/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 Serge Bazanski * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include #include #include #include #include #include #include "fpgaviewwidget.h" #include "log.h" #include "mainwindow.h" NEXTPNR_NAMESPACE_BEGIN void PolyLine::buildPoint(LineShaderData *building, const QVector2D *prev, const QVector2D *cur, const QVector2D *next) const { // buildPoint emits two vertices per line point, along with normals to move // them the right directio when rendering and miter to compensate for // bends. if (cur == nullptr) { // BUG return; } if (prev == nullptr && next == nullptr) { // BUG return; } // TODO(q3k): fast path for vertical/horizontal lines? // TODO(q3k): consider moving some of the linear algebra to the GPU, // they're better at this than poor old CPUs. // Build two unit vectors pointing in the direction of the two segments // defined by (prev, cur) and (cur, next) QVector2D dprev, dnext; if (prev == nullptr) { dnext = *next - *cur; dprev = dnext; } else if (next == nullptr) { dprev = *cur - *prev; dnext = dprev; } else { dprev = *cur - *prev; dnext = *next - *cur; } dprev.normalize(); dnext.normalize(); // Calculate tangent unit vector. QVector2D tangent(dprev + dnext); tangent.normalize(); // Calculate normal to tangent - this is the line on which the vectors need // to be pushed to build a thickened line. const QVector2D tangent_normal = QVector2D(-tangent.y(), tangent.x()); // Calculate normal to one of the lines. const QVector2D dprev_normal = QVector2D(-dprev.y(), dprev.x()); // https://people.eecs.berkeley.edu/~sequin/CS184/IMGS/Sweep_PolyLine.jpg // (the ^-1 is performed in the shader) const float miter = QVector2D::dotProduct(tangent_normal, dprev_normal); const float x = cur->x(); const float y = cur->y(); const float mx = tangent_normal.x(); const float my = tangent_normal.y(); // Push back 'left' vertex. building->vertices.push_back(Vertex2DPOD(x, y)); building->normals.push_back(Vertex2DPOD(mx, my)); building->miters.push_back(miter); // Push back 'right' vertex. building->vertices.push_back(Vertex2DPOD(x, y)); building->normals.push_back(Vertex2DPOD(mx, my)); building->miters.push_back(-miter); } void PolyLine::build(LineShaderData &target) const { if (points_.size() < 2) { return; } const QVector2D *first = &points_.front(); const QVector2D *last = &points_.back(); // Index number of vertices, used to build the index buffer. unsigned int startIndex = target.vertices.size(); unsigned int index = startIndex; // For every point on the line, call buildPoint with (prev, point, next). // If we're building a closed line, prev/next wrap around. Otherwise // they are passed as nullptr and buildPoint interprets that accordinglu. const QVector2D *prev = nullptr; // Loop iterator used to ensure next is valid. unsigned int i = 0; for (const QVector2D &point : points_) { const QVector2D *next = nullptr; if (++i < points_.size()) { next = (&point + 1); } // If the line is closed, wrap around. Otherwise, pass nullptr. if (prev == nullptr && closed_) { buildPoint(&target, last, &point, next); } else if (next == nullptr && closed_) { buildPoint(&target, prev, &point, first); } else { buildPoint(&target, prev, &point, next); } // If we have a prev point relative to cur, build a pair of triangles // to render vertices into lines. if (prev != nullptr) { target.indices.push_back(index); target.indices.push_back(index + 1); target.indices.push_back(index + 2); target.indices.push_back(index + 2); target.indices.push_back(index + 1); target.indices.push_back(index + 3); index += 2; } prev = &point; } // If we're closed, build two more vertices that loop the line around. if (closed_) { target.indices.push_back(index); target.indices.push_back(index + 1); target.indices.push_back(startIndex); target.indices.push_back(startIndex); target.indices.push_back(index + 1); target.indices.push_back(startIndex + 1); } } bool LineShader::compile(void) { program_ = new QOpenGLShaderProgram(parent_); program_->addShaderFromSourceCode(QOpenGLShader::Vertex, vertexShaderSource_); program_->addShaderFromSourceCode(QOpenGLShader::Fragment, fragmentShaderSource_); if (!program_->link()) { printf("could not link program: %s\n", program_->log().toStdString().c_str()); return false; } attributes_.position = program_->attributeLocation("position"); attributes_.normal = program_->attributeLocation("normal"); attributes_.miter = program_->attributeLocation("miter"); uniforms_.thickness = program_->uniformLocation("thickness"); uniforms_.projection = program_->uniformLocation("projection"); uniforms_.color = program_->uniformLocation("color"); return true; } void LineShader::draw(const LineShaderData &line, const QMatrix4x4 &projection) { auto gl = QOpenGLContext::currentContext()->functions(); program_->bind(); program_->setUniformValue(uniforms_.projection, projection); program_->setUniformValue(uniforms_.thickness, line.thickness); program_->setUniformValue(uniforms_.color, line.color.r, line.color.g, line.color.b, line.color.a); gl->glVertexAttribPointer(attributes_.position, 2, GL_FLOAT, GL_FALSE, 0, &line.vertices[0]); gl->glVertexAttribPointer(attributes_.normal, 2, GL_FLOAT, GL_FALSE, 0, &line.normals[0]); gl->glVertexAttribPointer(attributes_.miter, 1, GL_FLOAT, GL_FALSE, 0, &line.miters[0]); gl->glEnableVertexAttribArray(0); gl->glEnableVertexAttribArray(1); gl->glEnableVertexAttribArray(2); gl->glDrawElements(GL_TRIANGLES, line.indices.size(), GL_UNSIGNED_INT, &line.indices[0]); gl->glDisableVertexAttribArray(2); gl->glDisableVertexAttribArray(1); gl->glDisableVertexAttribArray(0); program_->release(); } FPGAViewWidget::FPGAViewWidget(QWidget *parent) : QOpenGLWidget(parent), moveX_(0), moveY_(0), zoom_(10.0f), lineShader_(this) { ctx = qobject_cast(getMainWindow())->getContext(); } QMainWindow *FPGAViewWidget::getMainWindow() { QWidgetList widgets = qApp->topLevelWidgets(); for (QWidgetList::iterator i = widgets.begin(); i != widgets.end(); ++i) if ((*i)->objectName() == "BaseMainWindow") return (QMainWindow *)(*i); return NULL; } FPGAViewWidget::~FPGAViewWidget() {} QSize FPGAViewWidget::minimumSizeHint() const { return QSize(640, 480); } QSize FPGAViewWidget::sizeHint() const { return QSize(640, 480); } void FPGAViewWidget::setXTranslation(float t_x) { if (t_x == moveX_) return; moveX_ = t_x; update(); } void FPGAViewWidget::setYTranslation(float t_y) { if (t_y == moveY_) return; moveY_ = t_y; update(); } void FPGAViewWidget::setZoom(float t_z) { if (t_z == zoom_) return; zoom_ = t_z; if (zoom_ < 1.0f) zoom_ = 1.0f; if (zoom_ > 100.f) zoom_ = 100.0f; update(); } void FPGAViewWidget::initializeGL() { if (!lineShader_.compile()) { log_error("Could not compile shader.\n"); } initializeOpenGLFunctions(); glClearColor(1.0, 1.0, 1.0, 0.0); } void FPGAViewWidget::drawElement(LineShaderData &out, const GraphicElement &el) { const float scale = 1.0, offset = 0.0; if (el.type == GraphicElement::G_BOX) { auto line = PolyLine(true); line.point(offset + scale * el.x1, offset + scale * el.y1); line.point(offset + scale * el.x2, offset + scale * el.y1); line.point(offset + scale * el.x2, offset + scale * el.y2); line.point(offset + scale * el.x1, offset + scale * el.y2); line.build(out); } if (el.type == GraphicElement::G_LINE) { PolyLine(offset + scale * el.x1, offset + scale * el.y1, offset + scale * el.x2, offset + scale * el.y2) .build(out); } } void FPGAViewWidget::paintGL() { auto gl = QOpenGLContext::currentContext()->functions(); const qreal retinaScale = devicePixelRatio(); gl->glViewport(0, 0, width() * retinaScale, height() * retinaScale); gl->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); const float aspect = float(width()) / float(height()); QMatrix4x4 matrix; matrix.ortho(QRectF(-aspect / 2.0, -0.5, aspect, 1.0f)); matrix.translate(moveX_, moveY_, -0.5); matrix.scale(zoom_ * 0.01f, zoom_ * 0.01f, 0); // Draw grid. auto grid = LineShaderData(0.01f, QColor("#DDD")); for (float i = -100.0f; i < 100.0f; i += 1.0f) { PolyLine(-100.0f, i, 100.0f, i).build(grid); PolyLine(i, -100.0f, i, 100.0f).build(grid); } lineShader_.draw(grid, matrix); // Draw Bels. auto bels = LineShaderData(0.02f, QColor("#b000ba")); for (auto bel : ctx->getBels()) { for (auto &el : ctx->getBelGraphics(bel)) drawElement(bels, el); } lineShader_.draw(bels, matrix); // Draw Frame Graphics. auto frames = LineShaderData(0.02f, QColor("#0066ba")); for (auto &el : ctx->getFrameGraphics()) { drawElement(frames, el); } lineShader_.draw(frames, matrix); } void FPGAViewWidget::resizeGL(int width, int height) {} void FPGAViewWidget::mousePressEvent(QMouseEvent *event) { startDragX_ = moveX_; startDragY_ = moveY_; lastPos_ = event->pos(); } void FPGAViewWidget::mouseMoveEvent(QMouseEvent *event) { const int dx = event->x() - lastPos_.x(); const int dy = event->y() - lastPos_.y(); const qreal retinaScale = devicePixelRatio(); float aspect = float(width()) / float(height()); const float dx_scale = dx * (1 / (float)width() * retinaScale * aspect); const float dy_scale = dy * (1 / (float)height() * retinaScale); float xpos = dx_scale + startDragX_; float ypos = dy_scale + startDragY_; setXTranslation(xpos); setYTranslation(ypos); } void FPGAViewWidget::wheelEvent(QWheelEvent *event) { QPoint degree = event->angleDelta() / 8; if (!degree.isNull()) { float steps = degree.y() / 15.0; setZoom(zoom_ + steps); } } NEXTPNR_NAMESPACE_END