aboutsummaryrefslogtreecommitdiffstats
path: root/common/timing_opt.cc
diff options
context:
space:
mode:
Diffstat (limited to 'common/timing_opt.cc')
-rw-r--r--common/timing_opt.cc623
1 files changed, 623 insertions, 0 deletions
diff --git a/common/timing_opt.cc b/common/timing_opt.cc
new file mode 100644
index 00000000..a451bfa0
--- /dev/null
+++ b/common/timing_opt.cc
@@ -0,0 +1,623 @@
+/*
+ * nextpnr -- Next Generation Place and Route
+ *
+ * Copyright (C) 2018 David Shah <david@symbioticeda.com>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+/*
+ * Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
+ * on a critical path
+ *
+ * Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
+ * https://www.cerc.utexas.edu/utda/publications/C205.pdf
+ *
+ * Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
+ * and deal with the fact that not every cell on the crit path may be swappable.
+ */
+
+#include "timing_opt.h"
+#include <boost/range/adaptor/reversed.hpp>
+#include <queue>
+#include "nextpnr.h"
+#include "timing.h"
+#include "util.h"
+
+namespace std {
+
+template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString>>
+{
+ std::size_t
+ operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX IdString> &idp) const
+ noexcept
+ {
+ std::size_t seed = 0;
+ boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
+ boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.second));
+ return seed;
+ }
+};
+
+template <> struct hash<std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId>>
+{
+ std::size_t operator()(const std::pair<int, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
+ {
+ std::size_t seed = 0;
+ boost::hash_combine(seed, hash<int>()(idp.first));
+ boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
+ return seed;
+ }
+};
+
+template <> struct hash<std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId>>
+{
+ std::size_t
+ operator()(const std::pair<NEXTPNR_NAMESPACE_PREFIX IdString, NEXTPNR_NAMESPACE_PREFIX BelId> &idp) const noexcept
+ {
+ std::size_t seed = 0;
+ boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX IdString>()(idp.first));
+ boost::hash_combine(seed, hash<NEXTPNR_NAMESPACE_PREFIX BelId>()(idp.second));
+ return seed;
+ }
+};
+} // namespace std
+
+NEXTPNR_NAMESPACE_BEGIN
+
+class TimingOptimiser
+{
+ public:
+ TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg){};
+ bool optimise()
+ {
+ log_info("Running timing-driven placement optimisation...\n");
+ if (ctx->verbose)
+ timing_analysis(ctx, false, true, false, false);
+ for (int i = 0; i < 30; i++) {
+ log_info(" Iteration %d...\n", i);
+ get_criticalities(ctx, &net_crit);
+ setup_delay_limits();
+ auto crit_paths = find_crit_paths(0.98, 50000);
+ for (auto &path : crit_paths)
+ optimise_path(path);
+ if (ctx->verbose)
+ timing_analysis(ctx, false, true, false, false);
+ }
+ return true;
+ }
+
+ private:
+ void setup_delay_limits()
+ {
+ max_net_delay.clear();
+ for (auto net : sorted(ctx->nets)) {
+ NetInfo *ni = net.second;
+ for (auto usr : ni->users) {
+ max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max();
+ }
+ if (!net_crit.count(net.first))
+ continue;
+ auto &nc = net_crit.at(net.first);
+ if (nc.slack.empty())
+ continue;
+ for (size_t i = 0; i < ni->users.size(); i++) {
+ auto &usr = ni->users.at(i);
+ delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
+ if (nc.max_path_length != 0) {
+ max_net_delay[std::make_pair(usr.cell->name, usr.port)] =
+ net_delay + ((nc.slack.at(i) - nc.cd_worst_slack) / 10);
+ }
+ }
+ }
+ }
+
+ bool check_cell_delay_limits(CellInfo *cell)
+ {
+ for (const auto &port : cell->ports) {
+ int nc;
+ if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
+ continue;
+ NetInfo *net = port.second.net;
+ if (net == nullptr)
+ continue;
+ if (port.second.type == PORT_IN) {
+ if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
+ continue;
+ for (auto user : net->users) {
+ if (user.cell == cell && user.port == port.first) {
+ if (ctx->predictDelay(net, user) >
+ 1.1 * max_net_delay.at(std::make_pair(cell->name, port.first)))
+ return false;
+ }
+ }
+
+ } else if (port.second.type == PORT_OUT) {
+ for (auto user : net->users) {
+ // This could get expensive for high-fanout nets??
+ BelId dstBel = user.cell->bel;
+ if (dstBel == BelId())
+ continue;
+ if (ctx->predictDelay(net, user) >
+ 1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) {
+
+ return false;
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ BelId cell_swap_bel(CellInfo *cell, BelId newBel)
+ {
+ BelId oldBel = cell->bel;
+ if (oldBel == newBel)
+ return oldBel;
+ CellInfo *other_cell = ctx->getBoundBelCell(newBel);
+ NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
+ ctx->unbindBel(oldBel);
+ if (other_cell != nullptr) {
+ ctx->unbindBel(newBel);
+ ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
+ }
+ ctx->bindBel(newBel, cell, STRENGTH_WEAK);
+ return oldBel;
+ }
+
+ // Check that a series of moves are both legal and remain within maximum delay bounds
+ // Moves are specified as a vector of pairs <cell, oldBel>
+ bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true)
+ {
+ for (auto &entry : move) {
+ if (!ctx->isBelLocationValid(entry.first->bel))
+ return false;
+ if (!ctx->isBelLocationValid(entry.second))
+ return false;
+ if (!check_delays)
+ continue;
+ if (!check_cell_delay_limits(entry.first))
+ return false;
+ // We might have swapped another cell onto the original bel. Check this for max delay violations
+ // too
+ CellInfo *swapped = ctx->getBoundBelCell(entry.second);
+ if (swapped != nullptr && !check_cell_delay_limits(swapped))
+ return false;
+ }
+ return true;
+ }
+
+ int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap)
+ {
+ BelId curr = cell->bel;
+ Loc curr_loc = ctx->getBelLocation(curr);
+ int found_count = 0;
+ cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{};
+ for (int dy = -d; dy <= d; dy++) {
+ for (int dx = -d; dx <= d; dx++) {
+ // Go through all the Bels at this location
+ // First, find all bels of the correct type that are either unbound or bound normally
+ // Strongly bound bels are ignored
+ // FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
+ std::vector<BelId> free_bels_at_loc;
+ std::vector<BelId> bound_bels_at_loc;
+ for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
+ if (ctx->getBelType(bel) != cell->type)
+ continue;
+ CellInfo *bound = ctx->getBoundBelCell(bel);
+ if (bound == nullptr) {
+ free_bels_at_loc.push_back(bel);
+ } else if (bound->belStrength <= STRENGTH_WEAK && bound->constr_parent == nullptr &&
+ bound->constr_children.empty()) {
+ bound_bels_at_loc.push_back(bel);
+ }
+ }
+ BelId candidate;
+
+ while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) {
+ BelId try_bel;
+ if (!free_bels_at_loc.empty()) {
+ int try_idx = ctx->rng(int(free_bels_at_loc.size()));
+ try_bel = free_bels_at_loc.at(try_idx);
+ free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
+ } else {
+ int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
+ try_bel = bound_bels_at_loc.at(try_idx);
+ bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
+ }
+ if (bel_candidate_cells.count(try_bel) && !allow_swap) {
+ // Overlap is only allowed if it is with the previous cell (this is handled by removing those
+ // edges in the graph), or if allow_swap is true to deal with cases where overlap means few
+ // neighbours are identified
+ if (bel_candidate_cells.at(try_bel).size() > 1 ||
+ (bel_candidate_cells.at(try_bel).size() == 1 &&
+ *(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
+ continue;
+ }
+ // TODO: what else to check here?
+ candidate = try_bel;
+ break;
+ }
+
+ if (candidate != BelId()) {
+ cell_neighbour_bels[cell->name].insert(candidate);
+ bel_candidate_cells[candidate].insert(cell->name);
+ // Work out if we need to delete any overlap
+ std::vector<IdString> overlap;
+ for (auto other : bel_candidate_cells[candidate])
+ if (other != cell->name && other != prev_cell)
+ overlap.push_back(other);
+ if (overlap.size() > 0)
+ NPNR_ASSERT(allow_swap);
+ for (auto ov : overlap) {
+ bel_candidate_cells[candidate].erase(ov);
+ cell_neighbour_bels[ov].erase(candidate);
+ }
+ }
+ }
+ }
+ return found_count;
+ }
+
+ std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count)
+ {
+ std::vector<std::vector<PortRef *>> crit_paths;
+ std::vector<std::pair<NetInfo *, int>> crit_nets;
+ std::vector<IdString> netnames;
+ std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
+ [](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; });
+ ctx->sorted_shuffle(netnames);
+ for (auto net : netnames) {
+ if (crit_nets.size() >= max_count)
+ break;
+ if (!net_crit.count(net))
+ continue;
+ auto crit_user = std::max_element(net_crit[net].criticality.begin(), net_crit[net].criticality.end());
+ if (*crit_user > crit_thresh)
+ crit_nets.push_back(
+ std::make_pair(ctx->nets[net].get(), crit_user - net_crit[net].criticality.begin()));
+ }
+
+ auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
+ NPNR_ASSERT(port.net != nullptr);
+ for (size_t i = 0; i < port.net->users.size(); i++) {
+ auto &usr = port.net->users.at(i);
+ if (usr.cell == cell && usr.port == port.name)
+ return i;
+ }
+ NPNR_ASSERT_FALSE("port user not found on net");
+ };
+ std::unordered_set<PortRef *> used_ports;
+
+ for (auto crit_net : crit_nets) {
+
+ if (used_ports.count(&(crit_net.first->users.at(crit_net.second))))
+ continue;
+
+ std::deque<PortRef *> crit_path;
+
+ // FIXME: This will fail badly on combinational loops
+
+ // Iterate backwards following greatest criticality
+ NetInfo *back_cursor = crit_net.first;
+ while (back_cursor != nullptr) {
+ float max_crit = 0;
+ std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
+ CellInfo *cell = back_cursor->driver.cell;
+ if (cell == nullptr)
+ break;
+ for (auto port : cell->ports) {
+ if (port.second.type != PORT_IN)
+ continue;
+ NetInfo *pn = port.second.net;
+ if (pn == nullptr)
+ continue;
+ if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
+ continue;
+ int ccount;
+ DelayInfo combDelay;
+ TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
+ if (tpclass != TMG_COMB_INPUT)
+ continue;
+ bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
+ if (!is_path)
+ continue;
+ size_t user_idx = port_user_index(cell, port.second);
+ float usr_crit = net_crit.at(pn->name).criticality.at(user_idx);
+ if (used_ports.count(&(pn->users.at(user_idx))))
+ continue;
+ if (usr_crit >= max_crit) {
+ max_crit = usr_crit;
+ crit_sink = std::make_pair(pn, user_idx);
+ }
+ }
+
+ if (crit_sink.first != nullptr) {
+ crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
+ used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
+ }
+ back_cursor = crit_sink.first;
+ }
+ // Iterate forwards following greatest criticiality
+ PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
+ while (fwd_cursor != nullptr) {
+ crit_path.push_back(fwd_cursor);
+ float max_crit = 0;
+ std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
+ CellInfo *cell = fwd_cursor->cell;
+ for (auto port : cell->ports) {
+ if (port.second.type != PORT_OUT)
+ continue;
+ NetInfo *pn = port.second.net;
+ if (pn == nullptr)
+ continue;
+ if (!net_crit.count(pn->name) || net_crit.at(pn->name).criticality.empty())
+ continue;
+ int ccount;
+ DelayInfo combDelay;
+ TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
+ if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT)
+ continue;
+ bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay);
+ if (!is_path)
+ continue;
+ auto &crits = net_crit.at(pn->name).criticality;
+ for (size_t i = 0; i < crits.size(); i++) {
+ if (used_ports.count(&(pn->users.at(i))))
+ continue;
+ if (crits.at(i) >= max_crit) {
+ max_crit = crits.at(i);
+ crit_sink = std::make_pair(pn, i);
+ }
+ }
+ }
+ if (crit_sink.first != nullptr) {
+ fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
+ used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
+ } else {
+ fwd_cursor = nullptr;
+ }
+ }
+
+ std::vector<PortRef *> crit_path_vec;
+ std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
+ crit_paths.push_back(crit_path_vec);
+ }
+
+ return crit_paths;
+ }
+
+ void optimise_path(std::vector<PortRef *> &path)
+ {
+ path_cells.clear();
+ cell_neighbour_bels.clear();
+ bel_candidate_cells.clear();
+ if (ctx->debug)
+ log_info("Optimising the following path: \n");
+
+ auto front_port = path.front();
+ NetInfo *front_net = front_port->cell->ports.at(front_port->port).net;
+ if (front_net != nullptr && front_net->driver.cell != nullptr) {
+ auto front_cell = front_net->driver.cell;
+ if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) &&
+ front_cell->constr_parent == nullptr && front_cell->constr_children.empty()) {
+ path_cells.push_back(front_cell->name);
+ }
+ }
+
+ for (auto port : path) {
+ if (ctx->debug) {
+ float crit = 0;
+ NetInfo *pn = port->cell->ports.at(port->port).net;
+ if (net_crit.count(pn->name) && !net_crit.at(pn->name).criticality.empty())
+ for (size_t i = 0; i < pn->users.size(); i++)
+ if (pn->users.at(i).cell == port->cell && pn->users.at(i).port == port->port)
+ crit = net_crit.at(pn->name).criticality.at(i);
+ log_info(" %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx),
+ ctx->getBelName(port->cell->bel).c_str(ctx), crit);
+ }
+ if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
+ continue;
+ if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) ||
+ port->cell->constr_parent != nullptr || !port->cell->constr_children.empty())
+ continue;
+ if (ctx->debug)
+ log_info(" can move\n");
+ path_cells.push_back(port->cell->name);
+ }
+
+ if (path_cells.size() < 2) {
+ if (ctx->debug) {
+ log_info("Too few moveable cells; skipping path\n");
+ log_break();
+ }
+
+ return;
+ }
+
+ // Calculate original delay before touching anything
+ delay_t original_delay = 0;
+
+ for (size_t i = 0; i < path.size(); i++) {
+ NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
+ for (size_t j = 0; j < pn->users.size(); j++) {
+ auto &usr = pn->users.at(j);
+ if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
+ original_delay += ctx->predictDelay(pn, usr);
+ break;
+ }
+ }
+ }
+
+ IdString last_cell;
+ const int d = 2; // FIXME: how to best determine d
+ for (auto cell : path_cells) {
+ // FIXME: when should we allow swapping due to a lack of candidates
+ find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
+ last_cell = cell;
+ }
+
+ if (ctx->debug) {
+ for (auto cell : path_cells) {
+ log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx),
+ ctx->getBelName(ctx->cells[cell]->bel).c_str(ctx));
+ for (auto neigh : cell_neighbour_bels.at(cell)) {
+ log_info(" %s\n", ctx->getBelName(neigh).c_str(ctx));
+ }
+ }
+ }
+
+ // Actual BFS path optimisation algorithm
+ std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
+ std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>> backtrace;
+ std::queue<std::pair<int, BelId>> visit;
+ std::unordered_set<std::pair<int, BelId>> to_visit;
+
+ for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
+ // Swap for legality check
+ CellInfo *cell = ctx->cells.at(path_cells.front()).get();
+ BelId origBel = cell_swap_bel(cell, startbel);
+ std::vector<std::pair<CellInfo *, BelId>> move{std::make_pair(cell, origBel)};
+ if (acceptable_move(move)) {
+ auto entry = std::make_pair(0, startbel);
+ visit.push(entry);
+ cumul_costs[path_cells.front()][startbel] = 0;
+ }
+ // Swap back
+ cell_swap_bel(cell, origBel);
+ }
+
+ while (!visit.empty()) {
+ auto entry = visit.front();
+ visit.pop();
+ auto cellname = path_cells.at(entry.first);
+ if (entry.first == int(path_cells.size()) - 1)
+ continue;
+ std::vector<std::pair<CellInfo *, BelId>> move;
+ // Apply the entire backtrace for accurate legality and delay checks
+ // This is probably pretty expensive (but also probably pales in comparison to the number of swaps
+ // SA will make...)
+ std::vector<std::pair<IdString, BelId>> route_to_entry;
+ auto cursor = std::make_pair(cellname, entry.second);
+ route_to_entry.push_back(cursor);
+ while (backtrace.count(cursor)) {
+ cursor = backtrace.at(cursor);
+ route_to_entry.push_back(cursor);
+ }
+ for (auto rt_entry : boost::adaptors::reverse(route_to_entry)) {
+ CellInfo *cell = ctx->cells.at(rt_entry.first).get();
+ BelId origBel = cell_swap_bel(cell, rt_entry.second);
+ move.push_back(std::make_pair(cell, origBel));
+ }
+
+ // Have a look at where we can travel from here
+ for (auto neighbour : cell_neighbour_bels.at(path_cells.at(entry.first + 1))) {
+ // Edges between overlapping bels are deleted
+ if (neighbour == entry.second)
+ continue;
+ // Experimentally swap the next path cell onto the neighbour bel we are trying
+ IdString ncname = path_cells.at(entry.first + 1);
+ CellInfo *next_cell = ctx->cells.at(ncname).get();
+ BelId origBel = cell_swap_bel(next_cell, neighbour);
+ move.push_back(std::make_pair(next_cell, origBel));
+
+ delay_t total_delay = 0;
+
+ for (size_t i = 0; i < path.size(); i++) {
+ NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
+ for (size_t j = 0; j < pn->users.size(); j++) {
+ auto &usr = pn->users.at(j);
+ if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
+ total_delay += ctx->predictDelay(pn, usr);
+ break;
+ }
+ }
+ if (path.at(i)->cell == next_cell)
+ break;
+ }
+
+ // First, check if the move is actually worthwhile from a delay point of view before the expensive
+ // legality check
+ if (!cumul_costs.count(ncname) || !cumul_costs.at(ncname).count(neighbour) ||
+ cumul_costs.at(ncname).at(neighbour) > total_delay) {
+ // Now check that the swaps we have made to get here are legal and meet max delay requirements
+ if (acceptable_move(move)) {
+ cumul_costs[ncname][neighbour] = total_delay;
+ backtrace[std::make_pair(ncname, neighbour)] = std::make_pair(cellname, entry.second);
+ if (!to_visit.count(std::make_pair(entry.first + 1, neighbour)))
+ visit.push(std::make_pair(entry.first + 1, neighbour));
+ }
+ }
+ // Revert the experimental swap
+ cell_swap_bel(move.back().first, move.back().second);
+ move.pop_back();
+ }
+
+ // Revert move by swapping cells back to their original order
+ // Execute swaps in reverse order to how we made them originally
+ for (auto move_entry : boost::adaptors::reverse(move)) {
+ cell_swap_bel(move_entry.first, move_entry.second);
+ }
+ }
+
+ // Did we find a solution??
+ if (cumul_costs.count(path_cells.back())) {
+ // Find the end position with the lowest total delay
+ auto &end_options = cumul_costs.at(path_cells.back());
+ auto lowest = std::min_element(end_options.begin(), end_options.end(),
+ [](const std::pair<BelId, delay_t> &a, const std::pair<BelId, delay_t> &b) {
+ return a.second < b.second;
+ });
+ NPNR_ASSERT(lowest != end_options.end());
+
+ std::vector<std::pair<IdString, BelId>> route_to_solution;
+ auto cursor = std::make_pair(path_cells.back(), lowest->first);
+ route_to_solution.push_back(cursor);
+ while (backtrace.count(cursor)) {
+ cursor = backtrace.at(cursor);
+ route_to_solution.push_back(cursor);
+ }
+ if (ctx->debug)
+ log_info("Found a solution with cost %.02f ns (existing path %.02f ns)\n",
+ ctx->getDelayNS(lowest->second), ctx->getDelayNS(original_delay));
+ for (auto rt_entry : boost::adaptors::reverse(route_to_solution)) {
+ CellInfo *cell = ctx->cells.at(rt_entry.first).get();
+ cell_swap_bel(cell, rt_entry.second);
+ if (ctx->debug)
+ log_info(" %s at %s\n", rt_entry.first.c_str(ctx), ctx->getBelName(rt_entry.second).c_str(ctx));
+ }
+
+ } else {
+ if (ctx->debug)
+ log_info("Solution was not found\n");
+ }
+ if (ctx->debug)
+ log_break();
+ }
+
+ // Current candidate Bels for cells (linked in both direction>
+ std::vector<IdString> path_cells;
+ std::unordered_map<IdString, std::unordered_set<BelId>> cell_neighbour_bels;
+ std::unordered_map<BelId, std::unordered_set<IdString>> bel_candidate_cells;
+ // Map cell ports to net delay limit
+ std::unordered_map<std::pair<IdString, IdString>, delay_t> max_net_delay;
+ // Criticality data from timing analysis
+ NetCriticalityMap net_crit;
+ Context *ctx;
+ TimingOptCfg cfg;
+};
+
+bool timing_opt(Context *ctx, TimingOptCfg cfg) { return TimingOptimiser(ctx, cfg).optimise(); }
+
+NEXTPNR_NAMESPACE_END