python from within the trampoline's
+methods. Consider for example a C++ method which has the signature
+``bool myMethod(int32_t& value)``, where the return indicates whether
+something should be done with the ``value``. This can be made convenient on the
+Python side by allowing the Python function to return ``None`` or an ``int``:
+
+.. code-block:: cpp
+
+ bool MyClass::myMethod(int32_t& value)
+ {
+ pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope.
+ // Try to look up the overloaded method on the Python side.
+ pybind11::function overload = pybind11::get_overload(this, "myMethod");
+ if (overload) { // method is found
+ auto obj = overload(value); // Call the Python function.
+ if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer type
+ value = obj.cast<int32_t>(); // Cast it and assign it to the value.
+ return true; // Return true; value should be used.
+ } else {
+ return false; // Python returned none, return false.
+ }
+ }
+ return false; // Alternatively return MyClass::myMethod(value);
+ }
+
+
+.. _custom_constructors:
+
+Custom constructors
+===================
+
+The syntax for binding constructors was previously introduced, but it only
+works when a constructor of the appropriate arguments actually exists on the
+C++ side. To extend this to more general cases, pybind11 makes it possible
+to bind factory functions as constructors. For example, suppose you have a
+class like this:
+
+.. code-block:: cpp
+
+ class Example {
+ private:
+ Example(int); // private constructor
+ public:
+ // Factory function:
+ static Example create(int a) { return Example(a); }
+ };
+
+ py::class_<Example>(m, "Example")
+ .def(py::init(&Example::create));
+
+While it is possible to create a straightforward binding of the static
+``create`` method, it may sometimes be preferable to expose it as a constructor
+on the Python side. This can be accomplished by calling ``.def(py::init(...))``
+with the function reference returning the new instance passed as an argument.
+It is also possible to use this approach to bind a function returning a new
+instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
+
+The following example shows the different approaches:
+
+.. code-block:: cpp
+
+ class Example {
+ private:
+ Example(int); // private constructor
+ public:
+ // Factory function - returned by value:
+ static Example create(int a) { return Example(a); }
+
+ // These constructors are publicly callable:
+ Example(double);
+ Example(int, int);
+ Example(std::string);
+ };
+
+ py::class_<Example>(m, "Example")
+ // Bind the factory function as a constructor:
+ .def(py::init(&Example::create))
+ // Bind a lambda function returning a pointer wrapped in a holder:
+ .def(py::init([](std::string arg) {
+ return std::unique_ptr<Example>(new Example(arg));
+ }))
+ // Return a raw pointer:
+ .def(py::init([](int a, int b) { return new Example(a, b); }))
+ // You can mix the above with regular C++ constructor bindings as well:
+ .def(py::init<double>())
+ ;
+
+When the constructor is invoked from Python, pybind11 will call the factory
+function and store the resulting C++ instance in the Python instance.
+
+When combining factory functions constructors with :ref:`virtual function
+trampolines <overriding_virtuals>` there are two approaches. The first is to
+add a constructor to the alias class that takes a base value by
+rvalue-reference. If such a constructor is available, it will be used to
+construct an alias instance from the value returned by the factory function.
+The second option is to provide two factory functions to ``py::init()``: the
+first will be invoked when no alias class is required (i.e. when the class is
+being used but not inherited from in Python), and the second will be invoked
+when an alias is required.
+
+You can also specify a single factory function that always returns an alias
+instance: this will result in behaviour similar to ``py::init_alias<...>()``,
+as described in the :ref:`extended trampoline class documentation
+<extended_aliases>`.
+
+The following example shows the different factory approaches for a class with
+an alias:
+
+.. code-block:: cpp
+
+ #include <pybind11/factory.h>
+ class Example {
+ public:
+ // ...
+ virtual ~Example() = default;
+ };
+ class PyExample : public Example {
+ public:
+ using Example::Example;
+ PyExample(Example &&base) : Example(std::move(base)) {}
+ };
+ py::class_<Example, PyExample>(m, "Example")
+ // Returns an Example pointer. If a PyExample is needed, the Example
+ // instance will be moved via the extra constructor in PyExample, above.
+ .def(py::init([]() { return new Example(); }))
+ // Two callbacks:
+ .def(py::init([]() { return new Example(); } /* no alias needed */,
+ []() { return new PyExample(); } /* alias needed */))
+ // *Always* returns an alias instance (like py::init_alias<>())
+ .def(py::init([]() { return new PyExample(); }))
+ ;
+
+Brace initialization
+--------------------
+
+``pybind11::init<>`` internally uses C++11 brace initialization to call the
+constructor of the target class. This means that it can be used to bind
+*implicit* constructors as well:
+
+.. code-block:: cpp
+
+ struct Aggregate {
+ int a;
+ std::string b;
+ };
+
+ py::class_<Aggregate>(m, "Aggregate")
+ .def(py::init<int, const std::string &>());
+
+.. note::
+
+ Note that brace initialization preferentially invokes constructor overloads
+ taking a ``std::initializer_list``. In the rare event that this causes an
+ issue, you can work around it by using ``py::init(...)`` with a lambda
+ function that constructs the new object as desired.
+
+.. _classes_with_non_public_destructors:
+
+Non-public destructors
+======================
+
+If a class has a private or protected destructor (as might e.g. be the case in
+a singleton pattern), a compile error will occur when creating bindings via
+pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
+is responsible for managing the lifetime of instances will reference the
+destructor even if no deallocations ever take place. In order to expose classes
+with private or protected destructors, it is possible to override the holder
+type via a holder type argument to ``class_``. Pybind11 provides a helper class
+``py::nodelete`` that disables any destructor invocations. In this case, it is
+crucial that instances are deallocated on the C++ side to avoid memory leaks.
+
+.. code-block:: cpp
+
+ /* ... definition ... */
+
+ class MyClass {
+ private:
+ ~MyClass() { }
+ };
+
+ /* ... binding code ... */
+
+ py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
+ .def(py::init<>())
+
+.. _implicit_conversions:
+
+Implicit conversions
+====================
+
+Suppose that instances of two types ``A`` and ``B`` are used in a project, and
+that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
+could be a fixed and an arbitrary precision number type).
+
+.. code-block:: cpp
+
+ py::class_<A>(m, "A")
+ /// ... members ...
+
+ py::class_<B>(m, "B")
+ .def(py::init<A>())
+ /// ... members ...
+
+ m.def("func",
+ [](const B &) { /* .... */ }
+ );
+
+To invoke the function ``func`` using a variable ``a`` containing an ``A``
+instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
+will automatically apply an implicit type conversion, which makes it possible
+to directly write ``func(a)``.
+
+In this situation (i.e. where ``B`` has a constructor that converts from
+``A``), the following statement enables similar implicit conversions on the
+Python side:
+
+.. code-block:: cpp
+
+ py::implicitly_convertible<A, B>();
+
+.. note::
+
+ Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
+ data type that is exposed to Python via pybind11.
+
+ To prevent runaway recursion, implicit conversions are non-reentrant: an
+ implicit conversion invoked as part of another implicit conversion of the
+ same type (i.e. from ``A`` to ``B``) will fail.
+
+.. _static_properties:
+
+Static properties
+=================
+
+The section on :ref:`properties` discussed the creation of instance properties
+that are implemented in terms of C++ getters and setters.
+
+Static properties can also be created in a similar way to expose getters and
+setters of static class attributes. Note that the implicit ``self`` argument
+also exists in this case and is used to pass the Python ``type`` subclass
+instance. This parameter will often not be needed by the C++ side, and the
+following example illustrates how to instantiate a lambda getter function
+that ignores it:
+
+.. code-block:: cpp
+
+ py::class_<Foo>(m, "Foo")
+ .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
+
+Operator overloading
+====================
+
+Suppose that we're given the following ``Vector2`` class with a vector addition
+and scalar multiplication operation, all implemented using overloaded operators
+in C++.
+
+.. code-block:: cpp
+
+ class Vector2 {
+ public:
+ Vector2(float x, float y) : x(x), y(y) { }
+
+ Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
+ Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
+ Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
+ Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
+
+ friend Vector2 operator*(float f, const Vector2 &v) {
+ return Vector2(f * v.x, f * v.y);
+ }
+
+ std::string toString() const {
+ return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
+ }
+ private:
+ float x, y;
+ };
+
+The following snippet shows how the above operators can be conveniently exposed
+to Python.
+
+.. code-block:: cpp
+
+ #include <pybind11/operators.h>
+
+ PYBIND11_MODULE(example, m) {
+ py::class_<Vector2>(m, "Vector2")
+ .def(py::init<float, float>())
+ .def(py::self + py::self)
+ .def(py::self += py::self)
+ .def(py::self *= float())
+ .def(float() * py::self)
+ .def(py::self * float())
+ .def(-py::self)
+ .def("__repr__", &Vector2::toString);
+ }
+
+Note that a line like
+
+.. code-block:: cpp
+
+ .def(py::self * float())
+
+is really just short hand notation for
+
+.. code-block:: cpp
+
+ .def("__mul__", [](const Vector2 &a, float b) {
+ return a * b;
+ }, py::is_operator())
+
+This can be useful for exposing additional operators that don't exist on the
+C++ side, or to perform other types of customization. The ``py::is_operator``
+flag marker is needed to inform pybind11 that this is an operator, which
+returns ``NotImplemented`` when invoked with incompatible arguments rather than
+throwing a type error.
+
+.. note::
+
+ To use the more convenient ``py::self`` notation, the additional
+ header file :file:`pybind11/operators.h` must be included.
+
+.. seealso::
+
+ The file :file:`tests/test_operator_overloading.cpp` contains a
+ complete example that demonstrates how to work with overloaded operators in
+ more detail.
+
+.. _pickling:
+
+Pickling support
+================
+
+Python's ``pickle`` module provides a powerful facility to serialize and
+de-serialize a Python object graph into a binary data stream. To pickle and
+unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
+provided. Suppose the class in question has the following signature:
+
+.. code-block:: cpp
+
+ class Pickleable {
+ public:
+ Pickleable(const std::string &value) : m_value(value) { }
+ const std::string &value() const { return m_value; }
+
+ void setExtra(int extra) { m_extra = extra; }
+ int extra() const { return m_extra; }
+ private:
+ std::string m_value;
+ int m_extra = 0;
+ };
+
+Pickling support in Python is enabled by defining the ``__setstate__`` and
+``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
+to bind these two functions:
+
+.. code-block:: cpp
+
+ py::class_<Pickleable>(m, "Pickleable")
+ .def(py::init<std::string>())
+ .def("value", &Pickleable::value)
+ .def("extra", &Pickleable::extra)
+ .def("setExtra", &Pickleable::setExtra)
+ .def(py::pickle(
+ [](const Pickleable &p) { // __getstate__
+ /* Return a tuple that fully encodes the state of the object */
+ return py::make_tuple(p.value(), p.extra());
+ },
+ [](py::tuple t) { // __setstate__
+ if (t.size() != 2)
+ throw std::runtime_error("Invalid state!");
+
+ /* Create a new C++ instance */
+ Pickleable p(t[0].cast<std::string>());
+
+ /* Assign any additional state */
+ p.setExtra(t[1].cast<int>());
+
+ return p;
+ }
+ ));
+
+The ``__setstate__`` part of the ``py::picke()`` definition follows the same
+rules as the single-argument version of ``py::init()``. The return type can be
+a value, pointer or holder type. See :ref:`custom_constructors` for details.
+
+An instance can now be pickled as follows:
+
+.. code-block:: python
+
+ try:
+ import cPickle as pickle # Use cPickle on Python 2.7
+ except ImportError:
+ import pickle
+
+ p = Pickleable("test_value")
+ p.setExtra(15)
+ data = pickle.dumps(p, 2)
+
+Note that only the cPickle module is supported on Python 2.7. The second
+argument to ``dumps`` is also crucial: it selects the pickle protocol version
+2, since the older version 1 is not supported. Newer versions are also fineā€”for
+instance, specify ``-1`` to always use the latest available version. Beware:
+failure to follow these instructions will cause important pybind11 memory
+allocation routines to be skipped during unpickling, which will likely lead to
+memory corruption and/or segmentation faults.
+
+.. seealso::
+
+ The file :file:`tests/test_pickling.cpp` contains a complete example
+ that demonstrates how to pickle and unpickle types using pybind11 in more
+ detail.
+
+.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
+
+Multiple Inheritance
+====================
+
+pybind11 can create bindings for types that derive from multiple base types
+(aka. *multiple inheritance*). To do so, specify all bases in the template
+arguments of the ``class_`` declaration:
+
+.. code-block:: cpp
+
+ py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
+ ...
+
+The base types can be specified in arbitrary order, and they can even be
+interspersed with alias types and holder types (discussed earlier in this
+document)---pybind11 will automatically find out which is which. The only
+requirement is that the first template argument is the type to be declared.
+
+It is also permitted to inherit multiply from exported C++ classes in Python,
+as well as inheriting from multiple Python and/or pybind11-exported classes.
+
+There is one caveat regarding the implementation of this feature:
+
+When only one base type is specified for a C++ type that actually has multiple
+bases, pybind11 will assume that it does not participate in multiple
+inheritance, which can lead to undefined behavior. In such cases, add the tag
+``multiple_inheritance`` to the class constructor:
+
+.. code-block:: cpp
+
+ py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
+
+The tag is redundant and does not need to be specified when multiple base types
+are listed.
+
+.. _module_local:
+
+Module-local class bindings
+===========================
+
+When creating a binding for a class, pybind11 by default makes that binding
+"global" across modules. What this means is that a type defined in one module
+can be returned from any module resulting in the same Python type. For
+example, this allows the following:
+
+.. code-block:: cpp
+
+ // In the module1.cpp binding code for module1:
+ py::class_<Pet>(m, "Pet")
+ .def(py::init<std::string>())
+ .def_readonly("name", &Pet::name);
+
+.. code-block:: cpp
+
+ // In the module2.cpp binding code for module2:
+ m.def("create_pet", [](std::string name) { return new Pet(name); });
+
+.. code-block:: pycon
+
+ >>> from module1 import Pet
+ >>> from module2 import create_pet
+ >>> pet1 = Pet("Kitty")
+ >>> pet2 = create_pet("Doggy")
+ >>> pet2.name()
+ 'Doggy'
+
+When writing binding code for a library, this is usually desirable: this
+allows, for example, splitting up a complex library into multiple Python
+modules.
+
+In some cases, however, this can cause conflicts. For example, suppose two
+unrelated modules make use of an external C++ library and each provide custom
+bindings for one of that library's classes. This will result in an error when
+a Python program attempts to import both modules (directly or indirectly)
+because of conflicting definitions on the external type:
+
+.. code-block:: cpp
+
+ // dogs.cpp
+
+ // Binding for external library class:
+ py::class<pets::Pet>(m, "Pet")
+ .def("name", &pets::Pet::name);
+
+ // Binding for local extension class:
+ py::class<Dog, pets::Pet>(m, "Dog")
+ .def(py::init<std::string>());
+
+.. code-block:: cpp
+
+ // cats.cpp, in a completely separate project from the above dogs.cpp.
+
+ // Binding for external library class:
+ py::class<pets::Pet>(m, "Pet")
+ .def("get_name", &pets::Pet::name);
+
+ // Binding for local extending class:
+ py::class<Cat, pets::Pet>(m, "Cat")
+ .def(py::init<std::string>());
+
+.. code-block:: pycon
+
+ >>> import cats
+ >>> import dogs
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ ImportError: generic_type: type "Pet" is already registered!
+
+To get around this, you can tell pybind11 to keep the external class binding
+localized to the module by passing the ``py::module_local()`` attribute into
+the ``py::class_`` constructor:
+
+.. code-block:: cpp
+
+ // Pet binding in dogs.cpp:
+ py::class<pets::Pet>(m, "Pet", py::module_local())
+ .def("name", &pets::Pet::name);
+
+.. code-block:: cpp
+
+ // Pet binding in cats.cpp:
+ py::class<pets::Pet>(m, "Pet", py::module_local())
+ .def("get_name", &pets::Pet::name);
+
+This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
+avoiding the conflict and allowing both modules to be loaded. C++ code in the
+``dogs`` module that casts or returns a ``Pet`` instance will result in a
+``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
+in a ``cats.Pet`` Python instance.
+
+This does come with two caveats, however: First, external modules cannot return
+or cast a ``Pet`` instance to Python (unless they also provide their own local
+bindings). Second, from the Python point of view they are two distinct classes.
+
+Note that the locality only applies in the C++ -> Python direction. When
+passing such a ``py::module_local`` type into a C++ function, the module-local
+classes are still considered. This means that if the following function is
+added to any module (including but not limited to the ``cats`` and ``dogs``
+modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
+argument:
+
+.. code-block:: cpp
+
+ m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
+
+For example, suppose the above function is added to each of ``cats.cpp``,
+``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
+does *not* bind ``Pets`` at all).
+
+.. code-block:: pycon
+
+ >>> import cats, dogs, frogs # No error because of the added py::module_local()
+ >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
+ >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
+ ('Fluffy', 'Rover')
+ >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
+ ('Rover', 'Fluffy', 'Fluffy')
+
+It is possible to use ``py::module_local()`` registrations in one module even
+if another module registers the same type globally: within the module with the
+module-local definition, all C++ instances will be cast to the associated bound
+Python type. In other modules any such values are converted to the global
+Python type created elsewhere.
+
+.. note::
+
+ STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
+ header) apply ``py::module_local`` by default when the bound type might
+ conflict with other modules; see :ref:`stl_bind` for details.
+
+.. note::
+
+ The localization of the bound types is actually tied to the shared object
+ or binary generated by the compiler/linker. For typical modules created
+ with ``PYBIND11_MODULE()``, this distinction is not significant. It is
+ possible, however, when :ref:`embedding` to embed multiple modules in the
+ same binary (see :ref:`embedding_modules`). In such a case, the
+ localization will apply across all embedded modules within the same binary.
+
+.. seealso::
+
+ The file :file:`tests/test_local_bindings.cpp` contains additional examples
+ that demonstrate how ``py::module_local()`` works.
+
+Binding protected member functions
+==================================
+
+It's normally not possible to expose ``protected`` member functions to Python:
+
+.. code-block:: cpp
+
+ class A {
+ protected:
+ int foo() const { return 42; }
+ };
+
+ py::class_<A>(m, "A")
+ .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
+
+On one hand, this is good because non-``public`` members aren't meant to be
+accessed from the outside. But we may want to make use of ``protected``
+functions in derived Python classes.
+
+The following pattern makes this possible:
+
+.. code-block:: cpp
+
+ class A {
+ protected:
+ int foo() const { return 42; }
+ };
+
+ class Publicist : public A { // helper type for exposing protected functions
+ public:
+ using A::foo; // inherited with different access modifier
+ };
+
+ py::class_<A>(m, "A") // bind the primary class
+ .def("foo", &Publicist::foo); // expose protected methods via the publicist
+
+This works because ``&Publicist::foo`` is exactly the same function as
+``&A::foo`` (same signature and address), just with a different access
+modifier. The only purpose of the ``Publicist`` helper class is to make
+the function name ``public``.
+
+If the intent is to expose ``protected`` ``virtual`` functions which can be
+overridden in Python, the publicist pattern can be combined with the previously
+described trampoline:
+
+.. code-block:: cpp
+
+ class A {
+ public:
+ virtual ~A() = default;
+
+ protected:
+ virtual int foo() const { return 42; }
+ };
+
+ class Trampoline : public A {
+ public:
+ int foo() const override { PYBIND11_OVERLOAD(int, A, foo, ); }
+ };
+
+ class Publicist : public A {
+ public:
+ using A::foo;
+ };
+
+ py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
+ .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
+
+.. note::
+
+ MSVC 2015 has a compiler bug (fixed in version 2017) which
+ requires a more explicit function binding in the form of
+ ``.def("foo", static_cast<int (A::*)() const>(&Publicist::foo));``
+ where ``int (A::*)() const`` is the type of ``A::foo``.
+
+Custom automatic downcasters
+============================
+
+As explained in :ref:`inheritance`, pybind11 comes with built-in
+understanding of the dynamic type of polymorphic objects in C++; that
+is, returning a Pet to Python produces a Python object that knows it's
+wrapping a Dog, if Pet has virtual methods and pybind11 knows about
+Dog and this Pet is in fact a Dog. Sometimes, you might want to
+provide this automatic downcasting behavior when creating bindings for
+a class hierarchy that does not use standard C++ polymorphism, such as
+LLVM [#f4]_. As long as there's some way to determine at runtime
+whether a downcast is safe, you can proceed by specializing the
+``pybind11::polymorphic_type_hook`` template:
+
+.. code-block:: cpp
+
+ enum class PetKind { Cat, Dog, Zebra };
+ struct Pet { // Not polymorphic: has no virtual methods
+ const PetKind kind;
+ int age = 0;
+ protected:
+ Pet(PetKind _kind) : kind(_kind) {}
+ };
+ struct Dog : Pet {
+ Dog() : Pet(PetKind::Dog) {}
+ std::string sound = "woof!";
+ std::string bark() const { return sound; }
+ };
+
+ namespace pybind11 {
+ template<> struct polymorphic_type_hook<Pet> {
+ static const void *get(const Pet *src, const std::type_info*& type) {
+ // note that src may be nullptr
+ if (src && src->kind == PetKind::Dog) {
+ type = &typeid(Dog);
+ return static_cast<const Dog*>(src);
+ }
+ return src;
+ }
+ };
+ } // namespace pybind11
+
+When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
+Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
+determine if a downcast is possible. The ``get()`` function should use
+whatever runtime information is available to determine if its ``src``
+parameter is in fact an instance of some class ``Derived`` that
+inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
+= &typeid(Derived)`` and returns a pointer to the ``Derived`` object
+that contains ``src``. Otherwise, it just returns ``src``, leaving
+``type`` at its default value of nullptr. If you set ``type`` to a
+type that pybind11 doesn't know about, no downcasting will occur, and
+the original ``src`` pointer will be used with its static type
+``Base*``.
+
+It is critical that the returned pointer and ``type`` argument of
+``get()`` agree with each other: if ``type`` is set to something
+non-null, the returned pointer must point to the start of an object
+whose type is ``type``. If the hierarchy being exposed uses only
+single inheritance, a simple ``return src;`` will achieve this just
+fine, but in the general case, you must cast ``src`` to the
+appropriate derived-class pointer (e.g. using
+``static_cast<Derived>(src)``) before allowing it to be returned as a
+``void*``.
+
+.. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
+
+.. note::
+
+ pybind11's standard support for downcasting objects whose types
+ have virtual methods is implemented using
+ ``polymorphic_type_hook`` too, using the standard C++ ability to
+ determine the most-derived type of a polymorphic object using
+ ``typeid()`` and to cast a base pointer to that most-derived type
+ (even if you don't know what it is) using ``dynamic_cast<void*>``.
+
+.. seealso::
+
+ The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
+ more complete example, including a demonstration of how to provide
+ automatic downcasting for an entire class hierarchy without
+ writing one get() function for each class.