/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Clifford Wolf * Copyright (C) 2018 David Shah * * Simulated annealing implementation based on arachne-pnr * Copyright (C) 2015-2018 Cotton Seed * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "placer1.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "log.h" #include "place_common.h" #include "timing.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN class SAPlacer { public: SAPlacer(Context *ctx, Placer1Cfg cfg) : ctx(ctx), cfg(cfg) { int num_bel_types = 0; for (auto bel : ctx->getBels()) { Loc loc = ctx->getBelLocation(bel); IdString type = ctx->getBelType(bel); int type_idx; if (bel_types.find(type) == bel_types.end()) { type_idx = num_bel_types++; bel_types[type] = type_idx; } else { type_idx = bel_types.at(type); } if (int(fast_bels.size()) < type_idx + 1) fast_bels.resize(type_idx + 1); if (int(fast_bels.at(type_idx).size()) < (loc.x + 1)) fast_bels.at(type_idx).resize(loc.x + 1); if (int(fast_bels.at(type_idx).at(loc.x).size()) < (loc.y + 1)) fast_bels.at(type_idx).at(loc.x).resize(loc.y + 1); max_x = std::max(max_x, loc.x); max_y = std::max(max_y, loc.y); fast_bels.at(type_idx).at(loc.x).at(loc.y).push_back(bel); } diameter = std::max(max_x, max_y) + 1; costs.resize(ctx->nets.size()); old_udata.reserve(ctx->nets.size()); decltype(NetInfo::udata) n = 0; for (auto &net : ctx->nets) { old_udata.emplace_back(net.second->udata); net.second->udata = n++; } } ~SAPlacer() { for (auto &net : ctx->nets) net.second->udata = old_udata[net.second->udata]; } bool place() { log_break(); ctx->lock(); size_t placed_cells = 0; // Initial constraints placer for (auto &cell_entry : ctx->cells) { CellInfo *cell = cell_entry.second.get(); auto loc = cell->attrs.find(ctx->id("BEL")); if (loc != cell->attrs.end()) { std::string loc_name = loc->second; BelId bel = ctx->getBelByName(ctx->id(loc_name)); if (bel == BelId()) { log_error("No Bel named \'%s\' located for " "this chip (processing BEL attribute on \'%s\')\n", loc_name.c_str(), cell->name.c_str(ctx)); } IdString bel_type = ctx->getBelType(bel); if (bel_type != cell->type) { log_error("Bel \'%s\' of type \'%s\' does not match cell " "\'%s\' of type \'%s\'\n", loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx)); } if (!ctx->isValidBelForCell(cell, bel)) { log_error("Bel \'%s\' of type \'%s\' is not valid for cell " "\'%s\' of type \'%s\'\n", loc_name.c_str(), bel_type.c_str(ctx), cell->name.c_str(ctx), cell->type.c_str(ctx)); } ctx->bindBel(bel, cell, STRENGTH_USER); locked_bels.insert(bel); placed_cells++; } } int constr_placed_cells = placed_cells; log_info("Placed %d cells based on constraints.\n", int(placed_cells)); ctx->yield(); // Sort to-place cells for deterministic initial placement std::vector autoplaced; for (auto &cell : ctx->cells) { CellInfo *ci = cell.second.get(); if (ci->bel == BelId()) { autoplaced.push_back(cell.second.get()); } } std::sort(autoplaced.begin(), autoplaced.end(), [](CellInfo *a, CellInfo *b) { return a->name < b->name; }); ctx->shuffle(autoplaced); // Place cells randomly initially log_info("Creating initial placement for remaining %d cells.\n", int(autoplaced.size())); for (auto cell : autoplaced) { place_initial(cell); placed_cells++; if ((placed_cells - constr_placed_cells) % 500 == 0) log_info(" initial placement placed %d/%d cells\n", int(placed_cells - constr_placed_cells), int(autoplaced.size())); } if ((placed_cells - constr_placed_cells) % 500 != 0) log_info(" initial placement placed %d/%d cells\n", int(placed_cells - constr_placed_cells), int(autoplaced.size())); if (ctx->slack_redist_iter > 0) assign_budget(ctx); ctx->yield(); log_info("Running simulated annealing placer.\n"); // Calculate metric after initial placement curr_metric = 0; curr_tns = 0; for (auto &net : ctx->nets) { wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns); costs[net.second->udata] = CostChange{wl, -1}; curr_metric += wl; } int n_no_progress = 0; wirelen_t min_metric = curr_metric; double avg_metric = curr_metric; temp = 10000; // Main simulated annealing loop for (int iter = 1;; iter++) { n_move = n_accept = 0; improved = false; if (iter % 5 == 0 || iter == 1) log_info(" at iteration #%d: temp = %f, cost = " "%.0f, est tns = %.02fns\n", iter, temp, double(curr_metric), curr_tns); for (int m = 0; m < 15; ++m) { // Loop through all automatically placed cells for (auto cell : autoplaced) { // Find another random Bel for this cell BelId try_bel = random_bel_for_cell(cell); // If valid, try and swap to a new position and see if // the new position is valid/worthwhile if (try_bel != BelId() && try_bel != cell->bel) try_swap_position(cell, try_bel); } } if (curr_metric < min_metric) { min_metric = curr_metric; improved = true; } // Heuristic to improve placement on the 8k if (improved) n_no_progress = 0; else n_no_progress++; if (temp <= 1e-3 && n_no_progress >= 5) { if (iter % 5 != 0) log_info(" at iteration #%d: temp = %f, cost = %f\n", iter, temp, double(curr_metric)); break; } double Raccept = double(n_accept) / double(n_move); int M = std::max(max_x, max_y) + 1; double upper = 0.6, lower = 0.4; if (curr_metric < 0.95 * avg_metric) { avg_metric = 0.8 * avg_metric + 0.2 * curr_metric; } else { if (Raccept >= 0.8) { temp *= 0.7; } else if (Raccept > upper) { if (diameter < M) diameter++; else temp *= 0.9; } else if (Raccept > lower) { temp *= 0.95; } else { // Raccept < 0.3 if (diameter > 1) diameter--; else temp *= 0.8; } } // Once cooled below legalise threshold, run legalisation and start requiring // legal moves only if (temp < legalise_temp && !require_legal) { legalise_relative_constraints(ctx); require_legal = true; autoplaced.clear(); for (auto cell : sorted(ctx->cells)) { if (cell.second->belStrength < STRENGTH_STRONG) autoplaced.push_back(cell.second); } temp = post_legalise_temp; diameter *= post_legalise_dia_scale; ctx->shuffle(autoplaced); // Legalisation is a big change so force a slack redistribution here if (ctx->slack_redist_iter > 0) assign_budget(ctx, true /* quiet */); } else if (ctx->slack_redist_iter > 0 && iter % ctx->slack_redist_iter == 0) { assign_budget(ctx, true /* quiet */); } // Recalculate total metric entirely to avoid rounding errors // accumulating over time curr_metric = 0; curr_tns = 0; for (auto &net : ctx->nets) { wirelen_t wl = get_net_metric(ctx, net.second.get(), MetricType::COST, curr_tns); costs[net.second->udata] = CostChange{wl, -1}; curr_metric += wl; } // Let the UI show visualization updates. ctx->yield(); } // Final post-pacement validitiy check ctx->yield(); for (auto bel : ctx->getBels()) { CellInfo *cell = ctx->getBoundBelCell(bel); if (!ctx->isBelLocationValid(bel)) { std::string cell_text = "no cell"; if (cell != nullptr) cell_text = std::string("cell '") + ctx->nameOf(cell) + "'"; if (ctx->force) { log_warning("post-placement validity check failed for Bel '%s' " "(%s)\n", ctx->getBelName(bel).c_str(ctx), cell_text.c_str()); } else { log_error("post-placement validity check failed for Bel '%s' " "(%s)\n", ctx->getBelName(bel).c_str(ctx), cell_text.c_str()); } } } for (auto cell : sorted(ctx->cells)) if (get_constraints_distance(ctx, cell.second) != 0) log_error("constraint satisfaction check failed for cell '%s' at Bel '%s'\n", cell.first.c_str(ctx), ctx->getBelName(cell.second->bel).c_str(ctx)); timing_analysis(ctx); ctx->unlock(); return true; } private: // Initial random placement void place_initial(CellInfo *cell) { bool all_placed = false; int iters = 25; while (!all_placed) { BelId best_bel = BelId(); uint64_t best_score = std::numeric_limits::max(), best_ripup_score = std::numeric_limits::max(); CellInfo *ripup_target = nullptr; BelId ripup_bel = BelId(); if (cell->bel != BelId()) { ctx->unbindBel(cell->bel); } IdString targetType = cell->type; for (auto bel : ctx->getBels()) { if (ctx->getBelType(bel) == targetType && ctx->isValidBelForCell(cell, bel)) { if (ctx->checkBelAvail(bel)) { uint64_t score = ctx->rng64(); if (score <= best_score) { best_score = score; best_bel = bel; } } else { uint64_t score = ctx->rng64(); if (score <= best_ripup_score) { best_ripup_score = score; ripup_target = ctx->getBoundBelCell(bel); ripup_bel = bel; } } } } if (best_bel == BelId()) { if (iters == 0 || ripup_bel == BelId()) log_error("failed to place cell '%s' of type '%s'\n", cell->name.c_str(ctx), cell->type.c_str(ctx)); --iters; ctx->unbindBel(ripup_target->bel); best_bel = ripup_bel; } else { all_placed = true; } ctx->bindBel(best_bel, cell, STRENGTH_WEAK); // Back annotate location cell->attrs[ctx->id("BEL")] = ctx->getBelName(cell->bel).str(ctx); cell = ripup_target; } } // Attempt a SA position swap, return true on success or false on failure bool try_swap_position(CellInfo *cell, BelId newBel) { static std::vector updates; updates.clear(); BelId oldBel = cell->bel; CellInfo *other_cell = ctx->getBoundBelCell(newBel); if (other_cell != nullptr && other_cell->belStrength > STRENGTH_WEAK) { return false; } int old_dist = get_constraints_distance(ctx, cell); int new_dist; if (other_cell != nullptr) old_dist += get_constraints_distance(ctx, other_cell); wirelen_t new_metric = 0, delta; ctx->unbindBel(oldBel); if (other_cell != nullptr) { ctx->unbindBel(newBel); } for (const auto &port : cell->ports) { if (port.second.net != nullptr) { auto &cost = costs[port.second.net->udata]; if (cost.new_cost == 0) continue; cost.new_cost = 0; updates.emplace_back(port.second.net); } } if (other_cell != nullptr) { for (const auto &port : other_cell->ports) if (port.second.net != nullptr) { auto &cost = costs[port.second.net->udata]; if (cost.new_cost == 0) continue; cost.new_cost = 0; updates.emplace_back(port.second.net); } } ctx->bindBel(newBel, cell, STRENGTH_WEAK); if (other_cell != nullptr) { ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK); } if (!ctx->isBelLocationValid(newBel) || ((other_cell != nullptr && !ctx->isBelLocationValid(oldBel)))) { ctx->unbindBel(newBel); if (other_cell != nullptr) ctx->unbindBel(oldBel); goto swap_fail; } new_metric = curr_metric; // Recalculate metrics for all nets touched by the peturbation for (const auto &net : updates) { auto &c = costs[net->udata]; new_metric -= c.curr_cost; float temp_tns = 0; wirelen_t net_new_wl = get_net_metric(ctx, net, MetricType::COST, temp_tns); new_metric += net_new_wl; c.new_cost = net_new_wl; } new_dist = get_constraints_distance(ctx, cell); if (other_cell != nullptr) new_dist += get_constraints_distance(ctx, other_cell); delta = new_metric - curr_metric; delta += (cfg.constraintWeight / temp) * (new_dist - old_dist); n_move++; // SA acceptance criterea if (delta < 0 || (temp > 1e-6 && (ctx->rng() / float(0x3fffffff)) <= std::exp(-delta / temp))) { n_accept++; } else { if (other_cell != nullptr) ctx->unbindBel(oldBel); ctx->unbindBel(newBel); goto swap_fail; } curr_metric = new_metric; for (const auto &net : updates) { auto &c = costs[net->udata]; c = CostChange{c.new_cost, -1}; } return true; swap_fail: ctx->bindBel(oldBel, cell, STRENGTH_WEAK); if (other_cell != nullptr) { ctx->bindBel(newBel, other_cell, STRENGTH_WEAK); } for (const auto &net : updates) costs[net->udata].new_cost = -1; return false; } // Find a random Bel of the correct type for a cell, within the specified // diameter BelId random_bel_for_cell(CellInfo *cell) { IdString targetType = cell->type; Loc curr_loc = ctx->getBelLocation(cell->bel); while (true) { int nx = ctx->rng(2 * diameter + 1) + std::max(curr_loc.x - diameter, 0); int ny = ctx->rng(2 * diameter + 1) + std::max(curr_loc.y - diameter, 0); int beltype_idx = bel_types.at(targetType); if (nx >= int(fast_bels.at(beltype_idx).size())) continue; if (ny >= int(fast_bels.at(beltype_idx).at(nx).size())) continue; const auto &fb = fast_bels.at(beltype_idx).at(nx).at(ny); if (fb.size() == 0) continue; BelId bel = fb.at(ctx->rng(int(fb.size()))); if (locked_bels.find(bel) != locked_bels.end()) continue; return bel; } } Context *ctx; wirelen_t curr_metric = std::numeric_limits::max(); float curr_tns = 0; float temp = 1000; bool improved = false; int n_move, n_accept; int diameter = 35, max_x = 1, max_y = 1; std::unordered_map bel_types; std::vector>>> fast_bels; std::unordered_set locked_bels; bool require_legal = false; const float legalise_temp = 1; const float post_legalise_temp = 10; const float post_legalise_dia_scale = 1.5; Placer1Cfg cfg; struct CostChange { wirelen_t curr_cost; wirelen_t new_cost; }; std::vector costs; std::vector old_udata; }; bool placer1(Context *ctx, Placer1Cfg cfg) { try { SAPlacer placer(ctx, cfg); placer.place(); log_info("Checksum: 0x%08x\n", ctx->checksum()); #ifndef NDEBUG ctx->lock(); ctx->check(); ctx->unlock(); #endif return true; } catch (log_execution_error_exception) { #ifndef NDEBUG ctx->check(); #endif return false; } } NEXTPNR_NAMESPACE_END