/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2018 David Shah * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "place_legaliser.h" #include #include #include "cells.h" #include "design_utils.h" #include "log.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN struct CellChain { std::vector cells; float mid_x = 0, mid_y = 0; }; // Generic chain finder template std::vector find_chains(const Context *ctx, F1 cell_type_predicate, F2 get_previous, F3 get_next, size_t min_length = 2) { std::set chained; std::vector chains; for (auto cell : sorted(ctx->cells)) { if (chained.find(cell.first) != chained.end()) continue; CellInfo *ci = cell.second; if (cell_type_predicate(ctx, ci)) { CellInfo *start = ci; CellInfo *prev_start = ci; while (prev_start != nullptr) { start = prev_start; prev_start = get_previous(ctx, start); } CellChain chain; CellInfo *end = start; while (end != nullptr) { chain.cells.push_back(end); end = get_next(ctx, end); } if (chain.cells.size() >= min_length) { chains.push_back(chain); for (auto c : chain.cells) chained.insert(c->name); } } } return chains; } static void get_chain_midpoint(const Context *ctx, const CellChain &chain, float &x, float &y) { float total_x = 0, total_y = 0; int N = 0; for (auto cell : chain.cells) { if (cell->bel == BelId()) continue; int bel_x, bel_y; bool bel_gb; ctx->estimatePosition(cell->bel, bel_x, bel_y, bel_gb); total_x += bel_x; total_y += bel_y; N++; } assert(N > 0); x = total_x / N; y = total_y / N; } class PlacementLegaliser { public: PlacementLegaliser(Context *ctx) : ctx(ctx){}; bool legalise() { log_info("Legalising design..\n"); init_logic_cells(); bool legalised_carries = legalise_carries(); if (!legalised_carries && !ctx->force) return false; bool replaced_cells = replace_cells(); return legalised_carries && replaced_cells; } private: void init_logic_cells() { for (auto bel : ctx->getBels()) { // Initialise the logic bels vector with unavailable invalid bels, dimensions [0..width][0..height[0..7] logic_bels.resize(ctx->chip_info->width + 1, std::vector>>( ctx->chip_info->height + 1, std::vector>(8, std::make_pair(BelId(), true)))); if (ctx->getBelType(bel) == TYPE_ICESTORM_LC) { // Using the non-standard API here to get (x, y, z) rather than just (x, y) auto bi = ctx->chip_info->bel_data[bel.index]; int x = bi.x, y = bi.y, z = bi.z; IdString cell = ctx->getBoundBelCell(bel); if (cell != IdString() && ctx->cells.at(cell)->belStrength >= STRENGTH_FIXED) logic_bels.at(x).at(y).at(z) = std::make_pair(bel, true); // locked out of use else logic_bels.at(x).at(y).at(z) = std::make_pair(bel, false); // available } } } bool legalise_carries() { std::vector carry_chains = find_chains( ctx, is_lc, [](const Context *ctx, const CellInfo *cell) { return net_driven_by(ctx, cell->ports.at(ctx->id("CIN")).net, is_lc, ctx->id("COUT")); }, [](const Context *ctx, const CellInfo *cell) { return net_only_drives(ctx, cell->ports.at(ctx->id("COUT")).net, is_lc, ctx->id("CIN"), false); }); bool success = true; // Find midpoints for all chains, before we start tearing them up std::vector all_chains; for (auto &base_chain : carry_chains) { std::vector split_chains = split_carry_chain(base_chain); for (auto &chain : split_chains) { get_chain_midpoint(ctx, chain, chain.mid_x, chain.mid_y); all_chains.push_back(chain); } } // Actual chain placement for (auto &chain : all_chains) { float base_x = chain.mid_x, base_y = chain.mid_y - (chain.cells.size() / 16.0f); // Find Bel meeting requirements closest to the target base, returning location as auto chain_origin_bel = find_closest_bel(base_x, base_y, int(chain.cells.size())); int place_x = std::get<0>(chain_origin_bel), place_y = std::get<1>(chain_origin_bel), place_z = std::get<2>(chain_origin_bel); if (place_x == -1) { if (ctx->force) { log_warning("failed to place carry chain, starting with cell '%s', length %d\n", chain.cells.front()->name.c_str(ctx), int(chain.cells.size())); success = false; continue; } else { log_error("failed to place carry chain, starting with cell '%s', length %d\n", chain.cells.front()->name.c_str(ctx), int(chain.cells.size())); } } // Place carry chain for (int i = 0; i < int(chain.cells.size()); i++) { int target_z = place_y * 8 + place_z + i; place_lc(chain.cells.at(i), place_x, target_z / 8, target_z % 8); } } return success; } // Find Bel closest to a location, meeting chain requirements std::tuple find_closest_bel(float target_x, float target_y, int chain_size) { std::tuple best_origin = std::make_tuple(-1, -1, -1); float smallest_distance = std::numeric_limits::infinity(); int width = ctx->chip_info->width, height = ctx->chip_info->height; // Slow, should radiate outwards from target position - TODO for (int x = 1; x < width; x++) { for (int y = 1; y < (height - (chain_size / 8)); y++) { bool valid = true; for (int k = 0; k < chain_size; k++) { if (logic_bels.at(x).at(y + k / 8).at(k % 8).second) { valid = false; break; } } if (valid) { float distance = (x - target_x) * (x - target_x) + (y - target_y) * (y - target_y); if (distance < smallest_distance) { smallest_distance = distance; best_origin = std::make_tuple(x, y, 0); } } } } return best_origin; } // Split a carry chain into multiple legal chains std::vector split_carry_chain(CellChain &carryc) { bool start_of_chain = true; std::vector chains; std::vector tile; const int max_length = (ctx->chip_info->height - 2) * 8 - 2; auto curr_cell = carryc.cells.begin(); while (curr_cell != carryc.cells.end()) { CellInfo *cell = *curr_cell; if (tile.size() >= 8) { tile.clear(); } if (start_of_chain) { tile.clear(); chains.emplace_back(); start_of_chain = false; if (cell->ports.at(ctx->id("CIN")).net) { // CIN is not constant and not part of a chain. Must feed in from fabric CellInfo *feedin = make_carry_feed_in(cell, cell->ports.at(ctx->id("CIN"))); chains.back().cells.push_back(feedin); tile.push_back(feedin); } } tile.push_back(cell); chains.back().cells.push_back(cell); bool split_chain = (!ctx->logicCellsCompatible(tile)) || (int(chains.back().cells.size()) > max_length); if (split_chain) { CellInfo *passout = make_carry_pass_out(cell->ports.at(ctx->id("COUT"))); tile.pop_back(); chains.back().cells.back() = passout; start_of_chain = true; } else { NetInfo *carry_net = cell->ports.at(ctx->id("COUT")).net; if (carry_net != nullptr && carry_net->users.size() > 1) { CellInfo *passout = make_carry_pass_out(cell->ports.at(ctx->id("COUT"))); chains.back().cells.push_back(passout); tile.push_back(passout); } ++curr_cell; } } return chains; } // Place a logic cell at a given grid location, handling rip-up etc void place_lc(CellInfo *cell, int x, int y, int z) { auto &loc = logic_bels.at(x).at(y).at(z); assert(!loc.second); BelId bel = loc.first; // Check if there is a cell presently at the location, which we will need to rip up IdString existing = ctx->getBoundBelCell(bel); if (existing != IdString()) { // TODO: keep track of the previous position of the ripped up cell, as a hint rippedCells.insert(existing); ctx->unbindBel(bel); } ctx->bindBel(bel, cell->name, STRENGTH_LOCKED); loc.second = true; // Bel is now unavailable for further use } // Insert a logic cell to legalise a COUT->fabric connection CellInfo *make_carry_pass_out(PortInfo &cout_port) { assert(cout_port.net != nullptr); std::unique_ptr lc = create_ice_cell(ctx, ctx->id("ICESTORM_LC")); lc->params[ctx->id("LUT_INIT")] = "65280"; // 0xff00: O = I3 lc->params[ctx->id("CARRY_ENABLE")] = "1"; lc->ports.at(ctx->id("O")).net = cout_port.net; NetInfo *co_i3_net = new NetInfo(); co_i3_net->name = ctx->id(lc->name.str(ctx) + "$I3"); co_i3_net->driver = cout_port.net->driver; PortRef i3_r; i3_r.port = ctx->id("I3"); i3_r.cell = lc.get(); co_i3_net->users.push_back(i3_r); PortRef o_r; o_r.port = ctx->id("O"); o_r.cell = lc.get(); cout_port.net->driver = o_r; lc->ports.at(ctx->id("I3")).net = co_i3_net; // I1=1 feeds carry up the chain, so no need to actually break the chain lc->ports.at(ctx->id("I1")).net = ctx->nets.at(ctx->id("$PACKER_VCC_NET")).get(); PortRef i1_r; i1_r.port = ctx->id("I1"); i1_r.cell = lc.get(); ctx->nets.at(ctx->id("$PACKER_VCC_NET"))->users.push_back(i1_r); IdString name = lc->name; ctx->cells[lc->name] = std::move(lc); createdCells.insert(name); return ctx->cells[name].get(); } // Insert a logic cell to legalise a CIN->fabric connection CellInfo *make_carry_feed_in(CellInfo *cin_cell, PortInfo &cin_port) { assert(cin_port.net != nullptr); std::unique_ptr lc = create_ice_cell(ctx, ctx->id("ICESTORM_LC")); lc->params[ctx->id("CARRY_ENABLE")] = "1"; lc->params[ctx->id("CIN_CONST")] = "1"; lc->params[ctx->id("CIN_SET")] = "1"; lc->ports.at(ctx->id("I1")).net = cin_port.net; cin_port.net->users.erase(std::remove_if(cin_port.net->users.begin(), cin_port.net->users.end(), [cin_cell, cin_port](const PortRef &usr) { return usr.cell == cin_cell && usr.port == cin_port.name; })); NetInfo *out_net = new NetInfo(); out_net->name = ctx->id(lc->name.str(ctx) + "$O"); IdString name = lc->name; ctx->cells[lc->name] = std::move(lc); createdCells.insert(name); return ctx->cells[name].get(); } // Replace ripped-up cells bool replace_cells() { bool success = true; for (auto cell : sorted(rippedCells)) { CellInfo *ci = ctx->cells.at(cell).get(); bool placed = place_single_cell(ci); if (!placed) { if (ctx->force) { log_warning("failed to place cell '%s' of type '%s'\n", cell.c_str(ctx), ci->type.c_str(ctx)); success = false; } else { log_error("failed to place cell '%s' of type '%s'\n", cell.c_str(ctx), ci->type.c_str(ctx)); } } } return success; } // Place a single cell in the first valid location bool place_single_cell(CellInfo *cell) { BelType tgtType = ctx->belTypeFromId(cell->type); for (auto bel : ctx->getBels()) { if (ctx->getBelType(bel) == tgtType && ctx->checkBelAvail(bel) && ctx->isValidBelForCell(cell, bel)) { ctx->bindBel(bel, cell->name, STRENGTH_WEAK); return true; } } return false; } Context *ctx; std::unordered_set rippedCells; std::unordered_set createdCells; // Go from X and Y position to logic cells, setting occupied to true if a Bel is unavailable std::vector>>> logic_bels; }; bool legalise_design(Context *ctx) { PlacementLegaliser lg(ctx); return lg.legalise(); } NEXTPNR_NAMESPACE_END