aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--backends/aiger/xaiger.cc385
-rw-r--r--frontends/aiger/aigerparse.cc40
-rw-r--r--passes/techmap/abc9.cc272
-rw-r--r--passes/techmap/techmap.cc8
-rw-r--r--techlibs/xilinx/abc_map.v135
-rw-r--r--techlibs/xilinx/abc_model.v7
-rw-r--r--techlibs/xilinx/abc_unmap.v7
-rw-r--r--techlibs/xilinx/abc_xc7.box51
-rw-r--r--techlibs/xilinx/cells_sim.v294
-rw-r--r--techlibs/xilinx/synth_xilinx.cc4
10 files changed, 903 insertions, 300 deletions
diff --git a/backends/aiger/xaiger.cc b/backends/aiger/xaiger.cc
index 4018cc9de..4bdd54772 100644
--- a/backends/aiger/xaiger.cc
+++ b/backends/aiger/xaiger.cc
@@ -76,13 +76,16 @@ void aiger_encode(std::ostream &f, int x)
struct XAigerWriter
{
Module *module;
+ bool zinit_mode;
SigMap sigmap;
+ dict<SigBit, bool> init_map;
pool<SigBit> input_bits, output_bits;
dict<SigBit, SigBit> not_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
+ dict<SigBit, int> ff_bits;
dict<SigBit, float> arrival_times;
vector<pair<int, int>> aig_gates;
@@ -91,6 +94,7 @@ struct XAigerWriter
dict<SigBit, int> aig_map;
dict<SigBit, int> ordered_outputs;
+ dict<SigBit, int> ordered_latches;
vector<Cell*> box_list;
bool omode = false;
@@ -137,7 +141,7 @@ struct XAigerWriter
return a;
}
- XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module)
+ XAigerWriter(Module *module, bool zinit_mode, bool holes_mode=false) : module(module), zinit_mode(zinit_mode), sigmap(module)
{
pool<SigBit> undriven_bits;
pool<SigBit> unused_bits;
@@ -160,6 +164,14 @@ struct XAigerWriter
for (auto wire : module->wires())
{
+ if (wire->attributes.count("\\init")) {
+ SigSpec initsig = sigmap(wire);
+ Const initval = wire->attributes.at("\\init");
+ for (int i = 0; i < GetSize(wire) && i < GetSize(initval); i++)
+ if (initval[i] == State::S0 || initval[i] == State::S1)
+ init_map[initsig[i]] = initval[i] == State::S1;
+ }
+
bool keep = wire->attributes.count("\\keep");
for (int i = 0; i < GetSize(wire); i++)
@@ -204,6 +216,7 @@ struct XAigerWriter
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc_box_seen = false;
+ std::vector<Cell*> flop_boxes;
for (auto cell : module->selected_cells()) {
if (cell->type == "$_NOT_")
@@ -241,76 +254,90 @@ struct XAigerWriter
log_assert(!holes_mode);
+ if (cell->type == "$__ABC_FF_")
+ {
+ SigBit D = sigmap(cell->getPort("\\D").as_bit());
+ SigBit Q = sigmap(cell->getPort("\\Q").as_bit());
+ unused_bits.erase(D);
+ undriven_bits.erase(Q);
+ alias_map[Q] = D;
+ auto r = ff_bits.insert(std::make_pair(D, 0));
+ log_assert(r.second);
+ continue;
+ }
+
RTLIL::Module* inst_module = module->design->module(cell->type);
if (inst_module && inst_module->attributes.count("\\abc_box_id")) {
abc_box_seen = true;
- if (!holes_mode) {
- toposort.node(cell->name);
- for (const auto &conn : cell->connections()) {
- auto port_wire = inst_module->wire(conn.first);
- if (port_wire->port_input) {
- // Ignore inout for the sake of topographical ordering
- if (port_wire->port_output) continue;
- for (auto bit : sigmap(conn.second))
- bit_users[bit].insert(cell->name);
- }
+ toposort.node(cell->name);
- if (port_wire->port_output)
- for (auto bit : sigmap(conn.second))
- bit_drivers[bit].insert(cell->name);
+ for (const auto &conn : cell->connections()) {
+ auto port_wire = inst_module->wire(conn.first);
+ if (port_wire->port_input) {
+ // Ignore inout for the sake of topographical ordering
+ if (port_wire->port_output) continue;
+ for (auto bit : sigmap(conn.second))
+ bit_users[bit].insert(cell->name);
}
+
+ if (port_wire->port_output)
+ for (auto bit : sigmap(conn.second))
+ bit_drivers[bit].insert(cell->name);
}
+
+ if (inst_module->attributes.count("\\abc9_flop"))
+ flop_boxes.push_back(cell);
+ continue;
}
- else {
- bool cell_known = inst_module || cell->known();
- for (const auto &c : cell->connections()) {
- if (c.second.is_fully_const()) continue;
- auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
- auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
- auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
- if (!is_input && !is_output)
- log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
-
- if (is_input) {
- for (auto b : c.second) {
- Wire *w = b.wire;
- if (!w) continue;
- if (!w->port_output || !cell_known) {
- SigBit I = sigmap(b);
- if (I != b)
- alias_map[b] = I;
- output_bits.insert(b);
- unused_bits.erase(b);
- if (!cell_known)
- keep_bits.insert(b);
- }
+ bool cell_known = inst_module || cell->known();
+ for (const auto &c : cell->connections()) {
+ if (c.second.is_fully_const()) continue;
+ auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr;
+ auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first);
+ auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first);
+ if (!is_input && !is_output)
+ log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type));
+
+ if (is_input) {
+ for (auto b : c.second) {
+ Wire *w = b.wire;
+ if (!w) continue;
+ if (!w->port_output || !cell_known) {
+ SigBit I = sigmap(b);
+ if (I != b)
+ alias_map[b] = I;
+ output_bits.insert(b);
+ unused_bits.erase(b);
+
+ if (!cell_known)
+ keep_bits.insert(b);
}
}
- if (is_output) {
- int arrival = 0;
- if (port_wire) {
- auto it = port_wire->attributes.find("\\abc_arrival");
- if (it != port_wire->attributes.end()) {
- if (it->second.flags != 0)
- log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
- arrival = it->second.as_int();
- }
+ }
+ if (is_output) {
+ int arrival = 0;
+ if (port_wire) {
+ auto it = port_wire->attributes.find("\\abc_arrival");
+ if (it != port_wire->attributes.end()) {
+ if (it->second.flags != 0)
+ log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type));
+ arrival = it->second.as_int();
}
+ }
- for (auto b : c.second) {
- Wire *w = b.wire;
- if (!w) continue;
- input_bits.insert(b);
- SigBit O = sigmap(b);
- if (O != b)
- alias_map[O] = b;
- undriven_bits.erase(O);
-
- if (arrival)
- arrival_times[b] = arrival;
- }
+ for (auto b : c.second) {
+ Wire *w = b.wire;
+ if (!w) continue;
+ input_bits.insert(b);
+ SigBit O = sigmap(b);
+ if (O != b)
+ alias_map[O] = b;
+ undriven_bits.erase(O);
+
+ if (arrival)
+ arrival_times[b] = arrival;
}
}
}
@@ -319,6 +346,45 @@ struct XAigerWriter
}
if (abc_box_seen) {
+ dict<IdString, std::pair<IdString,int>> flop_q;
+ for (auto cell : flop_boxes) {
+ auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0)));
+ SigBit d;
+ if (r.second) {
+ for (const auto &conn : cell->connections()) {
+ const SigSpec &rhs = conn.second;
+ if (!rhs.is_bit())
+ continue;
+ if (!ff_bits.count(rhs))
+ continue;
+ r.first->second.first = conn.first;
+ Module *inst_module = module->design->module(cell->type);
+ Wire *wire = inst_module->wire(conn.first);
+ log_assert(wire);
+ auto jt = wire->attributes.find("\\abc_arrival");
+ if (jt != wire->attributes.end()) {
+ if (jt->second.flags != 0)
+ log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
+ r.first->second.second = jt->second.as_int();
+ }
+ d = rhs;
+ log_assert(d == sigmap(d));
+ break;
+ }
+ }
+ else
+ d = cell->getPort(r.first->second.first);
+
+ auto it = cell->attributes.find(ID(abc9_mergeability));
+ log_assert(it != cell->attributes.end());
+ ff_bits.at(d) = it->second.as_int();
+ cell->attributes.erase(it);
+
+ auto arrival = r.first->second.second;
+ if (arrival)
+ arrival_times[d] = arrival;
+ }
+
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
@@ -414,6 +480,30 @@ struct XAigerWriter
}
}
}
+
+ // Connect $currQ as an input to the flop box
+ if (box_module->get_bool_attribute("\\abc9_flop")) {
+ IdString port_name = "\\$currQ";
+ Wire *w = box_module->wire(port_name);
+ SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
+ log_assert(GetSize(w) == GetSize(rhs));
+
+ int offset = 0;
+ for (auto b : rhs) {
+ SigBit I = sigmap(b);
+ if (b == RTLIL::Sx)
+ b = State::S0;
+ else if (I != b) {
+ if (I == RTLIL::Sx)
+ alias_map[b] = State::S0;
+ else
+ alias_map[b] = I;
+ }
+ co_bits.emplace_back(b, cell, port_name, offset++, 0);
+ unused_bits.erase(b);
+ }
+ }
+
box_list.emplace_back(cell);
}
@@ -458,12 +548,15 @@ struct XAigerWriter
undriven_bits.erase(bit);
if (!undriven_bits.empty() && !holes_mode) {
+ bool whole_module = module->design->selected_whole_module(module->name);
undriven_bits.sort();
for (auto bit : undriven_bits) {
- log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
+ if (whole_module)
+ log_warning("Treating undriven bit %s.%s like $anyseq.\n", log_id(module), log_signal(bit));
input_bits.insert(bit);
}
- log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
+ if (whole_module)
+ log_warning("Treating a total of %d undriven bits in %s like $anyseq.\n", GetSize(undriven_bits), log_id(module));
}
if (holes_mode) {
@@ -492,10 +585,20 @@ struct XAigerWriter
aig_map[bit] = 2*aig_m;
}
+ for (const auto &i : ff_bits) {
+ const SigBit &bit = i.first;
+ aig_m++, aig_i++;
+ log_assert(!aig_map.count(bit));
+ aig_map[bit] = 2*aig_m;
+ }
+
+ dict<SigBit, int> ff_aig_map;
for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c);
aig_m++, aig_i++;
- aig_map[bit] = 2*aig_m;
+ auto r = aig_map.insert(std::make_pair(bit, 2*aig_m));
+ if (!r.second)
+ ff_aig_map[bit] = 2*aig_m;
}
for (auto &c : co_bits) {
@@ -514,6 +617,17 @@ struct XAigerWriter
aig_outputs.push_back(bit2aig(bit));
}
+ for (auto &i : ff_bits) {
+ const SigBit &bit = i.first;
+ aig_o++;
+ aig_outputs.push_back(ff_aig_map.at(bit));
+ }
+
+ if (output_bits.empty()) {
+ aig_o++;
+ aig_outputs.push_back(0);
+ omode = true;
+ }
}
void write_aiger(std::ostream &f, bool ascii_mode)
@@ -583,14 +697,14 @@ struct XAigerWriter
std::stringstream h_buffer;
auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1);
write_h_buffer(1);
- log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ci_bits));
- write_h_buffer(input_bits.size() + ci_bits.size());
- log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(co_bits));
- write_h_buffer(output_bits.size() + GetSize(co_bits));
- log_debug("piNum = %d\n", GetSize(input_bits));
- write_h_buffer(input_bits.size());
- log_debug("poNum = %d\n", GetSize(output_bits));
- write_h_buffer(output_bits.size());
+ log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits));
+ write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
+ log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits));
+ write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits));
+ log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits));
+ write_h_buffer(input_bits.size() + ff_bits.size());
+ log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits));
+ write_h_buffer(output_bits.size() + ff_bits.size());
log_debug("boxNum = %d\n", GetSize(box_list));
write_h_buffer(box_list.size());
@@ -606,19 +720,27 @@ struct XAigerWriter
//for (auto bit : output_bits)
// write_o_buffer(0);
- if (!box_list.empty()) {
+ if (!box_list.empty() || !ff_bits.empty()) {
RTLIL::Module *holes_module = module->design->addModule("$__holes__");
log_assert(holes_module);
+ dict<IdString, Cell*> cell_cache;
+
int port_id = 1;
int box_count = 0;
for (auto cell : box_list) {
RTLIL::Module* box_module = module->design->module(cell->type);
+ log_assert(box_module);
+ IdString derived_name = box_module->derive(module->design, cell->parameters);
+ box_module = module->design->module(derived_name);
+
int box_inputs = 0, box_outputs = 0;
- Cell *holes_cell = nullptr;
- if (box_module->get_bool_attribute("\\whitebox")) {
+ auto r = cell_cache.insert(std::make_pair(derived_name, nullptr));
+ Cell *holes_cell = r.first->second;
+ if (r.second && !holes_cell && box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, cell->type);
holes_cell->parameters = cell->parameters;
+ r.first->second = holes_cell;
}
// NB: Assume box_module->ports are sorted alphabetically
@@ -628,7 +750,7 @@ struct XAigerWriter
log_assert(w);
RTLIL::Wire *holes_wire;
RTLIL::SigSpec port_wire;
- if (w->port_input) {
+ if (w->port_input)
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
@@ -641,9 +763,6 @@ struct XAigerWriter
if (holes_cell)
port_wire.append(holes_wire);
}
- if (!port_wire.empty())
- holes_cell->setPort(w->name, port_wire);
- }
if (w->port_output) {
box_outputs += GetSize(w);
for (int i = 0; i < GetSize(w); i++) {
@@ -659,9 +778,36 @@ struct XAigerWriter
else
holes_module->connect(holes_wire, State::S0);
}
- if (!port_wire.empty())
+ }
+ if (!port_wire.empty()) {
+ if (r.second)
holes_cell->setPort(w->name, port_wire);
+ else
+ holes_module->connect(port_wire, holes_cell->getPort(w->name));
+ }
+ }
+
+ // For flops only, create an extra input for $currQ
+ if (box_module->get_bool_attribute("\\abc9_flop")) {
+ log_assert(holes_cell);
+
+ Wire *w = box_module->wire("\\$currQ");
+ Wire *holes_wire;
+ RTLIL::SigSpec port_wire;
+ for (int i = 0; i < GetSize(w); i++) {
+ box_inputs++;
+ holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
+ if (!holes_wire) {
+ holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
+ holes_wire->port_input = true;
+ holes_wire->port_id = port_id++;
+ holes_module->ports.push_back(holes_wire->name);
+ }
+ port_wire.append(holes_wire);
}
+ w = holes_module->addWire(stringf("%s.$currQ", cell->name.c_str()), GetSize(w));
+ w->set_bool_attribute("\\hierconn");
+ holes_module->connect(w, port_wire);
}
write_h_buffer(box_inputs);
@@ -672,13 +818,43 @@ struct XAigerWriter
std::stringstream r_buffer;
auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1);
- write_r_buffer(0);
+ log_debug("flopNum = %d\n", GetSize(ff_bits));
+ write_r_buffer(ff_bits.size());
+ for (const auto &i : ff_bits) {
+ log_assert(i.second > 0);
+ write_r_buffer(i.second);
+ const SigBit &bit = i.first;
+ write_i_buffer(arrival_times.at(bit, 0));
+ //write_o_buffer(0);
+ }
+
f << "r";
std::string buffer_str = r_buffer.str();
int32_t buffer_size_be = to_big_endian(buffer_str.size());
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
+ std::stringstream s_buffer;
+ auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1);
+ write_s_buffer(ff_bits.size());
+ for (const auto &i : ff_bits) {
+ const SigBit &bit = i.first;
+ auto it = bit.wire->attributes.find("\\init");
+ if (it != bit.wire->attributes.end()) {
+ auto init = it->second[bit.offset];
+ if (init == RTLIL::S1) {
+ write_s_buffer(1);
+ continue;
+ }
+ }
+ write_s_buffer(0);
+ }
+ f << "s";
+ buffer_str = s_buffer.str();
+ buffer_size_be = to_big_endian(buffer_str.size());
+ f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
+ f.write(buffer_str.data(), buffer_str.size());
+
if (holes_module) {
log_push();
@@ -686,35 +862,35 @@ struct XAigerWriter
//holes_module->fixup_ports();
holes_module->check();
- holes_module->design->selection_stack.emplace_back(false);
- RTLIL::Selection& sel = holes_module->design->selection_stack.back();
+ Design *design = holes_module->design;
+ design->selection_stack.emplace_back(false);
+ RTLIL::Selection& sel = design->selection_stack.back();
+ log_assert(design->selected_active_module == module->name.c_str());
+ design->selected_active_module = holes_module->name.str();
sel.select(holes_module);
- // TODO: Should not need to opt_merge if we only instantiate
- // each box type once...
- Pass::call(holes_module->design, "opt_merge -share_all");
-
- Pass::call(holes_module->design, "flatten -wb");
+ Pass::call(design, "flatten -wb");
// TODO: Should techmap/aigmap/check all lib_whitebox-es just once,
// instead of per write_xaiger call
- Pass::call(holes_module->design, "techmap");
- Pass::call(holes_module->design, "aigmap");
+ Pass::call(design, "techmap");
+ Pass::call(design, "aigmap");
for (auto cell : holes_module->cells())
if (!cell->type.in("$_NOT_", "$_AND_"))
log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n");
- holes_module->design->selection_stack.pop_back();
+ design->selection_stack.pop_back();
+ design->selected_active_module = module->name.str();
// Move into a new (temporary) design so that "clean" will only
// operate (and run checks on) this one module
RTLIL::Design *holes_design = new RTLIL::Design;
- holes_module->design->modules_.erase(holes_module->name);
+ design->modules_.erase(holes_module->name);
holes_design->add(holes_module);
Pass::call(holes_design, "clean -purge");
std::stringstream a_buffer;
- XAigerWriter writer(holes_module, true /* holes_mode */);
+ XAigerWriter writer(holes_module, false /*zinit_mode*/, true /* holes_mode */);
writer.write_aiger(a_buffer, false /*ascii_mode*/);
delete holes_design;
@@ -752,7 +928,9 @@ struct XAigerWriter
void write_map(std::ostream &f, bool verbose_map)
{
dict<int, string> input_lines;
+ dict<int, string> init_lines;
dict<int, string> output_lines;
+ dict<int, string> latch_lines;
dict<int, string> wire_lines;
for (auto wire : module->wires())
@@ -773,7 +951,11 @@ struct XAigerWriter
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
- output_lines[o] += stringf("output %d %d %s\n", o - GetSize(co_bits), i, log_id(wire));
+ int init = zinit_mode ? 0 : 2;
+ auto it = init_map.find(b);
+ if (it != init_map.end())
+ init = it->second ? 1 : 0;
+ output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init);
continue;
}
@@ -792,6 +974,10 @@ struct XAigerWriter
f << it.second;
log_assert(input_lines.size() == input_bits.size());
+ init_lines.sort();
+ for (auto &it : init_lines)
+ f << it.second;
+
int box_count = 0;
for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
@@ -802,6 +988,12 @@ struct XAigerWriter
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size());
+ if (omode && output_bits.empty())
+ f << "output " << output_lines.size() << " 0 $__dummy__\n";
+
+ latch_lines.sort();
+ for (auto &it : latch_lines)
+ f << it.second;
wire_lines.sort();
for (auto &it : wire_lines)
@@ -823,6 +1015,10 @@ struct XAigerBackend : public Backend {
log(" -ascii\n");
log(" write ASCII version of AIGER format\n");
log("\n");
+ log(" -zinit\n");
+ log(" convert FFs to zero-initialized FFs, adding additional inputs for\n");
+ log(" uninitialized FFs.\n");
+ log("\n");
log(" -map <filename>\n");
log(" write an extra file with port and latch symbols\n");
log("\n");
@@ -833,6 +1029,7 @@ struct XAigerBackend : public Backend {
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
bool ascii_mode = false;
+ bool zinit_mode = false;
bool verbose_map = false;
std::string map_filename;
@@ -845,6 +1042,10 @@ struct XAigerBackend : public Backend {
ascii_mode = true;
continue;
}
+ if (args[argidx] == "-zinit") {
+ zinit_mode = true;
+ continue;
+ }
if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) {
map_filename = args[++argidx];
continue;
@@ -863,7 +1064,7 @@ struct XAigerBackend : public Backend {
if (top_module == nullptr)
log_error("Can't find top module in current design!\n");
- XAigerWriter writer(top_module);
+ XAigerWriter writer(top_module, zinit_mode);
writer.write_aiger(*f, ascii_mode);
if (!map_filename.empty()) {
diff --git a/frontends/aiger/aigerparse.cc b/frontends/aiger/aigerparse.cc
index 5a1da4db1..594bf60ce 100644
--- a/frontends/aiger/aigerparse.cc
+++ b/frontends/aiger/aigerparse.cc
@@ -734,12 +734,19 @@ void AigerReader::parse_aiger_binary()
void AigerReader::post_process()
{
pool<IdString> seen_boxes;
- unsigned ci_count = 0, co_count = 0;
+ pool<IdString> flops;
+ unsigned ci_count = 0, co_count = 0, flop_count = 0;
for (auto cell : boxes) {
RTLIL::Module* box_module = design->module(cell->type);
log_assert(box_module);
+ bool is_flop = false;
if (seen_boxes.insert(cell->type).second) {
+ if (box_module->attributes.count("\\abc9_flop")) {
+ log_assert(flop_count < flopNum);
+ flops.insert(cell->type);
+ is_flop = true;
+ }
auto it = box_module->attributes.find("\\abc_carry");
if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
@@ -779,6 +786,8 @@ void AigerReader::post_process()
carry_out->port_id = ports.size();
}
}
+ else
+ is_flop = flops.count(cell->type);
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
@@ -804,9 +813,32 @@ void AigerReader::post_process()
}
rhs.append(wire);
}
-
cell->setPort(port_name, rhs);
}
+
+ if (is_flop) {
+ log_assert(co_count < outputs.size());
+ Wire *wire = outputs[co_count++];
+ log_assert(wire);
+ log_assert(wire->port_output);
+ wire->port_output = false;
+
+ RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
+ log_assert(d);
+ log_assert(d->port_output);
+ d->port_output = false;
+
+ RTLIL::Wire *q = inputs[piNum - flopNum + flop_count];
+ log_assert(q);
+ log_assert(q->port_input);
+ q->port_input = false;
+
+ auto ff = module->addCell(NEW_ID, "$__ABC_FF_");
+ ff->setPort("\\D", d);
+ ff->setPort("\\Q", q);
+ flop_count++;
+ continue;
+ }
}
dict<RTLIL::IdString, int> wideports_cache;
@@ -909,6 +941,10 @@ void AigerReader::post_process()
}
}
log_debug(" -> %s\n", log_id(wire));
+ int init;
+ mf >> init;
+ if (init < 2)
+ wire->attributes["\\init"] = init;
}
else if (type == "box") {
RTLIL::Cell* cell = module->cell(stringf("$__box%d__", variable));
diff --git a/passes/techmap/abc9.cc b/passes/techmap/abc9.cc
index 09d6e9670..777ec6ac8 100644
--- a/passes/techmap/abc9.cc
+++ b/passes/techmap/abc9.cc
@@ -65,20 +65,16 @@ PRIVATE_NAMESPACE_BEGIN
bool markgroups;
int map_autoidx;
-SigMap assign_map;
-RTLIL::Module *module;
-
-bool clk_polarity, en_polarity;
-RTLIL::SigSpec clk_sig, en_sig;
inline std::string remap_name(RTLIL::IdString abc_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc_name.c_str()+1);
}
-void handle_loops(RTLIL::Design *design)
+void handle_loops(RTLIL::Design *design, RTLIL::Module *module)
{
- Pass::call(design, "scc -set_attr abc_scc_id {}");
+ // FIXME: Do not run on all modules in design!?!
+ Pass::call(design, "scc -set_attr abc_scc_id {} % w:*");
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and select (and mark) all its output
@@ -243,49 +239,15 @@ struct abc_output_filter
}
};
-void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file,
- bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str,
+void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string script_file, std::string exe_file,
+ bool cleanup, vector<int> lut_costs, bool /*dff_mode*/, std::string /*clk_str*/,
bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, const dict<int,IdString> &box_lookup
)
{
- module = current_module;
map_autoidx = autoidx++;
- if (clk_str != "$")
- {
- clk_polarity = true;
- clk_sig = RTLIL::SigSpec();
-
- en_polarity = true;
- en_sig = RTLIL::SigSpec();
- }
-
- if (!clk_str.empty() && clk_str != "$")
- {
- if (clk_str.find(',') != std::string::npos) {
- int pos = clk_str.find(',');
- std::string en_str = clk_str.substr(pos+1);
- clk_str = clk_str.substr(0, pos);
- if (en_str[0] == '!') {
- en_polarity = false;
- en_str = en_str.substr(1);
- }
- if (module->wires_.count(RTLIL::escape_id(en_str)) != 0)
- en_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(en_str)), 0));
- }
- if (clk_str[0] == '!') {
- clk_polarity = false;
- clk_str = clk_str.substr(1);
- }
- if (module->wires_.count(RTLIL::escape_id(clk_str)) != 0)
- clk_sig = assign_map(RTLIL::SigSpec(module->wires_.at(RTLIL::escape_id(clk_str)), 0));
- }
-
- if (dff_mode && clk_sig.empty())
- log_cmd_error("Clock domain %s not found.\n", clk_str.c_str());
-
std::string tempdir_name = "/tmp/yosys-abc-XXXXXX";
if (!cleanup)
tempdir_name[0] = tempdir_name[4] = '_';
@@ -357,18 +319,6 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
fprintf(f, "%s\n", abc_script.c_str());
fclose(f);
- if (dff_mode || !clk_str.empty())
- {
- if (clk_sig.size() == 0)
- log("No%s clock domain found. Not extracting any FF cells.\n", clk_str.empty() ? "" : " matching");
- else {
- log("Found%s %s clock domain: %s", clk_str.empty() ? "" : " matching", clk_polarity ? "posedge" : "negedge", log_signal(clk_sig));
- if (en_sig.size() != 0)
- log(", enabled by %s%s", en_polarity ? "" : "!", log_signal(en_sig));
- log("\n");
- }
- }
-
bool count_output = false;
for (auto port_name : module->ports) {
RTLIL::Wire *port_wire = module->wire(port_name);
@@ -383,13 +333,9 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (count_output)
{
- design->selection_stack.emplace_back(false);
- RTLIL::Selection& sel = design->selection_stack.back();
- sel.select(module);
-
- handle_loops(design);
+ handle_loops(design, module);
- Pass::call(design, "aigmap");
+ Pass::call(design, "aigmap -select");
//log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
// count_gates, GetSize(signal_list), count_input, count_output);
@@ -414,8 +360,6 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
design->remove(design->module(ID($__abc9__)));
#endif
- design->selection_stack.pop_back();
-
// Now 'unexpose' those wires by undoing
// the expose operation -- remove them from PO/PI
// and re-connecting them back together
@@ -515,9 +459,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
dict<IdString, bool> abc_box;
vector<RTLIL::Cell*> boxes;
- for (const auto &it : module->cells_) {
- auto cell = it.second;
- if (cell->type.in(ID($_AND_), ID($_NOT_))) {
+ for (auto cell : module->selected_cells()) {
+ if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC_FF_))) {
module->remove(cell);
continue;
}
@@ -536,19 +479,19 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
- for (auto c : mapped_mod->cells())
+ for (auto mapped_cell : mapped_mod->cells())
{
- toposort.node(c->name);
+ toposort.node(mapped_cell->name);
RTLIL::Cell *cell = nullptr;
- if (c->type == ID($_NOT_)) {
- RTLIL::SigBit a_bit = c->getPort(ID::A);
- RTLIL::SigBit y_bit = c->getPort(ID::Y);
- bit_users[a_bit].insert(c->name);
- bit_drivers[y_bit].insert(c->name);
+ if (mapped_cell->type == ID($_NOT_)) {
+ RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
+ RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
+ bit_users[a_bit].insert(mapped_cell->name);
+ bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
- c->setPort(ID::Y, module->addWire(NEW_ID));
+ mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
@@ -572,7 +515,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
- cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())),
+ cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
@@ -580,7 +523,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
cell_stats[ID($lut)]++;
}
else
- not2drivers[c] = driver_lut;
+ not2drivers[mapped_cell] = driver_lut;
continue;
}
else
@@ -588,24 +531,26 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (cell && markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
continue;
}
- cell_stats[c->type]++;
+ cell_stats[mapped_cell->type]++;
RTLIL::Cell *existing_cell = nullptr;
- if (c->type == ID($lut)) {
- if (GetSize(c->getPort(ID::A)) == 1 && c->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
- SigSpec my_a = module->wires_.at(remap_name(c->getPort(ID::A).as_wire()->name));
- SigSpec my_y = module->wires_.at(remap_name(c->getPort(ID::Y).as_wire()->name));
+ if (mapped_cell->type.in(ID($lut), ID($__ABC_FF_))) {
+ if (mapped_cell->type == ID($lut) &&
+ GetSize(mapped_cell->getPort(ID::A)) == 1 &&
+ mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
+ SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
+ SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
module->connect(my_y, my_a);
- if (markgroups) c->attributes[ID(abcgroup)] = map_autoidx;
+ if (markgroups) mapped_cell->attributes[ID(abcgroup)] = map_autoidx;
log_abort();
continue;
}
- cell = module->addCell(remap_name(c->name), c->type);
+ cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
else {
- existing_cell = module->cell(c->name);
+ existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
- cell = module->addCell(remap_name(c->name), c->type);
+ cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
@@ -614,10 +559,13 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
cell->attributes = existing_cell->attributes;
}
else {
- cell->parameters = c->parameters;
- cell->attributes = c->attributes;
+ cell->parameters = mapped_cell->parameters;
+ cell->attributes = mapped_cell->attributes;
}
- for (auto &conn : c->connections()) {
+
+ RTLIL::Module* box_module = design->module(mapped_cell->type);
+ auto abc_flop = box_module && box_module->attributes.count("\\abc9_flop");
+ for (auto &conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : conn.second.chunks()) {
if (c.width == 0)
@@ -629,15 +577,17 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
}
cell->setPort(conn.first, newsig);
- if (cell->input(conn.first)) {
- for (auto i : newsig)
- bit2sinks[i].push_back(cell);
- for (auto i : conn.second)
- bit_users[i].insert(c->name);
+ if (!abc_flop) {
+ if (cell->input(conn.first)) {
+ for (auto i : newsig)
+ bit2sinks[i].push_back(cell);
+ for (auto i : conn.second)
+ bit_users[i].insert(mapped_cell->name);
+ }
+ if (cell->output(conn.first))
+ for (auto i : conn.second)
+ bit_drivers[i].insert(mapped_cell->name);
}
- if (cell->output(conn.first))
- for (auto i : conn.second)
- bit_drivers[i].insert(c->name);
}
}
@@ -910,8 +860,6 @@ struct Abc9Pass : public Pass {
log_header(design, "Executing ABC9 pass (technology mapping using ABC9).\n");
log_push();
- assign_map.clear();
-
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
@@ -919,7 +867,7 @@ struct Abc9Pass : public Pass {
#endif
std::string script_file, clk_str, box_file, lut_file;
std::string delay_target, lutin_shared = "-S 1", wire_delay;
- bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true;
+ bool fast_mode = false, /*dff_mode = false,*/ keepff = false, cleanup = true;
bool show_tempdir = false;
vector<int> lut_costs;
markgroups = false;
@@ -1116,48 +1064,39 @@ struct Abc9Pass : public Pass {
}
}
- for (auto mod : design->selected_modules())
+ for (auto module : design->selected_modules())
{
- if (mod->attributes.count(ID(abc_box_id)))
+ if (module->attributes.count(ID(abc_box_id)))
continue;
- if (mod->processes.size() > 0) {
- log("Skipping module %s as it contains processes.\n", log_id(mod));
+ if (module->processes.size() > 0) {
+ log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
- assign_map.set(mod);
-
- if (!dff_mode || !clk_str.empty()) {
- abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, dff_mode, clk_str, keepff,
- delay_target, lutin_shared, fast_mode, show_tempdir,
- box_file, lut_file, wire_delay, box_lookup);
- continue;
- }
+ SigMap assign_map(module);
CellTypes ct(design);
- std::vector<RTLIL::Cell*> all_cells = mod->selected_cells();
+ std::vector<RTLIL::Cell*> all_cells = module->selected_cells();
std::set<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
std::set<RTLIL::Cell*> expand_queue, next_expand_queue;
std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
- typedef tuple<bool, RTLIL::SigSpec, bool, RTLIL::SigSpec> clkdomain_t;
- std::map<clkdomain_t, std::vector<RTLIL::Cell*>> assigned_cells;
- std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
+ std::map<SigSpec, pool<RTLIL::IdString>> assigned_cells;
+ std::map<RTLIL::Cell*, SigSpec> assigned_cells_reverse;
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
- for (auto cell : all_cells)
- {
- clkdomain_t key;
+ typedef std::pair<IdString, SigSpec> endomain_t;
+ std::map<endomain_t, int> mergeability_class;
+ for (auto cell : all_cells) {
for (auto &conn : cell->connections())
- for (auto bit : conn.second) {
- bit = assign_map(bit);
+ for (auto bit : assign_map(conn.second))
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
@@ -1170,29 +1109,57 @@ struct Abc9Pass : public Pass {
bit_to_cell_up[bit].insert(cell);
}
}
- }
- if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_)))
- {
- key = clkdomain_t(cell->type == ID($_DFF_P_), assign_map(cell->getPort(ID(C))), true, RTLIL::SigSpec());
- }
- else
- if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_)))
- {
- bool this_clk_pol = cell->type.in(ID($_DFFE_PN_), ID($_DFFE_PP_));
- bool this_en_pol = cell->type.in(ID($_DFFE_NP_), ID($_DFFE_PP_));
- key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(ID(C))), this_en_pol, assign_map(cell->getPort(ID(E))));
- }
- else
+ auto inst_module = design->module(cell->type);
+ if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
continue;
+ auto derived_name = inst_module->derive(design, cell->parameters);
+ auto derived_module = design->module(derived_name);
+ log_assert(derived_module);
+ if (derived_module->has_processes())
+ Pass::call_on_module(design, derived_module, "proc");
+ SigMap derived_sigmap(derived_module);
+
+ SigSpec pattern;
+ SigSpec with;
+ for (auto &conn : cell->connections()) {
+ Wire *first = derived_module->wire(conn.first);
+ log_assert(first);
+ SigSpec second = assign_map(conn.second);
+ log_assert(GetSize(first) == GetSize(second));
+ pattern.append(first);
+ with.append(second);
+ }
+
+ Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock");
+ if (abc9_clock_wire == NULL)
+ log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type));
+ SigSpec abc9_clock = derived_sigmap(abc9_clock_wire);
+ abc9_clock.replace(pattern, with);
+ for (const auto &c : abc9_clock.chunks())
+ log_assert(!c.wire || c.wire->module == module);
+
+ Wire *abc9_control_wire = derived_module->wire("\\$abc9_control");
+ if (abc9_control_wire == NULL)
+ log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type));
+ SigSpec abc9_control = derived_sigmap(abc9_control_wire);
+ abc9_control.replace(pattern, with);
+ for (const auto &c : abc9_control.chunks())
+ log_assert(!c.wire || c.wire->module == module);
+
unassigned_cells.erase(cell);
expand_queue.insert(cell);
expand_queue_up.insert(cell);
expand_queue_down.insert(cell);
- assigned_cells[key].push_back(cell);
- assigned_cells_reverse[cell] = key;
+ assigned_cells[abc9_clock].insert(cell->name);
+ assigned_cells_reverse[cell] = abc9_clock;
+
+ endomain_t key(cell->type, abc9_control);
+ auto r = mergeability_class.emplace(key, mergeability_class.size() + 1);
+ auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
+ log_assert(r2.second);
}
while (!expand_queue_up.empty() || !expand_queue_down.empty())
@@ -1200,7 +1167,7 @@ struct Abc9Pass : public Pass {
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
- clkdomain_t key = assigned_cells_reverse.at(cell);
+ SigSpec key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
@@ -1208,7 +1175,7 @@ struct Abc9Pass : public Pass {
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
- assigned_cells[key].push_back(c);
+ assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
@@ -1217,7 +1184,7 @@ struct Abc9Pass : public Pass {
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
- clkdomain_t key = assigned_cells_reverse.at(cell);
+ SigSpec key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
@@ -1225,7 +1192,7 @@ struct Abc9Pass : public Pass {
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
- assigned_cells[key].push_back(c);
+ assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
@@ -1240,7 +1207,7 @@ struct Abc9Pass : public Pass {
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
- clkdomain_t key = assigned_cells_reverse.at(cell);
+ SigSpec key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
@@ -1248,7 +1215,7 @@ struct Abc9Pass : public Pass {
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
- assigned_cells[key].push_back(c);
+ assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
@@ -1258,32 +1225,29 @@ struct Abc9Pass : public Pass {
expand_queue.swap(next_expand_queue);
}
- clkdomain_t key(true, RTLIL::SigSpec(), true, RTLIL::SigSpec());
+ SigSpec key;
for (auto cell : unassigned_cells) {
- assigned_cells[key].push_back(cell);
+ assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
- log(" %d cells in clk=%s%s, en=%s%s\n", GetSize(it.second),
- std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)),
- std::get<2>(it.first) ? "" : "!", log_signal(std::get<3>(it.first)));
+ log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
+ design->selection_stack.emplace_back(false);
+ design->selected_active_module = module->name.str();
for (auto &it : assigned_cells) {
- clk_polarity = std::get<0>(it.first);
- clk_sig = assign_map(std::get<1>(it.first));
- en_polarity = std::get<2>(it.first);
- en_sig = assign_map(std::get<3>(it.first));
- abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, !clk_sig.empty(), "$",
+ RTLIL::Selection& sel = design->selection_stack.back();
+ sel.selected_members[module->name] = std::move(it.second);
+ abc9_module(design, module, script_file, exe_file, cleanup, lut_costs, false, "$",
keepff, delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup);
- assign_map.set(mod);
}
+ design->selection_stack.pop_back();
+ design->selected_active_module.clear();
}
- assign_map.clear();
-
log_pop();
}
} Abc9Pass;
diff --git a/passes/techmap/techmap.cc b/passes/techmap/techmap.cc
index 0c57733d4..a07a2f280 100644
--- a/passes/techmap/techmap.cc
+++ b/passes/techmap/techmap.cc
@@ -256,6 +256,14 @@ struct TechmapWorker
if (w->attributes.count(ID(src)))
w->add_strpool_attribute(ID(src), extra_src_attrs);
}
+
+
+ if (it.second->name.begins_with("\\_TECHMAP_REPLACE_")) {
+ IdString replace_name = stringf("%s%s", orig_cell_name.c_str(), it.second->name.c_str() + strlen("\\_TECHMAP_REPLACE_"));
+ Wire *replace_w = module->addWire(replace_name, it.second);
+ module->connect(replace_w, w);
+ }
+
design->select(module, w);
if (it.second->name.begins_with("\\_TECHMAP_REPLACE_.")) {
diff --git a/techlibs/xilinx/abc_map.v b/techlibs/xilinx/abc_map.v
index e4976092c..db996fbc3 100644
--- a/techlibs/xilinx/abc_map.v
+++ b/techlibs/xilinx/abc_map.v
@@ -18,8 +18,143 @@
*
*/
+// The following techmapping rules are intended to be run (with -max_iter 1)
+// before invoking the `abc9` pass in order to transform the design into
+// a format that it understands.
+//
+// For example, (complex) flip-flops are expected to be described as an
+// combinatorial box (containing all control logic such as clock enable
+// or synchronous resets) followed by a basic D-Q flop.
+
// ============================================================================
+// The purpose of the following FD* rules are to wrap the flop (which, when
+// called with the `_ABC' macro set captures only its combinatorial
+// behaviour) with:
+// (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9
+// the connectivity of its basic D-Q flop
+// (b) a special TECHMAP_REPLACE_.$currQ wire that will be used for feedback
+// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
+module FDRE (output reg Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ wire $nextQ;
+ FDRE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
+endmodule
+module FDRE_1 (output reg Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ wire $nextQ;
+ FDRE_1 #(
+ .INIT(|0),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
+endmodule
+
+module FDCE (output reg Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ wire $currQ, $nextQ;
+ FDCE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+endmodule
+module FDCE_1 (output reg Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ wire $nextQ, $currQ;
+ FDCE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+endmodule
+
+module FDPE (output reg Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ wire $nextQ, $currQ;
+ FDPE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+endmodule
+module FDPE_1 (output reg Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b0;
+ wire $nextQ, $currQ;
+ FDPE_1 #(
+ .INIT(INIT)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+endmodule
+
+module FDSE (output reg Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
+ wire $nextQ;
+ FDSE #(
+ .INIT(INIT),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
+endmodule
+module FDSE_1 (output reg Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b0;
+ wire $nextQ;
+ FDSE_1 #(
+ .INIT(|0),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
+ );
+ wire _TECHMAP_REPLACE_.$currQ = Q;
+ \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
+endmodule
+
module RAM32X1D (
output DPO, SPO,
(* techmap_autopurge *) input D,
diff --git a/techlibs/xilinx/abc_model.v b/techlibs/xilinx/abc_model.v
index f19235a27..8255804c2 100644
--- a/techlibs/xilinx/abc_model.v
+++ b/techlibs/xilinx/abc_model.v
@@ -30,6 +30,13 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
: (S0 ? I1 : I0);
endmodule
+module \$__ABC_FF_ (input D, output Q);
+endmodule
+
+(* abc_box_id = 1000 *)
+module \$__ABC_ASYNC (input A, S, output Y);
+endmodule
+
// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
diff --git a/techlibs/xilinx/abc_unmap.v b/techlibs/xilinx/abc_unmap.v
index 8bd0579ed..448fba9bf 100644
--- a/techlibs/xilinx/abc_unmap.v
+++ b/techlibs/xilinx/abc_unmap.v
@@ -20,11 +20,12 @@
// ============================================================================
-module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
+module \$__ABC_ASYNC (input A, S, output Y);
assign Y = A;
endmodule
-module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
- assign Y = A;
+
+module \$__ABC_FF_ (input D, output Q);
+ assign Q = D;
endmodule
module \$__ABC_REG (input [WIDTH-1:0] I, output [WIDTH-1:0] O, output Q);
diff --git a/techlibs/xilinx/abc_xc7.box b/techlibs/xilinx/abc_xc7.box
index 3da3d1b3f..141fc219a 100644
--- a/techlibs/xilinx/abc_xc7.box
+++ b/techlibs/xilinx/abc_xc7.box
@@ -41,6 +41,57 @@ CARRY4 4 1 10 8
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
+# Box to emulate async behaviour of FD[CP]*
+# Inputs: A S
+# Outputs: Y
+$__ABC_ASYNC 1000 0 2 1
+0 764
+
+# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
+# reflect the -46ps Tsu
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
+# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
+
+# Inputs: C CE D R \$currQ
+# Outputs: Q
+FDRE 1001 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D R \$currQ
+# Outputs: Q
+FDRE_1 1002 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE CLR D \$currQ
+# Outputs: Q
+FDCE 1003 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE CLR D \$currQ
+# Outputs: Q
+FDCE_1 1004 1 5 1
+0 151 806 0 0
+
+# Inputs: C CE D PRE \$currQ
+# Outputs: Q
+FDPE 1005 1 5 1
+0 151 0 806 0
+
+# Inputs: C CE D PRE \$currQ
+# Outputs: Q
+FDPE_1 1006 1 5 1
+0 151 0 806 0
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE 1007 1 5 1
+0 151 0 446 0
+
+# Inputs: C CE D S \$currQ
+# Outputs: Q
+FDSE_1 1008 1 5 1
+0 151 0 446 0
+
# SLICEM/A6LUT
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
# Necessary since RAMD* and SRL* have both combinatorial (i.e.
diff --git a/techlibs/xilinx/cells_sim.v b/techlibs/xilinx/cells_sim.v
index 258999f18..04aa60f91 100644
--- a/techlibs/xilinx/cells_sim.v
+++ b/techlibs/xilinx/cells_sim.v
@@ -240,6 +240,7 @@ endmodule
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
+(* abc_box_id=1001, lib_whitebox, abc9_flop *)
module FDRE (
(* abc_arrival=303 *)
output reg Q,
@@ -257,35 +258,72 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
-module FDSE (
+(* abc_box_id=1002, lib_whitebox, abc9_flop *)
+module FDRE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
- (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE,
- (* invertible_pin = "IS_D_INVERTED" *)
- input D,
- (* invertible_pin = "IS_S_INVERTED" *)
- input S
+ input CE, D, R
);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_S_INVERTED = 1'b0;
+ parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- endcase endgenerate
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C) Q <= \$nextQ ;
+`endif
endmodule
+(* abc_box_id=1003, lib_whitebox, abc9_flop *)
module FDCE (
(* abc_arrival=303 *)
output reg Q,
@@ -303,14 +341,78 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
+(* abc_box_id=1004, lib_whitebox, abc9_flop *)
+module FDCE_1 (
+ (* abc_arrival=303 *)
+ output reg Q,
+ (* clkbuf_sink *)
+ input C,
+ input CE, D, CLR
+);
+ parameter [0:0] INIT = 1'b0;
+ initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
+`endif
+endmodule
+
+(* abc_box_id=1005, lib_whitebox, abc9_flop *)
module FDPE (
(* abc_arrival=303 *)
output reg Q,
@@ -328,60 +430,158 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
endcase endgenerate
+`endif
endmodule
-module FDRE_1 (
- (* abc_arrival=303 *)
- output reg Q,
- (* clkbuf_sink *)
- input C,
- input CE, D, R
-);
- parameter [0:0] INIT = 1'b0;
- initial Q <= INIT;
- always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
-endmodule
-
-module FDSE_1 (
+(* abc_box_id=1006, lib_whitebox, abc9_flop *)
+module FDPE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, S
+ input CE, D, PRE
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+ // Since this is an async flop, async behaviour is also dealt with
+ // using the $_ABC_ASYNC box by abc_map.v
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
+`endif
endmodule
-module FDCE_1 (
+(* abc_box_id=1007, lib_whitebox, abc9_flop *)
+module FDSE (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
+ (* invertible_pin = "IS_C_INVERTED" *)
input C,
- input CE, D, CLR
+ input CE,
+ (* invertible_pin = "IS_D_INVERTED" *)
+ input D,
+ (* invertible_pin = "IS_S_INVERTED" *)
+ input S
);
- parameter [0:0] INIT = 1'b0;
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ generate case (|IS_C_INVERTED)
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
+ endcase endgenerate
+`endif
endmodule
-module FDPE_1 (
+(* abc_box_id=1008, lib_whitebox, abc9_flop *)
+module FDSE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
- input CE, D, PRE
+ input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
+`ifdef _ABC
+ // `abc9' requires that complex flops be split into a combinatorial
+ // box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
+ // In order to achieve clock-enable behaviour, the current value
+ // of the sequential output is required which Yosys will
+ // connect to the special `$currQ' wire.
+
+ // Special signal indicating clock domain
+ // (used to partition the module so that `abc9' only performs
+ // sequential synthesis (reachability analysis) correctly on
+ // one domain at a time)
+ wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ // Special signal indicating control domain
+ // (which, combined with this spell type, encodes to `abc9'
+ // which flops may be merged together)
+ wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
+ always @* Q = \$nextQ ;
+`else
+ assign \$currQ = Q;
+ always @(negedge C) Q <= \$nextQ ;
+`endif
endmodule
module LDCE (
diff --git a/techlibs/xilinx/synth_xilinx.cc b/techlibs/xilinx/synth_xilinx.cc
index 7085214de..dd03a1e17 100644
--- a/techlibs/xilinx/synth_xilinx.cc
+++ b/techlibs/xilinx/synth_xilinx.cc
@@ -284,9 +284,9 @@ struct SynthXilinxPass : public ScriptPass
if (check_label("begin")) {
if (vpr)
- run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
+ run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
else
- run("read_verilog -lib +/xilinx/cells_sim.v");
+ run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v");
if (help_mode)
run("read_verilog -lib +/xilinx/{family}_cells_xtra.v");