/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "context.h" #include "log.h" #include "nextpnr_namespaces.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN WireId Context::getNetinfoSourceWire(const NetInfo *net_info) const { if (net_info->driver.cell == nullptr) return WireId(); auto src_bel = net_info->driver.cell->bel; if (src_bel == BelId()) return WireId(); auto bel_pins = getBelPinsForCellPin(net_info->driver.cell, net_info->driver.port); auto iter = bel_pins.begin(); if (iter == bel_pins.end()) return WireId(); WireId driver = getBelPinWire(src_bel, *iter); ++iter; NPNR_ASSERT(iter == bel_pins.end()); // assert there is only one driver bel pin; return driver; } SSOArray Context::getNetinfoSinkWires(const NetInfo *net_info, const PortRef &user_info) const { auto dst_bel = user_info.cell->bel; if (dst_bel == BelId()) return SSOArray(0, WireId()); size_t bel_pin_count = 0; // We use an SSOArray here because it avoids any heap allocation for the 99.9% case of 1 or 2 sink wires // but as SSOArray doesn't (currently) support resizing to keep things simple it does mean we have to do // two loops for (auto s : getBelPinsForCellPin(user_info.cell, user_info.port)) { (void)s; // unused ++bel_pin_count; } SSOArray result(bel_pin_count, WireId()); bel_pin_count = 0; for (auto pin : getBelPinsForCellPin(user_info.cell, user_info.port)) { result[bel_pin_count++] = getBelPinWire(dst_bel, pin); } return result; } size_t Context::getNetinfoSinkWireCount(const NetInfo *net_info, const PortRef &sink) const { size_t count = 0; for (auto s : getNetinfoSinkWires(net_info, sink)) { (void)s; // unused ++count; } return count; } WireId Context::getNetinfoSinkWire(const NetInfo *net_info, const PortRef &sink, size_t phys_idx) const { size_t count = 0; for (auto s : getNetinfoSinkWires(net_info, sink)) { if (count == phys_idx) return s; ++count; } /* TODO: This should be an assertion failure, but for the zero-wire case of unplaced sinks; legacy code currently assumes WireId Remove once the refactoring process is complete. */ return WireId(); } delay_t Context::getNetinfoRouteDelay(const NetInfo *net_info, const PortRef &user_info) const { #ifdef ARCH_ECP5 if (net_info->is_global) return 0; #endif if (net_info->wires.empty()) return predictDelay(net_info, user_info); WireId src_wire = getNetinfoSourceWire(net_info); if (src_wire == WireId()) return 0; delay_t max_delay = 0; for (auto dst_wire : getNetinfoSinkWires(net_info, user_info)) { WireId cursor = dst_wire; delay_t delay = 0; while (cursor != WireId() && cursor != src_wire) { auto it = net_info->wires.find(cursor); if (it == net_info->wires.end()) break; PipId pip = it->second.pip; if (pip == PipId()) break; delay += getPipDelay(pip).maxDelay(); delay += getWireDelay(cursor).maxDelay(); cursor = getPipSrcWire(pip); } if (cursor == src_wire) max_delay = std::max(max_delay, delay + getWireDelay(src_wire).maxDelay()); // routed else max_delay = std::max(max_delay, predictDelay(net_info, user_info)); // unrouted } return max_delay; } static uint32_t xorshift32(uint32_t x) { x ^= x << 13; x ^= x >> 17; x ^= x << 5; return x; } uint32_t Context::checksum() const { uint32_t cksum = xorshift32(123456789); uint32_t cksum_nets_sum = 0; for (auto &it : nets) { auto &ni = *it.second; uint32_t x = 123456789; x = xorshift32(x + xorshift32(it.first.index)); x = xorshift32(x + xorshift32(ni.name.index)); if (ni.driver.cell) x = xorshift32(x + xorshift32(ni.driver.cell->name.index)); x = xorshift32(x + xorshift32(ni.driver.port.index)); x = xorshift32(x + xorshift32(getDelayChecksum(ni.driver.budget))); for (auto &u : ni.users) { if (u.cell) x = xorshift32(x + xorshift32(u.cell->name.index)); x = xorshift32(x + xorshift32(u.port.index)); x = xorshift32(x + xorshift32(getDelayChecksum(u.budget))); } uint32_t attr_x_sum = 0; for (auto &a : ni.attrs) { uint32_t attr_x = 123456789; attr_x = xorshift32(attr_x + xorshift32(a.first.index)); for (char ch : a.second.str) attr_x = xorshift32(attr_x + xorshift32((int)ch)); attr_x_sum += attr_x; } x = xorshift32(x + xorshift32(attr_x_sum)); uint32_t wire_x_sum = 0; for (auto &w : ni.wires) { uint32_t wire_x = 123456789; wire_x = xorshift32(wire_x + xorshift32(getWireChecksum(w.first))); wire_x = xorshift32(wire_x + xorshift32(getPipChecksum(w.second.pip))); wire_x = xorshift32(wire_x + xorshift32(int(w.second.strength))); wire_x_sum += wire_x; } x = xorshift32(x + xorshift32(wire_x_sum)); cksum_nets_sum += x; } cksum = xorshift32(cksum + xorshift32(cksum_nets_sum)); uint32_t cksum_cells_sum = 0; for (auto &it : cells) { auto &ci = *it.second; uint32_t x = 123456789; x = xorshift32(x + xorshift32(it.first.index)); x = xorshift32(x + xorshift32(ci.name.index)); x = xorshift32(x + xorshift32(ci.type.index)); uint32_t port_x_sum = 0; for (auto &p : ci.ports) { uint32_t port_x = 123456789; port_x = xorshift32(port_x + xorshift32(p.first.index)); port_x = xorshift32(port_x + xorshift32(p.second.name.index)); if (p.second.net) port_x = xorshift32(port_x + xorshift32(p.second.net->name.index)); port_x = xorshift32(port_x + xorshift32(p.second.type)); port_x_sum += port_x; } x = xorshift32(x + xorshift32(port_x_sum)); uint32_t attr_x_sum = 0; for (auto &a : ci.attrs) { uint32_t attr_x = 123456789; attr_x = xorshift32(attr_x + xorshift32(a.first.index)); for (char ch : a.second.str) attr_x = xorshift32(attr_x + xorshift32((int)ch)); attr_x_sum += attr_x; } x = xorshift32(x + xorshift32(attr_x_sum)); uint32_t param_x_sum = 0; for (auto &p : ci.params) { uint32_t param_x = 123456789; param_x = xorshift32(param_x + xorshift32(p.first.index)); for (char ch : p.second.str) param_x = xorshift32(param_x + xorshift32((int)ch)); param_x_sum += param_x; } x = xorshift32(x + xorshift32(param_x_sum)); x = xorshift32(x + xorshift32(getBelChecksum(ci.bel))); x = xorshift32(x + xorshift32(ci.belStrength)); cksum_cells_sum += x; } cksum = xorshift32(cksum + xorshift32(cksum_cells_sum)); return cksum; } void Context::check() const { bool check_failed = false; #define CHECK_FAIL(...) \ do { \ log_nonfatal_error(__VA_ARGS__); \ check_failed = true; \ } while (false) for (auto &n : nets) { auto ni = n.second.get(); if (n.first != ni->name) CHECK_FAIL("net key '%s' not equal to name '%s'\n", nameOf(n.first), nameOf(ni->name)); for (auto &w : ni->wires) { if (ni != getBoundWireNet(w.first)) CHECK_FAIL("net '%s' not bound to wire '%s' in wires map\n", nameOf(n.first), nameOfWire(w.first)); if (w.second.pip != PipId()) { if (w.first != getPipDstWire(w.second.pip)) CHECK_FAIL("net '%s' has dest mismatch '%s' vs '%s' in for pip '%s'\n", nameOf(n.first), nameOfWire(w.first), nameOfWire(getPipDstWire(w.second.pip)), nameOfPip(w.second.pip)); if (ni != getBoundPipNet(w.second.pip)) CHECK_FAIL("net '%s' not bound to pip '%s' in wires map\n", nameOf(n.first), nameOfPip(w.second.pip)); } } if (ni->driver.cell != nullptr) { if (!ni->driver.cell->ports.count(ni->driver.port)) { CHECK_FAIL("net '%s' driver port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(ni->driver.port), nameOf(ni->driver.cell)); } else { const NetInfo *p_net = ni->driver.cell->ports.at(ni->driver.port).net; if (p_net != ni) CHECK_FAIL("net '%s' driver port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first), nameOf(ni->driver.cell), nameOf(ni->driver.port), p_net ? nameOf(p_net) : ""); } } for (auto user : ni->users) { if (!user.cell->ports.count(user.port)) { CHECK_FAIL("net '%s' user port '%s' missing on cell '%s'\n", nameOf(n.first), nameOf(user.port), nameOf(user.cell)); } else { const NetInfo *p_net = user.cell->ports.at(user.port).net; if (p_net != ni) CHECK_FAIL("net '%s' user port '%s.%s' connected to incorrect net '%s'\n", nameOf(n.first), nameOf(user.cell), nameOf(user.port), p_net ? nameOf(p_net) : ""); } } } #ifdef CHECK_WIRES for (auto w : getWires()) { auto ni = getBoundWireNet(w); if (ni != nullptr) { if (!ni->wires.count(w)) CHECK_FAIL("wire '%s' missing in wires map of bound net '%s'\n", nameOfWire(w), nameOf(ni)); } } #endif for (auto &c : cells) { auto ci = c.second.get(); if (c.first != ci->name) CHECK_FAIL("cell key '%s' not equal to name '%s'\n", nameOf(c.first), nameOf(ci->name)); if (ci->bel != BelId()) { if (getBoundBelCell(c.second->bel) != ci) CHECK_FAIL("cell '%s' not bound to bel '%s' in bel field\n", nameOf(c.first), nameOfBel(ci->bel)); } for (auto &port : c.second->ports) { NetInfo *net = port.second.net; if (net != nullptr) { if (nets.find(net->name) == nets.end()) { CHECK_FAIL("cell port '%s.%s' connected to non-existent net '%s'\n", nameOf(c.first), nameOf(port.first), nameOf(net->name)); } else if (port.second.type == PORT_OUT) { if (net->driver.cell != c.second.get() || net->driver.port != port.first) { CHECK_FAIL("output cell port '%s.%s' not in driver field of net '%s'\n", nameOf(c.first), nameOf(port.first), nameOf(net)); } } else if (port.second.type == PORT_IN) { int usr_count = std::count_if(net->users.begin(), net->users.end(), [&](const PortRef &pr) { return pr.cell == c.second.get() && pr.port == port.first; }); if (usr_count != 1) CHECK_FAIL("input cell port '%s.%s' appears %d rather than expected 1 times in users vector of " "net '%s'\n", nameOf(c.first), nameOf(port.first), usr_count, nameOf(net)); } } } } #undef CHECK_FAIL if (check_failed) log_error("INTERNAL CHECK FAILED: please report this error with the design and full log output. Failure " "details are above this message.\n"); } namespace { struct FixupHierarchyWorker { FixupHierarchyWorker(Context *ctx) : ctx(ctx){}; Context *ctx; void run() { trim_hierarchy(ctx->top_module); rebuild_hierarchy(); }; // Remove cells and nets that no longer exist in the netlist std::vector todelete_cells, todelete_nets; void trim_hierarchy(IdString path) { auto &h = ctx->hierarchy.at(path); todelete_cells.clear(); todelete_nets.clear(); for (auto &lc : h.leaf_cells) { if (!ctx->cells.count(lc.second)) todelete_cells.push_back(lc.first); } for (auto &n : h.nets) if (!ctx->nets.count(n.second)) todelete_nets.push_back(n.first); for (auto tdc : todelete_cells) { h.leaf_cells_by_gname.erase(h.leaf_cells.at(tdc)); h.leaf_cells.erase(tdc); } for (auto tdn : todelete_nets) { h.nets_by_gname.erase(h.nets.at(tdn)); h.nets.erase(tdn); } for (auto &sc : h.hier_cells) trim_hierarchy(sc.second); } IdString construct_local_name(HierarchicalCell &hc, IdString global_name, bool is_cell) { std::string gn = global_name.str(ctx); auto dp = gn.find_last_of('.'); if (dp != std::string::npos) gn = gn.substr(dp + 1); IdString name = ctx->id(gn); // Make sure name is unique int adder = 0; while (is_cell ? hc.leaf_cells.count(name) : hc.nets.count(name)) { ++adder; name = ctx->id(gn + "$" + std::to_string(adder)); } return name; } // Update hierarchy structure for nets and cells that have hiercell set void rebuild_hierarchy() { for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); if (ci->hierpath == IdString()) ci->hierpath = ctx->top_module; auto &hc = ctx->hierarchy.at(ci->hierpath); if (hc.leaf_cells_by_gname.count(ci->name)) continue; // already known IdString local_name = construct_local_name(hc, ci->name, true); hc.leaf_cells_by_gname[ci->name] = local_name; hc.leaf_cells[local_name] = ci->name; } } }; } // namespace void Context::fixupHierarchy() { FixupHierarchyWorker(this).run(); } NEXTPNR_NAMESPACE_END