/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2019 David Shah * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Core routing algorithm based on CRoute: * * CRoute: A Fast High-quality Timing-driven Connection-based FPGA Router * Dries Vercruyce, Elias Vansteenkiste and Dirk Stroobandt * DOI 10.1109/FCCM.2019.00017 [PDF on SciHub] * * Modified for the nextpnr Arch API and data structures; optimised for * real-world FPGA architectures in particular ECP5 and Xilinx UltraScale+ * */ #include "router2.h" #include #include #include #include #include #include #include #include "log.h" #include "nextpnr.h" #include "router1.h" #include "timing.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN namespace { struct Router2 { struct PerArcData { WireId sink_wire; ArcBounds bb; bool routed = false; }; // As we allow overlap at first; the nextpnr bind functions can't be used // as the primary relation between arcs and wires/pips struct PerNetData { WireId src_wire; std::vector arcs; ArcBounds bb; // Coordinates of the center of the net, used for the weight-to-average int cx, cy, hpwl; int total_route_us = 0; float max_crit = 0; }; struct WireScore { float cost; float togo_cost; delay_t delay; float total() const { return cost + togo_cost; } }; struct PerWireData { // nextpnr WireId w; // net --> number of arcs; driving pip boost::container::flat_map> bound_nets; // Historical congestion cost float hist_cong_cost = 1.0; // Wire is unavailable as locked to another arc bool unavailable = false; // This wire has to be used for this net int reserved_net = -1; // Visit data struct { bool dirty = false, visited = false; PipId pip; WireScore score; } visit; }; float present_wire_cost(const PerWireData &w, int net_uid) { int other_sources = int(w.bound_nets.size()); if (w.bound_nets.count(net_uid)) other_sources -= 1; if (other_sources == 0) return 1.0f; else return 1 + other_sources * curr_cong_weight; } Context *ctx; Router2Cfg cfg; Router2(Context *ctx, const Router2Cfg &cfg) : ctx(ctx), cfg(cfg) {} // Use 'udata' for fast net lookups and indexing std::vector nets_by_udata; std::vector nets; // Criticality data from timing analysis NetCriticalityMap net_crit; void setup_nets() { // Populate per-net and per-arc structures at start of routing nets.resize(ctx->nets.size()); nets_by_udata.resize(ctx->nets.size()); size_t i = 0; for (auto net : sorted(ctx->nets)) { NetInfo *ni = net.second; ni->udata = i; nets_by_udata.at(i) = ni; nets.at(i).arcs.resize(ni->users.size()); // Start net bounding box at overall min/max nets.at(i).bb.x0 = std::numeric_limits::max(); nets.at(i).bb.x1 = std::numeric_limits::min(); nets.at(i).bb.y0 = std::numeric_limits::max(); nets.at(i).bb.y1 = std::numeric_limits::min(); nets.at(i).cx = 0; nets.at(i).cy = 0; if (ni->driver.cell != nullptr) { Loc drv_loc = ctx->getBelLocation(ni->driver.cell->bel); nets.at(i).cx += drv_loc.x; nets.at(i).cy += drv_loc.y; } for (size_t j = 0; j < ni->users.size(); j++) { auto &usr = ni->users.at(j); WireId src_wire = ctx->getNetinfoSourceWire(ni), dst_wire = ctx->getNetinfoSinkWire(ni, usr); nets.at(i).src_wire = src_wire; if (ni->driver.cell == nullptr) src_wire = dst_wire; if (ni->driver.cell == nullptr && dst_wire == WireId()) continue; if (src_wire == WireId()) log_error("No wire found for port %s on source cell %s.\n", ctx->nameOf(ni->driver.port), ctx->nameOf(ni->driver.cell)); if (dst_wire == WireId()) log_error("No wire found for port %s on destination cell %s.\n", ctx->nameOf(usr.port), ctx->nameOf(usr.cell)); nets.at(i).arcs.at(j).sink_wire = dst_wire; // Set bounding box for this arc nets.at(i).arcs.at(j).bb = ctx->getRouteBoundingBox(src_wire, dst_wire); // Expand net bounding box to include this arc nets.at(i).bb.x0 = std::min(nets.at(i).bb.x0, nets.at(i).arcs.at(j).bb.x0); nets.at(i).bb.x1 = std::max(nets.at(i).bb.x1, nets.at(i).arcs.at(j).bb.x1); nets.at(i).bb.y0 = std::min(nets.at(i).bb.y0, nets.at(i).arcs.at(j).bb.y0); nets.at(i).bb.y1 = std::max(nets.at(i).bb.y1, nets.at(i).arcs.at(j).bb.y1); // Add location to centroid sum Loc usr_loc = ctx->getBelLocation(usr.cell->bel); nets.at(i).cx += usr_loc.x; nets.at(i).cy += usr_loc.y; } nets.at(i).hpwl = std::max( std::abs(nets.at(i).bb.y1 - nets.at(i).bb.y0) + std::abs(nets.at(i).bb.x1 - nets.at(i).bb.x0), 1); nets.at(i).cx /= int(ni->users.size() + 1); nets.at(i).cy /= int(ni->users.size() + 1); if (ctx->debug) log_info("%s: bb=(%d, %d)->(%d, %d) c=(%d, %d) hpwl=%d\n", ctx->nameOf(ni), nets.at(i).bb.x0, nets.at(i).bb.y0, nets.at(i).bb.x1, nets.at(i).bb.y1, nets.at(i).cx, nets.at(i).cy, nets.at(i).hpwl); i++; } } std::unordered_map wire_to_idx; std::vector flat_wires; PerWireData &wire_data(WireId w) { return flat_wires[wire_to_idx.at(w)]; } void setup_wires() { // Set up per-wire structures, so that MT parts don't have to do any memory allocation // This is possibly quite wasteful and not cache-optimal; further consideration necessary for (auto wire : ctx->getWires()) { PerWireData pwd; pwd.w = wire; NetInfo *bound = ctx->getBoundWireNet(wire); if (bound != nullptr) { pwd.bound_nets[bound->udata] = std::make_pair(1, bound->wires.at(wire).pip); if (bound->wires.at(wire).strength > STRENGTH_STRONG) pwd.unavailable = true; } wire_to_idx[wire] = int(flat_wires.size()); flat_wires.push_back(pwd); } } struct QueuedWire { explicit QueuedWire(int wire = -1, PipId pip = PipId(), Loc loc = Loc(), WireScore score = WireScore{}, int randtag = 0) : wire(wire), pip(pip), loc(loc), score(score), randtag(randtag){}; int wire; PipId pip; Loc loc; WireScore score; int randtag = 0; struct Greater { bool operator()(const QueuedWire &lhs, const QueuedWire &rhs) const noexcept { float lhs_score = lhs.score.cost + lhs.score.togo_cost, rhs_score = rhs.score.cost + rhs.score.togo_cost; return lhs_score == rhs_score ? lhs.randtag > rhs.randtag : lhs_score > rhs_score; } }; }; bool hit_test_pip(ArcBounds &bb, Loc l) { return l.x >= (bb.x0 - cfg.bb_margin_x) && l.x <= (bb.x1 + cfg.bb_margin_x) && l.y >= (bb.y0 - cfg.bb_margin_y) && l.y <= (bb.y1 + cfg.bb_margin_y); } double curr_cong_weight, hist_cong_weight, estimate_weight; struct ThreadContext { // Nets to route std::vector route_nets; // Nets that failed routing std::vector failed_nets; std::vector route_arcs; std::priority_queue, QueuedWire::Greater> queue; // Special case where one net has multiple logical arcs to the same physical sink std::unordered_set processed_sinks; // Backwards routing std::queue backwards_queue; std::vector dirty_wires; }; enum ArcRouteResult { ARC_SUCCESS, ARC_RETRY_WITHOUT_BB, ARC_FATAL, }; // Define to make sure we don't print in a multithreaded context #define ARC_LOG_ERR(...) \ do { \ if (is_mt) \ return ARC_FATAL; \ else \ log_error(__VA_ARGS__); \ } while (0) #define ROUTE_LOG_DBG(...) \ do { \ if (!is_mt && ctx->debug) \ log(__VA_ARGS__); \ } while (0) void bind_pip_internal(NetInfo *net, size_t user, int wire, PipId pip) { auto &b = flat_wires.at(wire).bound_nets[net->udata]; ++b.first; if (b.first == 1) { b.second = pip; } else { NPNR_ASSERT(b.second == pip); } } void unbind_pip_internal(NetInfo *net, size_t user, WireId wire) { auto &b = wire_data(wire).bound_nets.at(net->udata); --b.first; if (b.first == 0) { wire_data(wire).bound_nets.erase(net->udata); } } void ripup_arc(NetInfo *net, size_t user) { auto &ad = nets.at(net->udata).arcs.at(user); if (!ad.routed) return; WireId src = nets.at(net->udata).src_wire; WireId cursor = ad.sink_wire; while (cursor != src) { auto &wd = wire_data(cursor); PipId pip = wd.bound_nets.at(net->udata).second; unbind_pip_internal(net, user, cursor); cursor = ctx->getPipSrcWire(pip); } ad.routed = false; } float score_wire_for_arc(NetInfo *net, size_t user, WireId wire, PipId pip) { auto &wd = wire_data(wire); auto &nd = nets.at(net->udata); float base_cost = ctx->getDelayNS(ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(wire).maxDelay() + ctx->getDelayEpsilon()); float present_cost = present_wire_cost(wd, net->udata); float hist_cost = wd.hist_cong_cost; float bias_cost = 0; int source_uses = 0; if (wd.bound_nets.count(net->udata)) source_uses = wd.bound_nets.at(net->udata).first; if (pip != PipId()) { Loc pl = ctx->getPipLocation(pip); bias_cost = cfg.bias_cost_factor * (base_cost / int(net->users.size())) * ((std::abs(pl.x - nd.cx) + std::abs(pl.y - nd.cy)) / float(nd.hpwl)); } return base_cost * hist_cost * present_cost / (1 + source_uses) + bias_cost; } float get_togo_cost(NetInfo *net, size_t user, int wire, WireId sink) { auto &wd = flat_wires[wire]; int source_uses = 0; if (wd.bound_nets.count(net->udata)) source_uses = wd.bound_nets.at(net->udata).first; // FIXME: timing/wirelength balance? return (ctx->getDelayNS(ctx->estimateDelay(wd.w, sink)) / (1 + source_uses)) + cfg.ipin_cost_adder; } bool check_arc_routing(NetInfo *net, size_t usr) { auto &ad = nets.at(net->udata).arcs.at(usr); WireId src_wire = nets.at(net->udata).src_wire; WireId cursor = ad.sink_wire; while (wire_data(cursor).bound_nets.count(net->udata)) { auto &wd = wire_data(cursor); if (wd.bound_nets.size() != 1) return false; auto &uh = wd.bound_nets.at(net->udata).second; if (uh == PipId()) break; cursor = ctx->getPipSrcWire(uh); } return (cursor == src_wire); } // Returns true if a wire contains no source ports or driving pips bool is_wire_undriveable(WireId wire) { for (auto bp : ctx->getWireBelPins(wire)) if (ctx->getBelPinType(bp.bel, bp.pin) != PORT_IN) return false; for (auto p : ctx->getPipsUphill(wire)) return false; return true; } // Find all the wires that must be used to route a given arc void reserve_wires_for_arc(NetInfo *net, size_t i) { WireId src = ctx->getNetinfoSourceWire(net); WireId sink = ctx->getNetinfoSinkWire(net, net->users.at(i)); if (sink == WireId()) return; std::unordered_set rsv; WireId cursor = sink; bool done = false; if (ctx->debug) log("resevering wires for arc %d of net %s\n", int(i), ctx->nameOf(net)); while (!done) { auto &wd = wire_data(cursor); if (ctx->debug) log(" %s\n", ctx->nameOfWire(cursor)); wd.reserved_net = net->udata; if (cursor == src) break; WireId next_cursor; for (auto uh : ctx->getPipsUphill(cursor)) { WireId w = ctx->getPipSrcWire(uh); if (is_wire_undriveable(w)) continue; if (next_cursor != WireId()) { done = true; break; } next_cursor = w; } if (next_cursor == WireId()) break; cursor = next_cursor; } } void find_all_reserved_wires() { for (auto net : nets_by_udata) { WireId src = ctx->getNetinfoSourceWire(net); if (src == WireId()) continue; for (size_t i = 0; i < net->users.size(); i++) reserve_wires_for_arc(net, i); } } void reset_wires(ThreadContext &t) { for (auto w : t.dirty_wires) { flat_wires[w].visit.visited = false; flat_wires[w].visit.dirty = false; flat_wires[w].visit.pip = PipId(); flat_wires[w].visit.score = WireScore(); } t.dirty_wires.clear(); } void set_visited(ThreadContext &t, int wire, PipId pip, WireScore score) { auto &v = flat_wires.at(wire).visit; if (!v.dirty) t.dirty_wires.push_back(wire); v.dirty = true; v.visited = true; v.pip = pip; v.score = score; } bool was_visited(int wire) { return flat_wires.at(wire).visit.visited; } ArcRouteResult route_arc(ThreadContext &t, NetInfo *net, size_t i, bool is_mt, bool is_bb = true) { auto &nd = nets[net->udata]; auto &ad = nd.arcs[i]; auto &usr = net->users.at(i); ROUTE_LOG_DBG("Routing arc %d of net '%s' (%d, %d) -> (%d, %d)\n", int(i), ctx->nameOf(net), ad.bb.x0, ad.bb.y0, ad.bb.x1, ad.bb.y1); WireId src_wire = ctx->getNetinfoSourceWire(net), dst_wire = ctx->getNetinfoSinkWire(net, usr); if (src_wire == WireId()) ARC_LOG_ERR("No wire found for port %s on source cell %s.\n", ctx->nameOf(net->driver.port), ctx->nameOf(net->driver.cell)); if (dst_wire == WireId()) ARC_LOG_ERR("No wire found for port %s on destination cell %s.\n", ctx->nameOf(usr.port), ctx->nameOf(usr.cell)); int src_wire_idx = wire_to_idx.at(src_wire); int dst_wire_idx = wire_to_idx.at(dst_wire); // Check if arc was already done _in this iteration_ if (t.processed_sinks.count(dst_wire)) return ARC_SUCCESS; if (!t.queue.empty()) { std::priority_queue, QueuedWire::Greater> new_queue; t.queue.swap(new_queue); } if (!t.backwards_queue.empty()) { std::queue new_queue; t.backwards_queue.swap(new_queue); } // First try strongly iteration-limited routing backwards BFS // this will deal with certain nets faster than forward A* // and comes at a minimal performance cost for the others // This could also be used to speed up forwards routing by a hybrid // bidirectional approach int backwards_iter = 0; int backwards_limit = ctx->getBelGlobalBuf(net->driver.cell->bel) ? cfg.global_backwards_max_iter : cfg.backwards_max_iter; t.backwards_queue.push(wire_to_idx.at(dst_wire)); while (!t.backwards_queue.empty() && backwards_iter < backwards_limit) { int cursor = t.backwards_queue.front(); t.backwards_queue.pop(); auto &cwd = flat_wires[cursor]; PipId cpip; if (cwd.bound_nets.count(net->udata)) { // If we can tack onto existing routing; try that // Only do this if the existing routing is uncontented; however int cursor2 = cursor; bool bwd_merge_fail = false; while (flat_wires.at(cursor2).bound_nets.count(net->udata)) { if (flat_wires.at(cursor2).bound_nets.size() > 1) { bwd_merge_fail = true; break; } PipId p = flat_wires.at(cursor2).bound_nets.at(net->udata).second; if (p == PipId()) break; cursor2 = wire_to_idx.at(ctx->getPipSrcWire(p)); } if (!bwd_merge_fail && cursor2 == src_wire_idx) { // Found a path to merge to existing routing; backwards cursor2 = cursor; while (flat_wires.at(cursor2).bound_nets.count(net->udata)) { PipId p = flat_wires.at(cursor2).bound_nets.at(net->udata).second; if (p == PipId()) break; cursor2 = wire_to_idx.at(ctx->getPipSrcWire(p)); set_visited(t, cursor2, p, WireScore()); } break; } cpip = cwd.bound_nets.at(net->udata).second; } bool did_something = false; for (auto uh : ctx->getPipsUphill(flat_wires[cursor].w)) { did_something = true; if (!ctx->checkPipAvail(uh) && ctx->getBoundPipNet(uh) != net) continue; if (cpip != PipId() && cpip != uh) continue; // don't allow multiple pips driving a wire with a net int next = wire_to_idx.at(ctx->getPipSrcWire(uh)); if (was_visited(next)) continue; // skip wires that have already been visited auto &wd = flat_wires[next]; if (wd.unavailable) continue; if (wd.reserved_net != -1 && wd.reserved_net != net->udata) continue; if (wd.bound_nets.size() > 1 || (wd.bound_nets.size() == 1 && !wd.bound_nets.count(net->udata))) continue; // never allow congestion in backwards routing t.backwards_queue.push(next); set_visited(t, next, uh, WireScore()); } if (did_something) ++backwards_iter; } // Check if backwards routing succeeded in reaching source if (was_visited(src_wire_idx)) { ROUTE_LOG_DBG(" Routed (backwards): "); int cursor_fwd = src_wire_idx; bind_pip_internal(net, i, src_wire_idx, PipId()); while (was_visited(cursor_fwd)) { auto &v = flat_wires.at(cursor_fwd).visit; cursor_fwd = wire_to_idx.at(ctx->getPipDstWire(v.pip)); bind_pip_internal(net, i, cursor_fwd, v.pip); if (ctx->debug) { auto &wd = flat_wires.at(cursor_fwd); ROUTE_LOG_DBG(" wire: %s (curr %d hist %f)\n", ctx->nameOfWire(wd.w), int(wd.bound_nets.size()) - 1, wd.hist_cong_cost); } } NPNR_ASSERT(cursor_fwd == dst_wire_idx); ad.routed = true; t.processed_sinks.insert(dst_wire); reset_wires(t); return ARC_SUCCESS; } // Normal forwards A* routing reset_wires(t); WireScore base_score; base_score.cost = 0; base_score.delay = ctx->getWireDelay(src_wire).maxDelay(); base_score.togo_cost = get_togo_cost(net, i, src_wire_idx, dst_wire); // Add source wire to queue t.queue.push(QueuedWire(src_wire_idx, PipId(), Loc(), base_score)); set_visited(t, src_wire_idx, PipId(), base_score); int toexplore = 25000 * std::max(1, (ad.bb.x1 - ad.bb.x0) + (ad.bb.y1 - ad.bb.y0)); int iter = 0; int explored = 1; bool debug_arc = /*usr.cell->type.str(ctx).find("RAMB") != std::string::npos && (usr.port == ctx->id("ADDRATIEHIGH0") || usr.port == ctx->id("ADDRARDADDRL0"))*/ false; while (!t.queue.empty() && (!is_bb || iter < toexplore)) { auto curr = t.queue.top(); auto &d = flat_wires.at(curr.wire); t.queue.pop(); ++iter; #if 0 ROUTE_LOG_DBG("current wire %s\n", ctx->nameOfWire(curr.wire)); #endif // Explore all pips downhill of cursor for (auto dh : ctx->getPipsDownhill(d.w)) { // Skip pips outside of box in bounding-box mode #if 0 ROUTE_LOG_DBG("trying pip %s\n", ctx->nameOfPip(dh)); #endif #if 0 int wire_intent = ctx->wireIntent(curr.wire); if (is_bb && !hit_test_pip(ad.bb, ctx->getPipLocation(dh)) && wire_intent != ID_PSEUDO_GND && wire_intent != ID_PSEUDO_VCC) continue; #else if (is_bb && !hit_test_pip(ad.bb, ctx->getPipLocation(dh))) continue; if (!ctx->checkPipAvail(dh) && ctx->getBoundPipNet(dh) != net) continue; #endif // Evaluate score of next wire WireId next = ctx->getPipDstWire(dh); int next_idx = wire_to_idx.at(next); if (was_visited(next_idx)) continue; #if 1 if (debug_arc) ROUTE_LOG_DBG(" src wire %s\n", ctx->nameOfWire(next)); #endif auto &nwd = flat_wires.at(next_idx); if (nwd.unavailable) continue; if (nwd.reserved_net != -1 && nwd.reserved_net != net->udata) continue; if (nwd.bound_nets.count(net->udata) && nwd.bound_nets.at(net->udata).second != dh) continue; WireScore next_score; next_score.cost = curr.score.cost + score_wire_for_arc(net, i, next, dh); next_score.delay = curr.score.delay + ctx->getPipDelay(dh).maxDelay() + ctx->getWireDelay(next).maxDelay(); next_score.togo_cost = cfg.estimate_weight * get_togo_cost(net, i, next_idx, dst_wire); const auto &v = nwd.visit; if (!v.visited || (v.score.total() > next_score.total())) { ++explored; #if 0 ROUTE_LOG_DBG("exploring wire %s cost %f togo %f\n", ctx->nameOfWire(next), next_score.cost, next_score.togo_cost); #endif // Add wire to queue if it meets criteria t.queue.push(QueuedWire(next_idx, dh, ctx->getPipLocation(dh), next_score, ctx->rng())); set_visited(t, next_idx, dh, next_score); if (next == dst_wire) { toexplore = std::min(toexplore, iter + 5); } } } } if (was_visited(dst_wire_idx)) { ROUTE_LOG_DBG(" Routed (explored %d wires): ", explored); int cursor_bwd = dst_wire_idx; while (was_visited(cursor_bwd)) { auto &v = flat_wires.at(cursor_bwd).visit; bind_pip_internal(net, i, cursor_bwd, v.pip); if (ctx->debug) { auto &wd = flat_wires.at(cursor_bwd); ROUTE_LOG_DBG(" wire: %s (curr %d hist %f share %d)\n", ctx->nameOfWire(wd.w), int(wd.bound_nets.size()) - 1, wd.hist_cong_cost, wd.bound_nets.count(net->udata) ? wd.bound_nets.at(net->udata).first : 0); } if (v.pip == PipId()) { NPNR_ASSERT(cursor_bwd == src_wire_idx); break; } ROUTE_LOG_DBG(" pip: %s (%d, %d)\n", ctx->nameOfPip(v.pip), ctx->getPipLocation(v.pip).x, ctx->getPipLocation(v.pip).y); cursor_bwd = wire_to_idx.at(ctx->getPipSrcWire(v.pip)); } t.processed_sinks.insert(dst_wire); ad.routed = true; reset_wires(t); return ARC_SUCCESS; } else { reset_wires(t); return ARC_RETRY_WITHOUT_BB; } } #undef ARC_ERR bool route_net(ThreadContext &t, NetInfo *net, bool is_mt) { #ifdef ARCH_ECP5 if (net->is_global) return true; #endif ROUTE_LOG_DBG("Routing net '%s'...\n", ctx->nameOf(net)); auto rstart = std::chrono::high_resolution_clock::now(); // Nothing to do if net is undriven if (net->driver.cell == nullptr) return true; bool have_failures = false; t.processed_sinks.clear(); t.route_arcs.clear(); for (size_t i = 0; i < net->users.size(); i++) { // Ripup failed arcs to start with // Check if arc is already legally routed if (check_arc_routing(net, i)) continue; auto &usr = net->users.at(i); WireId dst_wire = ctx->getNetinfoSinkWire(net, usr); // Case of arcs that were pre-routed strongly (e.g. clocks) if (net->wires.count(dst_wire) && net->wires.at(dst_wire).strength > STRENGTH_STRONG) return ARC_SUCCESS; // Ripup arc to start with ripup_arc(net, i); t.route_arcs.push_back(i); } for (auto i : t.route_arcs) { auto res1 = route_arc(t, net, i, is_mt, true); if (res1 == ARC_FATAL) return false; // Arc failed irrecoverably else if (res1 == ARC_RETRY_WITHOUT_BB) { if (is_mt) { // Can't break out of bounding box in multi-threaded mode, so mark this arc as a failure have_failures = true; } else { // Attempt a re-route without the bounding box constraint ROUTE_LOG_DBG("Rerouting arc %d of net '%s' without bounding box, possible tricky routing...\n", int(i), ctx->nameOf(net)); auto res2 = route_arc(t, net, i, is_mt, false); // If this also fails, no choice but to give up if (res2 != ARC_SUCCESS) log_error("Failed to route arc %d of net '%s', from %s to %s.\n", int(i), ctx->nameOf(net), ctx->nameOfWire(ctx->getNetinfoSourceWire(net)), ctx->nameOfWire(ctx->getNetinfoSinkWire(net, net->users.at(i)))); } } } if (cfg.perf_profile) { auto rend = std::chrono::high_resolution_clock::now(); nets.at(net->udata).total_route_us += (std::chrono::duration_cast(rend - rstart).count()); } return !have_failures; } #undef ROUTE_LOG_DBG int total_wire_use = 0; int overused_wires = 0; int total_overuse = 0; std::vector route_queue; std::set failed_nets; void update_congestion() { total_overuse = 0; overused_wires = 0; total_wire_use = 0; failed_nets.clear(); for (auto &wire : flat_wires) { total_wire_use += int(wire.bound_nets.size()); int overuse = int(wire.bound_nets.size()) - 1; if (overuse > 0) { wire.hist_cong_cost += overuse * hist_cong_weight; total_overuse += overuse; overused_wires += 1; for (auto &bound : wire.bound_nets) failed_nets.insert(bound.first); } } } bool bind_and_check(NetInfo *net, int usr_idx) { #ifdef ARCH_ECP5 if (net->is_global) return true; #endif bool success = true; auto &nd = nets.at(net->udata); auto &ad = nd.arcs.at(usr_idx); auto &usr = net->users.at(usr_idx); WireId src = ctx->getNetinfoSourceWire(net); // Skip routes with no source if (src == WireId()) return true; WireId dst = ctx->getNetinfoSinkWire(net, usr); // Skip routes where the destination is already bound if (dst == WireId() || ctx->getBoundWireNet(dst) == net) return true; // Skip routes where there is no routing (special cases) if (!ad.routed) return true; WireId cursor = dst; std::vector to_bind; while (cursor != src) { if (!ctx->checkWireAvail(cursor)) { if (ctx->getBoundWireNet(cursor) == net) break; // hit the part of the net that is already bound else { success = false; break; } } auto &wd = wire_data(cursor); if (!wd.bound_nets.count(net->udata)) { log("Failure details:\n"); log(" Cursor: %s\n", ctx->nameOfWire(cursor)); log_error("Internal error; incomplete route tree for arc %d of net %s.\n", usr_idx, ctx->nameOf(net)); } auto &p = wd.bound_nets.at(net->udata).second; if (!ctx->checkPipAvail(p)) { success = false; break; } else { to_bind.push_back(p); } cursor = ctx->getPipSrcWire(p); } if (success) { if (ctx->getBoundWireNet(src) == nullptr) ctx->bindWire(src, net, STRENGTH_WEAK); for (auto tb : to_bind) ctx->bindPip(tb, net, STRENGTH_WEAK); } else { ripup_arc(net, usr_idx); failed_nets.insert(net->udata); } return success; } int arch_fail = 0; bool bind_and_check_all() { bool success = true; std::vector net_wires; for (auto net : nets_by_udata) { #ifdef ARCH_ECP5 if (net->is_global) continue; #endif // Ripup wires and pips used by the net in nextpnr's structures net_wires.clear(); for (auto &w : net->wires) { if (w.second.strength <= STRENGTH_STRONG) net_wires.push_back(w.first); } for (auto w : net_wires) ctx->unbindWire(w); // Bind the arcs using the routes we have discovered for (size_t i = 0; i < net->users.size(); i++) { if (!bind_and_check(net, i)) { ++arch_fail; success = false; } } } return success; } void write_heatmap(std::ostream &out, bool congestion = false) { std::vector> hm_xy; int max_x = 0, max_y = 0; for (auto &wd : flat_wires) { int val = int(wd.bound_nets.size()) - (congestion ? 1 : 0); if (wd.bound_nets.empty()) continue; // Estimate wire location by driving pip location PipId drv; for (auto &bn : wd.bound_nets) if (bn.second.second != PipId()) { drv = bn.second.second; break; } if (drv == PipId()) continue; Loc l = ctx->getPipLocation(drv); max_x = std::max(max_x, l.x); max_y = std::max(max_y, l.y); if (l.y >= int(hm_xy.size())) hm_xy.resize(l.y + 1); if (l.x >= int(hm_xy.at(l.y).size())) hm_xy.at(l.y).resize(l.x + 1); if (val > 0) hm_xy.at(l.y).at(l.x) += val; } for (int y = 0; y <= max_y; y++) { for (int x = 0; x <= max_x; x++) { if (y >= int(hm_xy.size()) || x >= int(hm_xy.at(y).size())) out << "0,"; else out << hm_xy.at(y).at(x) << ","; } out << std::endl; } } int mid_x = 0, mid_y = 0; void partition_nets() { // Create a histogram of positions in X and Y positions std::map cxs, cys; for (auto &n : nets) { if (n.cx != -1) ++cxs[n.cx]; if (n.cy != -1) ++cys[n.cy]; } // 4-way split for now int accum_x = 0, accum_y = 0; int halfway = int(nets.size()) / 2; for (auto &p : cxs) { if (accum_x < halfway && (accum_x + p.second) >= halfway) mid_x = p.first; accum_x += p.second; } for (auto &p : cys) { if (accum_y < halfway && (accum_y + p.second) >= halfway) mid_y = p.first; accum_y += p.second; } if (ctx->verbose) { log_info(" x splitpoint: %d\n", mid_x); log_info(" y splitpoint: %d\n", mid_y); } std::vector bins(5, 0); for (auto &n : nets) { if (n.bb.x0 < mid_x && n.bb.x1 < mid_x && n.bb.y0 < mid_y && n.bb.y1 < mid_y) ++bins[0]; // TL else if (n.bb.x0 >= mid_x && n.bb.x1 >= mid_x && n.bb.y0 < mid_y && n.bb.y1 < mid_y) ++bins[1]; // TR else if (n.bb.x0 < mid_x && n.bb.x1 < mid_x && n.bb.y0 >= mid_y && n.bb.y1 >= mid_y) ++bins[2]; // BL else if (n.bb.x0 >= mid_x && n.bb.x1 >= mid_x && n.bb.y0 >= mid_y && n.bb.y1 >= mid_y) ++bins[3]; // BR else ++bins[4]; // cross-boundary } if (ctx->verbose) for (int i = 0; i < 5; i++) log_info(" bin %d N=%d\n", i, bins[i]); } void router_thread(ThreadContext &t) { for (auto n : t.route_nets) { bool result = route_net(t, n, true); if (!result) t.failed_nets.push_back(n); } } void do_route() { // Don't multithread if fewer than 200 nets (heuristic) if (route_queue.size() < 200) { ThreadContext st; for (size_t j = 0; j < route_queue.size(); j++) { route_net(st, nets_by_udata[route_queue[j]], false); } return; } const int Nq = 4, Nv = 2, Nh = 2; const int N = Nq + Nv + Nh; std::vector tcs(N + 1); for (auto n : route_queue) { auto &nd = nets.at(n); auto ni = nets_by_udata.at(n); int bin = N; int le_x = mid_x - cfg.bb_margin_x; int rs_x = mid_x + cfg.bb_margin_x; int le_y = mid_y - cfg.bb_margin_y; int rs_y = mid_y + cfg.bb_margin_y; // Quadrants if (nd.bb.x0 < le_x && nd.bb.x1 < le_x && nd.bb.y0 < le_y && nd.bb.y1 < le_y) bin = 0; else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x && nd.bb.y0 < le_y && nd.bb.y1 < le_y) bin = 1; else if (nd.bb.x0 < le_x && nd.bb.x1 < le_x && nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y) bin = 2; else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x && nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y) bin = 3; // Vertical split else if (nd.bb.y0 < le_y && nd.bb.y1 < le_y) bin = Nq + 0; else if (nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y) bin = Nq + 1; // Horizontal split else if (nd.bb.x0 < le_x && nd.bb.x1 < le_x) bin = Nq + Nv + 0; else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x) bin = Nq + Nv + 1; tcs.at(bin).route_nets.push_back(ni); } if (ctx->verbose) log_info("%d/%d nets not multi-threadable\n", int(tcs.at(N).route_nets.size()), int(route_queue.size())); // Multithreaded part of routing - quadrants std::vector threads; for (int i = 0; i < Nq; i++) { threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i)); }); } for (auto &t : threads) t.join(); threads.clear(); // Vertical splits for (int i = Nq; i < Nq + Nv; i++) { threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i)); }); } for (auto &t : threads) t.join(); threads.clear(); // Horizontal splits for (int i = Nq + Nv; i < Nq + Nv + Nh; i++) { threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i)); }); } for (auto &t : threads) t.join(); threads.clear(); // Singlethreaded part of routing - nets that cross partitions // or don't fit within bounding box for (auto st_net : tcs.at(N).route_nets) route_net(tcs.at(N), st_net, false); // Failed nets for (int i = 0; i < N; i++) for (auto fail : tcs.at(i).failed_nets) route_net(tcs.at(N), fail, false); } void operator()() { log_info("Running router2...\n"); log_info("Setting up routing resources...\n"); auto rstart = std::chrono::high_resolution_clock::now(); setup_nets(); setup_wires(); find_all_reserved_wires(); partition_nets(); curr_cong_weight = cfg.init_curr_cong_weight; hist_cong_weight = cfg.hist_cong_weight; ThreadContext st; int iter = 1; for (size_t i = 0; i < nets_by_udata.size(); i++) route_queue.push_back(i); bool timing_driven = ctx->setting("timing_driven"); log_info("Running main router loop...\n"); do { ctx->sorted_shuffle(route_queue); if (timing_driven && (int(route_queue.size()) > (int(nets_by_udata.size()) / 50))) { // Heuristic: reduce runtime by skipping STA in the case of a "long tail" of a few // congested nodes get_criticalities(ctx, &net_crit); for (auto n : route_queue) { IdString name = nets_by_udata.at(n)->name; auto fnd = net_crit.find(name); auto &net = nets.at(n); net.max_crit = 0; if (fnd == net_crit.end()) continue; for (auto c : fnd->second.criticality) net.max_crit = std::max(net.max_crit, c); } std::stable_sort(route_queue.begin(), route_queue.end(), [&](int na, int nb) { return nets.at(na).max_crit > nets.at(nb).max_crit; }); } #if 0 for (size_t j = 0; j < route_queue.size(); j++) { route_net(st, nets_by_udata[route_queue[j]], false); if ((j % 1000) == 0 || j == (route_queue.size() - 1)) log(" routed %d/%d\n", int(j), int(route_queue.size())); } #endif do_route(); route_queue.clear(); update_congestion(); #if 0 if (iter == 1 && ctx->debug) { std::ofstream cong_map("cong_map_0.csv"); write_heatmap(cong_map, true); } #endif if (overused_wires == 0) { // Try and actually bind nextpnr Arch API wires bind_and_check_all(); } for (auto cn : failed_nets) route_queue.push_back(cn); log_info(" iter=%d wires=%d overused=%d overuse=%d archfail=%s\n", iter, total_wire_use, overused_wires, total_overuse, overused_wires > 0 ? "NA" : std::to_string(arch_fail).c_str()); ++iter; curr_cong_weight *= cfg.curr_cong_mult; } while (!failed_nets.empty()); if (cfg.perf_profile) { std::vector> nets_by_runtime; for (auto &n : nets_by_udata) { nets_by_runtime.emplace_back(nets.at(n->udata).total_route_us, n->name); } std::sort(nets_by_runtime.begin(), nets_by_runtime.end(), std::greater>()); log_info("1000 slowest nets by runtime:\n"); for (int i = 0; i < std::min(int(nets_by_runtime.size()), 1000); i++) { log(" %80s %6d %.1fms\n", nets_by_runtime.at(i).second.c_str(ctx), int(ctx->nets.at(nets_by_runtime.at(i).second)->users.size()), nets_by_runtime.at(i).first / 1000.0); } } auto rend = std::chrono::high_resolution_clock::now(); log_info("Router2 time %.02fs\n", std::chrono::duration(rend - rstart).count()); log_info("Running router1 to check that route is legal...\n"); router1(ctx, Router1Cfg(ctx)); } }; } // namespace void router2(Context *ctx, const Router2Cfg &cfg) { Router2 rt(ctx, cfg); rt.ctx = ctx; rt(); } Router2Cfg::Router2Cfg(Context *ctx) { backwards_max_iter = ctx->setting("router2/bwdMaxIter", 20); global_backwards_max_iter = ctx->setting("router2/glbBwdMaxIter", 200); bb_margin_x = ctx->setting("router2/bbMargin/x", 3); bb_margin_y = ctx->setting("router2/bbMargin/y", 3); ipin_cost_adder = ctx->setting("router2/ipinCostAdder", 0.0f); bias_cost_factor = ctx->setting("router2/biasCostFactor", 0.25f); init_curr_cong_weight = ctx->setting("router2/initCurrCongWeight", 0.5f); hist_cong_weight = ctx->setting("router2/histCongWeight", 1.0f); curr_cong_mult = ctx->setting("router2/currCongWeightMult", 2.0f); estimate_weight = ctx->setting("router2/estimateWeight", 1.75f); perf_profile = ctx->setting("router2/perfProfile", false); } NEXTPNR_NAMESPACE_END