/* * nextpnr -- Next Generation Place and Route * * Copyright (C) 2021 gatecat * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "log.h" #include "nextpnr.h" #include "util.h" NEXTPNR_NAMESPACE_BEGIN namespace { struct MistralBitgen { MistralBitgen(Context *ctx) : ctx(ctx), cv(ctx->cyclonev){}; Context *ctx; CycloneV *cv; void init() { ctx->init_base_bitstream(); // Default options cv->opt_b_set(CycloneV::ALLOW_DEVICE_WIDE_OUTPUT_ENABLE_DIS, true); if (!ctx->setting("compress_rbf", false)) cv->opt_b_set(CycloneV::COMPRESSION_DIS, true); cv->opt_n_set(CycloneV::CRC_DIVIDE_ORDER, 8); cv->opt_b_set(CycloneV::CVP_CONF_DONE_EN, true); cv->opt_b_set(CycloneV::DEVICE_WIDE_RESET_EN, true); cv->opt_n_set(CycloneV::DRIVE_STRENGTH, 8); cv->opt_b_set(CycloneV::IOCSR_READY_FROM_CSR_DONE_EN, true); cv->opt_b_set(CycloneV::NCEO_DIS, true); cv->opt_b_set(CycloneV::OCT_DONE_DIS, true); cv->opt_r_set(CycloneV::OPT_A, 0x1dff); if (!ctx->setting("compress_rbf", false)) cv->opt_r_set(CycloneV::OPT_B, 0xffffff40adffffffULL); else cv->opt_r_set(CycloneV::OPT_B, 0xffffff402dffffffULL); cv->opt_b_set(CycloneV::RELEASE_CLEARS_BEFORE_TRISTATES_DIS, true); cv->opt_b_set(CycloneV::RETRY_CONFIG_ON_ERROR_EN, true); cv->opt_r_set(CycloneV::START_UP_CLOCK, 0x3F); // Default inversion write_default_inv(); } void write_default_inv() { // Some PNODEs are inverted by default. Set them up here. for (const auto &pn2r : cv->get_all_p2r()) { const auto &pn = pn2r.first; auto pt = CycloneV::pn2pt(pn); auto pi = CycloneV::pn2pi(pn); switch (CycloneV::pn2bt(pn)) { case CycloneV::HMC: { // HMC OE are inverted to set OE=0, i.e. unused pins floating // TODO: handle the case when we are using the HMC or HMC bypass std::string name(CycloneV::port_type_names[pt]); if (name.compare(0, 5, "IOINT") != 0 || name.compare(name.size() - 2, 2, "OE") != 0) continue; cv->inv_set(pn2r.second, true); break; }; // HPS IO - TODO: what about when we actually support the HPS primitives? case CycloneV::HPS_BOOT: { switch (pt) { case CycloneV::CSEL_EN: case CycloneV::BSEL_EN: case CycloneV::BOOT_FROM_FPGA_READY: case CycloneV::BOOT_FROM_FPGA_ON_FAILURE: cv->inv_set(pn2r.second, true); break; case CycloneV::CSEL: if (pi < 2) cv->inv_set(pn2r.second, true); break; case CycloneV::BSEL: if (pi < 3) cv->inv_set(pn2r.second, true); break; default: break; }; break; }; case CycloneV::HPS_CROSS_TRIGGER: { if (pt == CycloneV::CLK_EN) cv->inv_set(pn2r.second, true); break; }; case CycloneV::HPS_TEST: { if (pt == CycloneV::CFG_DFX_BYPASS_ENABLE) cv->inv_set(pn2r.second, true); break; }; case CycloneV::GPIO: { // Ignore GPIO used by the design BelId bel = ctx->bel_by_block_idx(CycloneV::pn2x(pn), CycloneV::pn2y(pn), id_MISTRAL_IO, CycloneV::pn2bi(pn)); if (bel != BelId() && ctx->getBoundBelCell(bel) != nullptr) continue; // Bonded IO invert OEIN.1 which disables the output buffer and floats the IO // Unbonded IO invert OEIN.0 which enables the output buffer, and {DATAIN.[0123]} to drive a constant // GND, presumably for power/EMI reasons bool is_bonded = cv->pin_find_pnode(pn) != nullptr; if (is_bonded && (pt != CycloneV::OEIN || pi != 1)) continue; if (!is_bonded && (pt != CycloneV::DATAIN) && (pt != CycloneV::OEIN || pi != 0)) continue; cv->inv_set(pn2r.second, true); break; }; case CycloneV::FPLL: { if (pt == CycloneV::EXTSWITCH || (pt == CycloneV::CLKEN && pi < 2)) cv->inv_set(pn2r.second, true); break; }; default: break; } } } void write_dqs() { for (auto pos : cv->dqs16_get_pos()) { int x = CycloneV::pos2x(pos), y = CycloneV::pos2y(pos); // DQS bypass for used output pins for (int z = 0; z < 16; z++) { int ioy = y + (z / 4) - 2; if (ioy < 0 || ioy >= int(cv->get_tile_sy())) continue; BelId bel = ctx->bel_by_block_idx(x, ioy, id_MISTRAL_IO, z % 4); if (bel == BelId()) continue; CellInfo *ci = ctx->getBoundBelCell(bel); if (ci == nullptr || (ci->type != id_MISTRAL_IO && ci->type != id_MISTRAL_OB)) continue; // not an output cv->bmux_m_set(CycloneV::DQS16, pos, CycloneV::INPUT_REG4_SEL, z, CycloneV::SEL_LOCKED_DPA); cv->bmux_r_set(CycloneV::DQS16, pos, CycloneV::RB_T9_SEL_EREG_CFF_DELAY, z, 0x1f); } } } void write_routing() { for (auto net : sorted(ctx->nets)) { NetInfo *ni = net.second; for (auto wire : sorted_ref(ni->wires)) { PipId pip = wire.second.pip; if (pip == PipId()) continue; WireId src = ctx->getPipSrcWire(pip), dst = ctx->getPipDstWire(pip); // Only write out routes that are entirely in the Mistral domain. Everything else is dealt with // specially if (src.is_nextpnr_created() || dst.is_nextpnr_created()) continue; cv->rnode_link(src.node, dst.node); } } } void write_io_cell(CellInfo *ci, int x, int y, int bi) { bool is_output = (ci->type == id_MISTRAL_OB || (ci->type == id_MISTRAL_IO && get_net_or_empty(ci, id_OE) != nullptr)); auto pos = CycloneV::xy2pos(x, y); // TODO: configurable pull, IO standard, etc cv->bmux_b_set(CycloneV::GPIO, pos, CycloneV::USE_WEAK_PULLUP, bi, false); if (is_output) { cv->bmux_m_set(CycloneV::GPIO, pos, CycloneV::DRIVE_STRENGTH, bi, CycloneV::V3P3_LVTTL_16MA_LVCMOS_2MA); cv->bmux_m_set(CycloneV::GPIO, pos, CycloneV::IOCSR_STD, bi, CycloneV::DIS); } // There seem to be two mirrored OEIN inversion bits for constant OE for inputs/outputs. This might be to // prevent a single bitflip from turning inputs to outputs and messing up other devices on the boards, notably // ECP5 does similar. OEIN.0 inverted for outputs; OEIN.1 for inputs cv->inv_set(cv->pnode_to_rnode(CycloneV::pnode(CycloneV::GPIO, pos, CycloneV::OEIN, bi, is_output ? 0 : 1)), true); } void write_clkbuf_cell(CellInfo *ci, int x, int y, int bi) { (void)ci; // currently unused auto pos = CycloneV::xy2pos(x, y); cv->bmux_r_set(CycloneV::CMUXHG, pos, CycloneV::INPUT_SELECT, bi, 0x1b); // hardcode to general routing cv->bmux_m_set(CycloneV::CMUXHG, pos, CycloneV::TESTSYN_ENOUT_SELECT, bi, CycloneV::PRE_SYNENB); } void write_cells() { for (auto cell : sorted(ctx->cells)) { CellInfo *ci = cell.second; Loc loc = ctx->getBelLocation(ci->bel); int bi = ctx->bel_data(ci->bel).block_index; if (ctx->is_io_cell(ci->type)) write_io_cell(ci, loc.x, loc.y, bi); else if (ctx->is_clkbuf_cell(ci->type)) write_clkbuf_cell(ci, loc.x, loc.y, bi); } } bool write_alm(uint32_t lab, uint8_t alm) { auto &alm_data = ctx->labs.at(lab).alms.at(alm); std::array luts{ctx->getBoundBelCell(alm_data.lut_bels[0]), ctx->getBoundBelCell(alm_data.lut_bels[1])}; std::array ffs{ ctx->getBoundBelCell(alm_data.ff_bels[0]), ctx->getBoundBelCell(alm_data.ff_bels[1]), ctx->getBoundBelCell(alm_data.ff_bels[2]), ctx->getBoundBelCell(alm_data.ff_bels[3])}; // Skip empty ALMs if (std::all_of(luts.begin(), luts.end(), [](CellInfo *c) { return !c; }) && std::all_of(ffs.begin(), ffs.end(), [](CellInfo *c) { return !c; })) return false; auto pos = alm_data.lut_bels[0].pos; // Combinational mode - TODO: flop feedback cv->bmux_m_set(CycloneV::LAB, pos, CycloneV::MODE, alm, alm_data.l6_mode ? CycloneV::L6 : CycloneV::L5); // LUT function cv->bmux_r_set(CycloneV::LAB, pos, CycloneV::LUT_MASK, alm, ctx->compute_lut_mask(lab, alm)); // DFF/LUT output selection const std::array mux_settings{CycloneV::TDFF0, CycloneV::TDFF1, CycloneV::TDFF1L, CycloneV::BDFF0, CycloneV::BDFF1, CycloneV::BDFF1L}; const std::array mux_port{CycloneV::FFT0, CycloneV::FFT1, CycloneV::FFT1L, CycloneV::FFB0, CycloneV::FFB1, CycloneV::FFB1L}; for (int i = 0; i < 6; i++) { if (ctx->wires_connected(alm_data.comb_out[i / 3], ctx->get_port(CycloneV::LAB, CycloneV::pos2x(pos), CycloneV::pos2y(pos), alm, mux_port[i]))) cv->bmux_m_set(CycloneV::LAB, pos, mux_settings[i], alm, CycloneV::NLUT); } bool is_carry = (luts[0] && luts[0]->combInfo.is_carry) || (luts[1] && luts[1]->combInfo.is_carry); if (is_carry) cv->bmux_m_set(CycloneV::LAB, pos, CycloneV::ARITH_SEL, alm, CycloneV::ADDER); // The carry in/out enable bits if (is_carry && alm == 0 && !luts[0]->combInfo.carry_start) cv->bmux_b_set(CycloneV::LAB, pos, CycloneV::TTO_DIS, 0, true); if (is_carry && alm == 5) cv->bmux_b_set(CycloneV::LAB, pos, CycloneV::BTO_DIS, 0, true); // Flipflop configuration const std::array ef_sel{CycloneV::TEF_SEL, CycloneV::BEF_SEL}; // This isn't a typo; the *PKREG* bits really are mirrored. const std::array pkreg{CycloneV::TPKREG1, CycloneV::TPKREG0, CycloneV::BPKREG1, CycloneV::BPKREG0}; const std::array clk_sel{CycloneV::TCLK_SEL, CycloneV::BCLK_SEL}, clr_sel{CycloneV::TCLR_SEL, CycloneV::BCLR_SEL}, sclr_dis{CycloneV::TSCLR_DIS, CycloneV::BSCLR_DIS}, sload_en{CycloneV::TSLOAD_EN, CycloneV::BSLOAD_EN}; const std::array clk_choice{CycloneV::CLK0, CycloneV::CLK1, CycloneV::CLK2}; const std::array clk_inv{CycloneV::CLK0_INV, CycloneV::CLK1_INV, CycloneV::CLK2_INV}, en_en{CycloneV::EN0_EN, CycloneV::EN1_EN, CycloneV::EN2_EN}, en_ninv{CycloneV::EN0_NINV, CycloneV::EN1_NINV, CycloneV::EN2_NINV}; const std::array aclr_inv{CycloneV::ACLR0_INV, CycloneV::ACLR1_INV}; for (int i = 0; i < 2; i++) { // EF selection mux if (ctx->wires_connected(ctx->getBelPinWire(alm_data.lut_bels[i], i ? id_F0 : id_F1), alm_data.sel_ef[i])) cv->bmux_m_set(CycloneV::LAB, pos, ef_sel[i], alm, CycloneV::bmux_type_t::F); } for (int i = 0; i < 4; i++) { CellInfo *ff = ffs[i]; if (!ff) continue; // PKREG (input selection) if (ctx->wires_connected(alm_data.sel_ef[i / 2], alm_data.ff_in[i])) cv->bmux_b_set(CycloneV::LAB, pos, pkreg[i], alm, true); // Control set // CLK+ENA int ce_idx = alm_data.clk_ena_idx[i / 2]; cv->bmux_m_set(CycloneV::LAB, pos, clk_sel[i / 2], alm, clk_choice[ce_idx]); if (ff->ffInfo.ctrlset.clk.inverted) cv->bmux_b_set(CycloneV::LAB, pos, clk_inv[ce_idx], 0, true); if (get_net_or_empty(ff, id_ENA) != nullptr) { // not using ffInfo.ctrlset, this has a fake net always to // ensure different constants don't collide cv->bmux_b_set(CycloneV::LAB, pos, en_en[ce_idx], 0, true); cv->bmux_b_set(CycloneV::LAB, pos, en_ninv[ce_idx], 0, ff->ffInfo.ctrlset.ena.inverted); } else { cv->bmux_b_set(CycloneV::LAB, pos, en_en[ce_idx], 0, false); } // ACLR int aclr_idx = alm_data.aclr_idx[i / 2]; cv->bmux_b_set(CycloneV::LAB, pos, clr_sel[i / 2], alm, aclr_idx == 1); if (ff->ffInfo.ctrlset.aclr.inverted) cv->bmux_b_set(CycloneV::LAB, pos, aclr_inv[aclr_idx], 0, true); // SCLR if (ff->ffInfo.ctrlset.sclr.net != nullptr) { cv->bmux_b_set(CycloneV::LAB, pos, CycloneV::SCLR_INV, 0, ff->ffInfo.ctrlset.sclr.inverted); } else { cv->bmux_b_set(CycloneV::LAB, pos, sclr_dis[i / 2], alm, true); } // SLOAD if (ff->ffInfo.ctrlset.sload.net != nullptr) { cv->bmux_b_set(CycloneV::LAB, pos, sload_en[i / 2], alm, true); cv->bmux_b_set(CycloneV::LAB, pos, CycloneV::SLOAD_INV, 0, ff->ffInfo.ctrlset.sload.inverted); } } return true; } void write_ff_routing(uint32_t lab) { auto &lab_data = ctx->labs.at(lab); auto pos = lab_data.alms.at(0).lut_bels[0].pos; const std::array aclr_inp{CycloneV::ACLR0_SEL, CycloneV::ACLR1_SEL}; for (int i = 0; i < 2; i++) { // Quartus seems to set unused ACLRs to CLKI2... if (!lab_data.aclr_used[i]) cv->bmux_m_set(CycloneV::LAB, pos, aclr_inp[i], 0, CycloneV::CLKI2); else cv->bmux_m_set(CycloneV::LAB, pos, aclr_inp[i], 0, (i == 1) ? CycloneV::GIN0 : CycloneV::GIN1); } for (int i = 0; i < 3; i++) { // Check for fabric->clock routing if (ctx->wires_connected(ctx->get_port(CycloneV::LAB, CycloneV::pos2x(pos), CycloneV::pos2y(pos), -1, CycloneV::DATAIN, 0), lab_data.clk_wires[i])) cv->bmux_m_set(CycloneV::LAB, pos, CycloneV::CLKA_SEL, 0, CycloneV::GIN2); } } void write_labs() { for (size_t lab = 0; lab < ctx->labs.size(); lab++) { bool used = false; for (uint8_t alm = 0; alm < 10; alm++) used |= write_alm(lab, alm); if (used) write_ff_routing(lab); } } void run() { cv->clear(); init(); write_routing(); write_dqs(); write_cells(); write_labs(); } }; } // namespace void Arch::build_bitstream() { MistralBitgen gen(getCtx()); gen.run(); } NEXTPNR_NAMESPACE_END