From a72f898ff4c4237424c468044a6db9d6953b541e Mon Sep 17 00:00:00 2001 From: gatecat Date: Wed, 14 Sep 2022 09:28:47 +0200 Subject: 3rdparty: Bump vendored pybind11 version for py3.11 support Signed-off-by: gatecat --- 3rdparty/pybind11/tests/test_numpy_vectorize.cpp | 94 ++++++++++++++---------- 1 file changed, 54 insertions(+), 40 deletions(-) (limited to '3rdparty/pybind11/tests/test_numpy_vectorize.cpp') diff --git a/3rdparty/pybind11/tests/test_numpy_vectorize.cpp b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp index 274b7558..dcc4c6ac 100644 --- a/3rdparty/pybind11/tests/test_numpy_vectorize.cpp +++ b/3rdparty/pybind11/tests/test_numpy_vectorize.cpp @@ -8,66 +8,80 @@ BSD-style license that can be found in the LICENSE file. */ -#include "pybind11_tests.h" #include +#include "pybind11_tests.h" + +#include + double my_func(int x, float y, double z) { py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); - return (float) x*y*z; + return (float) x * y * z; } TEST_SUBMODULE(numpy_vectorize, m) { - try { py::module_::import("numpy"); } - catch (...) { return; } + try { + py::module_::import("numpy"); + } catch (const py::error_already_set &) { + return; + } // test_vectorize, test_docs, test_array_collapse // Vectorize all arguments of a function (though non-vector arguments are also allowed) m.def("vectorized_func", py::vectorize(my_func)); - // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) - m.def("vectorized_func2", - [](py::array_t x, py::array_t y, float z) { - return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); - } - ); + // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the + // vectorization) + m.def("vectorized_func2", [](py::array_t x, py::array_t y, float z) { + return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(std::move(x), + std::move(y)); + }); // Vectorize a complex-valued function - m.def("vectorized_func3", py::vectorize( - [](std::complex c) { return c * std::complex(2.f); } - )); + m.def("vectorized_func3", + py::vectorize([](std::complex c) { return c * std::complex(2.f); })); // test_type_selection // NumPy function which only accepts specific data types - m.def("selective_func", [](py::array_t) { return "Int branch taken."; }); - m.def("selective_func", [](py::array_t) { return "Float branch taken."; }); - m.def("selective_func", [](py::array_t, py::array::c_style>) { return "Complex float branch taken."; }); - + // A lot of these no lints could be replaced with const refs, and probably should at some + // point. + m.def("selective_func", + [](const py::array_t &) { return "Int branch taken."; }); + m.def("selective_func", + [](const py::array_t &) { return "Float branch taken."; }); + m.def("selective_func", [](const py::array_t, py::array::c_style> &) { + return "Complex float branch taken."; + }); // test_passthrough_arguments - // Passthrough test: references and non-pod types should be automatically passed through (in the - // function definition below, only `b`, `d`, and `g` are vectorized): + // Passthrough test: references and non-pod types should be automatically passed through (in + // the function definition below, only `b`, `d`, and `g` are vectorized): struct NonPODClass { - NonPODClass(int v) : value{v} {} + explicit NonPODClass(int v) : value{v} {} int value; }; py::class_(m, "NonPODClass") .def(py::init()) .def_readwrite("value", &NonPODClass::value); - m.def("vec_passthrough", py::vectorize( - [](double *a, double b, py::array_t c, const int &d, int &e, NonPODClass f, const double g) { - return *a + b + c.at(0) + d + e + f.value + g; - } - )); + m.def("vec_passthrough", + py::vectorize([](const double *a, + double b, + // Changing this broke things + // NOLINTNEXTLINE(performance-unnecessary-value-param) + py::array_t c, + const int &d, + int &e, + NonPODClass f, + const double g) { return *a + b + c.at(0) + d + e + f.value + g; })); // test_method_vectorization struct VectorizeTestClass { - VectorizeTestClass(int v) : value{v} {}; - float method(int x, float y) { return y + (float) (x + value); } + explicit VectorizeTestClass(int v) : value{v} {}; + float method(int x, float y) const { return y + (float) (x + value); } int value = 0; }; py::class_ vtc(m, "VectorizeTestClass"); - vtc .def(py::init()) - .def_readwrite("value", &VectorizeTestClass::value); + vtc.def(py::init()).def_readwrite("value", &VectorizeTestClass::value); // Automatic vectorizing of methods vtc.def("method", py::vectorize(&VectorizeTestClass::method)); @@ -78,16 +92,16 @@ TEST_SUBMODULE(numpy_vectorize, m) { .value("f_trivial", py::detail::broadcast_trivial::f_trivial) .value("c_trivial", py::detail::broadcast_trivial::c_trivial) .value("non_trivial", py::detail::broadcast_trivial::non_trivial); - m.def("vectorized_is_trivial", []( - py::array_t arg1, - py::array_t arg2, - py::array_t arg3 - ) { - py::ssize_t ndim; - std::vector shape; - std::array buffers {{ arg1.request(), arg2.request(), arg3.request() }}; - return py::detail::broadcast(buffers, ndim, shape); - }); + m.def("vectorized_is_trivial", + [](const py::array_t &arg1, + const py::array_t &arg2, + const py::array_t &arg3) { + py::ssize_t ndim = 0; + std::vector shape; + std::array buffers{ + {arg1.request(), arg2.request(), arg3.request()}}; + return py::detail::broadcast(buffers, ndim, shape); + }); - m.def("add_to", py::vectorize([](NonPODClass& x, int a) { x.value += a; })); + m.def("add_to", py::vectorize([](NonPODClass &x, int a) { x.value += a; })); } -- cgit v1.2.3