aboutsummaryrefslogtreecommitdiffstats
path: root/backends/cxxrtl/cxxrtl_backend.cc
diff options
context:
space:
mode:
Diffstat (limited to 'backends/cxxrtl/cxxrtl_backend.cc')
-rw-r--r--backends/cxxrtl/cxxrtl_backend.cc1320
1 files changed, 855 insertions, 465 deletions
diff --git a/backends/cxxrtl/cxxrtl_backend.cc b/backends/cxxrtl/cxxrtl_backend.cc
index a48ea5b23..39046bd78 100644
--- a/backends/cxxrtl/cxxrtl_backend.cc
+++ b/backends/cxxrtl/cxxrtl_backend.cc
@@ -195,7 +195,7 @@ bool is_extending_cell(RTLIL::IdString type)
ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool));
}
-bool is_elidable_cell(RTLIL::IdString type)
+bool is_inlinable_cell(RTLIL::IdString type)
{
return is_unary_cell(type) || is_binary_cell(type) || type.in(
ID($mux), ID($concat), ID($slice), ID($pmux));
@@ -211,7 +211,12 @@ bool is_ff_cell(RTLIL::IdString type)
bool is_internal_cell(RTLIL::IdString type)
{
- return type[0] == '$' && !type.begins_with("$paramod");
+ return !type.isPublic() && !type.begins_with("$paramod");
+}
+
+bool is_effectful_cell(RTLIL::IdString type)
+{
+ return type == ID($memwr) || type.isPublic();
}
bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
@@ -227,18 +232,15 @@ enum class CxxrtlPortType {
SYNC = 2,
};
-CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
+CxxrtlPortType cxxrtl_port_type(RTLIL::Module *module, RTLIL::IdString port)
{
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
- return CxxrtlPortType::UNKNOWN;
- RTLIL::Wire *cell_output_wire = cell_module->wire(port);
- log_assert(cell_output_wire != nullptr);
- bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb));
- bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync));
+ RTLIL::Wire *output_wire = module->wire(port);
+ log_assert(output_wire != nullptr);
+ bool is_comb = output_wire->get_bool_attribute(ID(cxxrtl_comb));
+ bool is_sync = output_wire->get_bool_attribute(ID(cxxrtl_sync));
if (is_comb && is_sync)
log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
- log_id(cell_module), log_signal(cell_output_wire));
+ log_id(module), log_signal(output_wire));
else if (is_comb)
return CxxrtlPortType::COMB;
else if (is_sync)
@@ -246,6 +248,14 @@ CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
return CxxrtlPortType::UNKNOWN;
}
+CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
+{
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ return CxxrtlPortType::UNKNOWN;
+ return cxxrtl_port_type(cell_module, port);
+}
+
bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
{
return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
@@ -262,7 +272,8 @@ struct FlowGraph {
CONNECT,
CELL_SYNC,
CELL_EVAL,
- PROCESS
+ PROCESS_SYNC,
+ PROCESS_CASE,
};
Type type;
@@ -273,7 +284,9 @@ struct FlowGraph {
std::vector<Node*> nodes;
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
- dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
+ dict<Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_comb_defs, node_sync_defs, node_uses;
+ dict<const RTLIL::Wire*, bool> wire_def_inlinable;
+ dict<const RTLIL::Wire*, dict<Node*, bool, hash_ptr_ops>> wire_use_inlinable;
dict<RTLIL::SigBit, bool> bit_has_state;
~FlowGraph()
@@ -282,7 +295,7 @@ struct FlowGraph {
delete node;
}
- void add_defs(Node *node, const RTLIL::SigSpec &sig, bool is_ff, bool elidable)
+ void add_defs(Node *node, const RTLIL::SigSpec &sig, bool is_ff, bool inlinable)
{
for (auto chunk : sig.chunks())
if (chunk.wire) {
@@ -290,17 +303,19 @@ struct FlowGraph {
// A sync def means that a wire holds design state because it is driven directly by
// a flip-flop output. Such a wire can never be unbuffered.
wire_sync_defs[chunk.wire].insert(node);
+ node_sync_defs[node].insert(chunk.wire);
} else {
// A comb def means that a wire doesn't hold design state. It might still be connected,
// indirectly, to a flip-flop output.
wire_comb_defs[chunk.wire].insert(node);
+ node_comb_defs[node].insert(chunk.wire);
}
}
for (auto bit : sig.bits())
bit_has_state[bit] |= is_ff;
- // Only comb defs of an entire wire in the right order can be elided.
+ // Only comb defs of an entire wire in the right order can be inlined.
if (!is_ff && sig.is_wire())
- wire_def_elidable[sig.as_wire()] = elidable;
+ wire_def_inlinable[sig.as_wire()] = inlinable;
}
void add_uses(Node *node, const RTLIL::SigSpec &sig)
@@ -308,26 +323,41 @@ struct FlowGraph {
for (auto chunk : sig.chunks())
if (chunk.wire) {
wire_uses[chunk.wire].insert(node);
- // Only a single use of an entire wire in the right order can be elided.
- // (But the use can include other chunks.)
- if (!wire_use_elidable.count(chunk.wire))
- wire_use_elidable[chunk.wire] = true;
+ node_uses[node].insert(chunk.wire);
+ // Only a single use of an entire wire in the right order can be inlined. (But the use can include
+ // other chunks.) This is tracked per-node because a wire used by multiple nodes can still be inlined
+ // if all but one of those nodes is dead.
+ if (!wire_use_inlinable[chunk.wire].count(node))
+ wire_use_inlinable[chunk.wire][node] = true;
else
- wire_use_elidable[chunk.wire] = false;
+ wire_use_inlinable[chunk.wire][node] = false;
}
}
- bool is_elidable(const RTLIL::Wire *wire) const
+ bool is_inlinable(const RTLIL::Wire *wire) const
{
- if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
- return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
+ // Can the wire be inlined at all?
+ if (wire_def_inlinable.count(wire))
+ return wire_def_inlinable.at(wire);
+ return false;
+ }
+
+ bool is_inlinable(const RTLIL::Wire *wire, const pool<Node*, hash_ptr_ops> &nodes) const
+ {
+ // Can the wire be inlined, knowing that the given nodes are reachable?
+ if (nodes.size() != 1)
+ return false;
+ Node *node = *nodes.begin();
+ log_assert(node_uses.at(node).count(wire));
+ if (is_inlinable(wire) && wire_use_inlinable.count(wire) && wire_use_inlinable.at(wire).count(node))
+ return wire_use_inlinable.at(wire).at(node);
return false;
}
// Connections
void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
{
- add_defs(node, conn.first, /*is_ff=*/false, /*elidable=*/true);
+ add_defs(node, conn.first, /*is_ff=*/false, /*inlinable=*/true);
add_uses(node, conn.second);
}
@@ -373,8 +403,8 @@ struct FlowGraph {
for (auto conn : cell->connections())
if (cell->output(conn.first))
if (is_cxxrtl_sync_port(cell, conn.first)) {
- // See note regarding elidability below.
- add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
+ // See note regarding inlinability below.
+ add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
}
}
@@ -382,19 +412,19 @@ struct FlowGraph {
{
for (auto conn : cell->connections()) {
if (cell->output(conn.first)) {
- if (is_elidable_cell(cell->type))
- add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/true);
+ if (is_inlinable_cell(cell->type))
+ add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/true);
else if (is_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
- add_defs(node, conn.second, /*is_ff=*/true, /*elidable=*/false);
+ add_defs(node, conn.second, /*is_ff=*/true, /*inlinable=*/false);
else if (is_internal_cell(cell->type))
- add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
+ add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
else if (!is_cxxrtl_sync_port(cell, conn.first)) {
- // Although at first it looks like outputs of user-defined cells may always be elided, the reality is
- // more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb
+ // Although at first it looks like outputs of user-defined cells may always be inlined, the reality is
+ // more complex. Fully sync outputs produce no defs and so don't participate in inlining. Fully comb
// outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
- // Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify
- // the infrastructure required to elide outputs of cells with many of them.
- add_defs(node, conn.second, /*is_ff=*/false, /*elidable=*/false);
+ // Unknown/mixed outputs could be inlined, but should be rare in practical designs and don't justify
+ // the infrastructure required to inline outputs of cells with many of them.
+ add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false);
}
}
if (cell->input(conn.first))
@@ -429,10 +459,10 @@ struct FlowGraph {
}
// Processes
- void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
+ void add_case_rule_defs_uses(Node *node, const RTLIL::CaseRule *case_)
{
for (auto &action : case_->actions) {
- add_defs(node, action.first, /*is_ff=*/false, /*elidable=*/false);
+ add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false);
add_uses(node, action.second);
}
for (auto sub_switch : case_->switches) {
@@ -440,20 +470,19 @@ struct FlowGraph {
for (auto sub_case : sub_switch->cases) {
for (auto &compare : sub_case->compare)
add_uses(node, compare);
- add_case_defs_uses(node, sub_case);
+ add_case_rule_defs_uses(node, sub_case);
}
}
}
- void add_process_defs_uses(Node *node, const RTLIL::Process *process)
+ void add_sync_rules_defs_uses(Node *node, const RTLIL::Process *process)
{
- add_case_defs_uses(node, &process->root_case);
for (auto sync : process->syncs)
for (auto action : sync->actions) {
if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
- add_defs(node, action.first, /*is_ff=*/true, /*elidable=*/false);
+ add_defs(node, action.first, /*is_ff=*/true, /*inlinable=*/false);
else
- add_defs(node, action.first, /*is_ff=*/false, /*elidable=*/false);
+ add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false);
add_uses(node, action.second);
}
}
@@ -461,10 +490,16 @@ struct FlowGraph {
Node *add_node(const RTLIL::Process *process)
{
Node *node = new Node;
- node->type = Node::Type::PROCESS;
+ node->type = Node::Type::PROCESS_SYNC;
node->process = process;
nodes.push_back(node);
- add_process_defs_uses(node, process);
+ add_sync_rules_defs_uses(node, process);
+
+ node = new Node;
+ node->type = Node::Type::PROCESS_CASE;
+ node->process = process;
+ nodes.push_back(node);
+ add_case_rule_defs_uses(node, &process->root_case);
return node;
}
};
@@ -520,6 +555,58 @@ std::string get_hdl_name(T *object)
return object->name.str().substr(1);
}
+struct WireType {
+ enum Type {
+ // Non-referenced wire; is not a part of the design.
+ UNUSED,
+ // Double-buffered wire; is a class member, and holds design state.
+ BUFFERED,
+ // Single-buffered wire; is a class member, but holds no state.
+ MEMBER,
+ // Single-buffered wire; is a class member, and is computed on demand.
+ OUTLINE,
+ // Local wire; is a local variable in eval method.
+ LOCAL,
+ // Inline wire; is an unnamed temporary in eval method.
+ INLINE,
+ // Alias wire; is replaced with aliasee, except in debug info.
+ ALIAS,
+ // Const wire; is replaced with constant, except in debug info.
+ CONST,
+ };
+
+ Type type = UNUSED;
+ const RTLIL::Cell *cell_subst = nullptr; // for INLINE
+ RTLIL::SigSpec sig_subst = {}; // for INLINE, ALIAS, and CONST
+
+ WireType() = default;
+
+ WireType(Type type) : type(type) {
+ log_assert(type == UNUSED || type == BUFFERED || type == MEMBER || type == OUTLINE || type == LOCAL);
+ }
+
+ WireType(Type type, const RTLIL::Cell *cell) : type(type), cell_subst(cell) {
+ log_assert(type == INLINE && is_inlinable_cell(cell->type));
+ }
+
+ WireType(Type type, RTLIL::SigSpec sig) : type(type), sig_subst(sig) {
+ log_assert(type == INLINE || (type == ALIAS && sig.is_wire()) || (type == CONST && sig.is_fully_const()));
+ }
+
+ bool is_buffered() const { return type == BUFFERED; }
+ bool is_member() const { return type == BUFFERED || type == MEMBER || type == OUTLINE; }
+ bool is_outline() const { return type == OUTLINE; }
+ bool is_named() const { return is_member() || type == LOCAL; }
+ bool is_local() const { return type == LOCAL || type == INLINE; }
+ bool is_exact() const { return type == ALIAS || type == CONST; }
+};
+
+// Tests for a SigSpec that is a valid clock input, clocks have to have a backing wire and be a single bit
+// using this instead of sig.is_wire() solves issues when the clock is a slice instead of a full wire
+bool is_valid_clock(const RTLIL::SigSpec& sig) {
+ return sig.is_chunk() && sig.is_bit() && sig[0].wire;
+}
+
struct CxxrtlWorker {
bool split_intf = false;
std::string intf_filename;
@@ -535,10 +622,13 @@ struct CxxrtlWorker {
bool unbuffer_public = false;
bool localize_internal = false;
bool localize_public = false;
- bool elide_internal = false;
- bool elide_public = false;
+ bool inline_internal = false;
+ bool inline_public = false;
bool debug_info = false;
+ bool debug_member = false;
+ bool debug_alias = false;
+ bool debug_eval = false;
std::ostringstream f;
std::string indent;
@@ -549,12 +639,8 @@ struct CxxrtlWorker {
dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
pool<const RTLIL::Memory*> writable_memories;
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
- dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
- dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
- pool<const RTLIL::Wire*> unbuffered_wires;
- pool<const RTLIL::Wire*> localized_wires;
- dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires;
- dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires;
+ dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule, debug_schedule;
+ dict<const RTLIL::Wire*, WireType> wire_types, debug_wire_types;
dict<RTLIL::SigBit, bool> bit_has_state;
dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
dict<const RTLIL::Module*, bool> eval_converges;
@@ -786,30 +872,37 @@ struct CxxrtlWorker {
dump_const(data, data.size());
}
- bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
+ bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs, bool for_debug = false)
{
if (chunk.wire == NULL) {
dump_const(chunk.data, chunk.width, chunk.offset);
return false;
} else {
- if (elided_wires.count(chunk.wire)) {
- log_assert(!is_lhs);
- const FlowGraph::Node &node = elided_wires[chunk.wire];
- switch (node.type) {
- case FlowGraph::Node::Type::CONNECT:
- dump_connect_elided(node.connect);
- break;
- case FlowGraph::Node::Type::CELL_EVAL:
- log_assert(is_elidable_cell(node.cell->type));
- dump_cell_elided(node.cell);
+ const auto &wire_type = (for_debug ? debug_wire_types : wire_types)[chunk.wire];
+ switch (wire_type.type) {
+ case WireType::BUFFERED:
+ f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
+ break;
+ case WireType::MEMBER:
+ case WireType::LOCAL:
+ case WireType::OUTLINE:
+ f << mangle(chunk.wire);
+ break;
+ case WireType::INLINE:
+ log_assert(!is_lhs);
+ if (wire_type.cell_subst != nullptr) {
+ dump_cell_expr(wire_type.cell_subst, for_debug);
break;
- default:
- log_assert(false);
- }
- } else if (unbuffered_wires[chunk.wire]) {
- f << mangle(chunk.wire);
- } else {
- f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
+ }
+ YS_FALLTHROUGH
+ case WireType::ALIAS:
+ case WireType::CONST:
+ log_assert(!is_lhs);
+ return dump_sigspec(wire_type.sig_subst.extract(chunk.offset, chunk.width), is_lhs, for_debug);
+ case WireType::UNUSED:
+ log_assert(is_lhs);
+ f << "value<" << chunk.width << ">()";
+ return false;
}
if (chunk.width == chunk.wire->width && chunk.offset == 0)
return false;
@@ -821,92 +914,116 @@ struct CxxrtlWorker {
}
}
- bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
+ bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs, bool for_debug = false)
{
if (sig.empty()) {
f << "value<0>()";
return false;
} else if (sig.is_chunk()) {
- return dump_sigchunk(sig.as_chunk(), is_lhs);
+ return dump_sigchunk(sig.as_chunk(), is_lhs, for_debug);
} else {
- dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
- for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
- f << ".concat(";
- dump_sigchunk(*it, is_lhs);
- f << ")";
+ bool first = true;
+ auto chunks = sig.chunks();
+ for (auto it = chunks.rbegin(); it != chunks.rend(); it++) {
+ if (!first)
+ f << ".concat(";
+ bool is_complex = dump_sigchunk(*it, is_lhs, for_debug);
+ if (!is_lhs && it->width == 1) {
+ size_t repeat = 1;
+ while ((it + repeat) != chunks.rend() && *(it + repeat) == *it)
+ repeat++;
+ if (repeat > 1) {
+ if (is_complex)
+ f << ".val()";
+ f << ".repeat<" << repeat << ">()";
+ }
+ it += repeat - 1;
+ }
+ if (!first)
+ f << ")";
+ first = false;
}
return true;
}
}
- void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
+ void dump_sigspec_lhs(const RTLIL::SigSpec &sig, bool for_debug = false)
{
- dump_sigspec(sig, /*is_lhs=*/true);
+ dump_sigspec(sig, /*is_lhs=*/true, for_debug);
}
- void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
+ void dump_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug = false)
{
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
// type conversion, but only if the expression needs it.
- bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
+ bool is_complex = dump_sigspec(sig, /*is_lhs=*/false, for_debug);
if (is_complex)
f << ".val()";
}
- void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
+ void dump_inlined_cells(const std::vector<const RTLIL::Cell*> &cells)
+ {
+ if (cells.empty()) {
+ f << indent << "// connection\n";
+ } else if (cells.size() == 1) {
+ dump_attrs(cells.front());
+ f << indent << "// cell " << cells.front()->name.str() << "\n";
+ } else {
+ f << indent << "// cells";
+ for (auto cell : cells)
+ f << " " << cell->name.str();
+ f << "\n";
+ }
+ }
+
+ void collect_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
{
for (auto chunk : sig.chunks()) {
- if (!chunk.wire || !elided_wires.count(chunk.wire))
+ if (!chunk.wire)
continue;
-
- const FlowGraph::Node &node = elided_wires[chunk.wire];
- switch (node.type) {
- case FlowGraph::Node::Type::CONNECT:
- collect_connect(node.connect, cells);
- break;
- case FlowGraph::Node::Type::CELL_EVAL:
- collect_cell_eval(node.cell, cells);
+ const auto &wire_type = wire_types[chunk.wire];
+ switch (wire_type.type) {
+ case WireType::INLINE:
+ if (wire_type.cell_subst != nullptr) {
+ collect_cell_eval(wire_type.cell_subst, for_debug, cells);
+ break;
+ }
+ YS_FALLTHROUGH
+ case WireType::ALIAS:
+ collect_sigspec_rhs(wire_type.sig_subst, for_debug, cells);
break;
default:
- log_assert(false);
+ break;
}
}
}
- void dump_connect_elided(const RTLIL::SigSig &conn)
- {
- dump_sigspec_rhs(conn.second);
- }
-
- bool is_connect_elided(const RTLIL::SigSig &conn)
+ void dump_connect_expr(const RTLIL::SigSig &conn, bool for_debug = false)
{
- return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
+ dump_sigspec_rhs(conn.second, for_debug);
}
- void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
+ void dump_connect(const RTLIL::SigSig &conn, bool for_debug = false)
{
- if (!is_connect_elided(conn))
- return;
+ std::vector<const RTLIL::Cell*> inlined_cells;
+ collect_sigspec_rhs(conn.second, for_debug, inlined_cells);
+ dump_inlined_cells(inlined_cells);
- collect_sigspec_rhs(conn.second, cells);
- }
-
- void dump_connect(const RTLIL::SigSig &conn)
- {
- if (is_connect_elided(conn))
- return;
-
- f << indent << "// connection\n";
f << indent;
- dump_sigspec_lhs(conn.first);
+ dump_sigspec_lhs(conn.first, for_debug);
f << " = ";
- dump_connect_elided(conn);
+ dump_connect_expr(conn, for_debug);
f << ";\n";
}
- void dump_cell_sync(const RTLIL::Cell *cell)
+ void collect_connect(const RTLIL::SigSig &conn, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
+ {
+ collect_sigspec_rhs(conn.second, for_debug, cells);
+ }
+
+ void dump_cell_sync(const RTLIL::Cell *cell, bool for_debug = false)
{
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
f << indent << "// cell " << cell->name.str() << " syncs\n";
@@ -914,12 +1031,12 @@ struct CxxrtlWorker {
if (cell->output(conn.first))
if (is_cxxrtl_sync_port(cell, conn.first)) {
f << indent;
- dump_sigspec_lhs(conn.second);
+ dump_sigspec_lhs(conn.second, for_debug);
f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
}
}
- void dump_cell_elided(const RTLIL::Cell *cell)
+ void dump_cell_expr(const RTLIL::Cell *cell, bool for_debug = false)
{
// Unary cells
if (is_unary_cell(cell->type)) {
@@ -927,7 +1044,7 @@ struct CxxrtlWorker {
if (is_extending_cell(cell->type))
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u');
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
f << ")";
// Binary cells
} else if (is_binary_cell(cell->type)) {
@@ -936,18 +1053,18 @@ struct CxxrtlWorker {
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
(cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u');
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
f << ", ";
- dump_sigspec_rhs(cell->getPort(ID::B));
+ dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
f << ")";
// Muxes
} else if (cell->type == ID($mux)) {
f << "(";
- dump_sigspec_rhs(cell->getPort(ID::S));
+ dump_sigspec_rhs(cell->getPort(ID::S), for_debug);
f << " ? ";
- dump_sigspec_rhs(cell->getPort(ID::B));
+ dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
f << " : ";
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
f << ")";
// Parallel (one-hot) muxes
} else if (cell->type == ID($pmux)) {
@@ -955,24 +1072,24 @@ struct CxxrtlWorker {
int s_width = cell->getParam(ID::S_WIDTH).as_int();
for (int part = 0; part < s_width; part++) {
f << "(";
- dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
+ dump_sigspec_rhs(cell->getPort(ID::S).extract(part), for_debug);
f << " ? ";
- dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
+ dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width), for_debug);
f << " : ";
}
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
for (int part = 0; part < s_width; part++) {
f << ")";
}
// Concats
} else if (cell->type == ID($concat)) {
- dump_sigspec_rhs(cell->getPort(ID::B));
+ dump_sigspec_rhs(cell->getPort(ID::B), for_debug);
f << ".concat(";
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
f << ").val()";
// Slices
} else if (cell->type == ID($slice)) {
- dump_sigspec_rhs(cell->getPort(ID::A));
+ dump_sigspec_rhs(cell->getPort(ID::A), for_debug);
f << ".slice<";
f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
f << ",";
@@ -983,61 +1100,33 @@ struct CxxrtlWorker {
}
}
- bool is_cell_elided(const RTLIL::Cell *cell)
+ void dump_cell_eval(const RTLIL::Cell *cell, bool for_debug = false)
{
- return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() &&
- elided_wires.count(cell->getPort(ID::Y).as_wire());
- }
-
- void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
- {
- if (!is_cell_elided(cell))
- return;
-
- cells.push_back(cell->name);
- for (auto port : cell->connections())
- if (port.first != ID::Y)
- collect_sigspec_rhs(port.second, cells);
- }
-
- void dump_cell_eval(const RTLIL::Cell *cell)
- {
- if (is_cell_elided(cell))
- return;
- if (cell->type == ID($meminit))
- return; // Handled elsewhere.
-
- std::vector<RTLIL::IdString> elided_cells;
- if (is_elidable_cell(cell->type)) {
- for (auto port : cell->connections())
- if (port.first != ID::Y)
- collect_sigspec_rhs(port.second, elided_cells);
- }
- if (elided_cells.empty()) {
- dump_attrs(cell);
- f << indent << "// cell " << cell->name.str() << "\n";
- } else {
- f << indent << "// cells";
- for (auto elided_cell : elided_cells)
- f << " " << elided_cell.str();
- f << "\n";
- }
+ std::vector<const RTLIL::Cell*> inlined_cells;
+ collect_cell_eval(cell, for_debug, inlined_cells);
+ dump_inlined_cells(inlined_cells);
// Elidable cells
- if (is_elidable_cell(cell->type)) {
+ if (is_inlinable_cell(cell->type)) {
f << indent;
- dump_sigspec_lhs(cell->getPort(ID::Y));
+ dump_sigspec_lhs(cell->getPort(ID::Y), for_debug);
f << " = ";
- dump_cell_elided(cell);
+ dump_cell_expr(cell, for_debug);
f << ";\n";
// Flip-flops
} else if (is_ff_cell(cell->type)) {
- if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
+ log_assert(!for_debug);
+ // Clocks might be slices of larger signals but should only ever be single bit
+ if (cell->hasPort(ID::CLK) && is_valid_clock(cell->getPort(ID::CLK))) {
// Edge-sensitive logic
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
- f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
- << mangle(clk_bit) << ") {\n";
+ if (clk_bit.wire) {
+ f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ } else {
+ f << indent << "if (false) {\n";
+ }
inc_indent();
if (cell->hasPort(ID::EN)) {
f << indent << "if (";
@@ -1128,10 +1217,15 @@ struct CxxrtlWorker {
// Memory ports
} else if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
+ log_assert(!for_debug);
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
- f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
- << mangle(clk_bit) << ") {\n";
+ if (clk_bit.wire) {
+ f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
+ << mangle(clk_bit) << ") {\n";
+ } else {
+ f << indent << "if (false) {\n";
+ }
inc_indent();
}
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
@@ -1149,12 +1243,12 @@ struct CxxrtlWorker {
}
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
- // loudly crashes if an illegal condition is encountered. The assert may be turned off with -DNDEBUG not
- // just for release builds, but also to make sure the simulator (which is presumably embedded in some
+ // loudly crashes if an illegal condition is encountered. The assert may be turned off with -DCXXRTL_NDEBUG
+ // not only for release builds, but also to make sure the simulator (which is presumably embedded in some
// larger program) will never crash the code that calls into it.
//
// If assertions are disabled, out of bounds reads are defined to return zero.
- f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
+ f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
f << indent << "if(" << valid_index_temp << ".valid) {\n";
inc_indent();
if (writable_memories[memory]) {
@@ -1211,7 +1305,7 @@ struct CxxrtlWorker {
// See above for rationale of having both the assert and the condition.
//
// If assertions are disabled, out of bounds writes are defined to do nothing.
- f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
+ f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
f << indent << "if (" << valid_index_temp << ".valid) {\n";
inc_indent();
f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
@@ -1231,11 +1325,21 @@ struct CxxrtlWorker {
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
// User cells
} else {
+ log_assert(!for_debug);
log_assert(cell->known());
+ bool buffered_inputs = false;
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
for (auto conn : cell->connections())
- if (cell->input(conn.first) && !cell->output(conn.first)) {
- f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = ";
+ if (cell->input(conn.first)) {
+ RTLIL::Module *cell_module = cell->module->design->module(cell->type);
+ log_assert(cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire());
+ RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
+ f << indent << mangle(cell) << access << mangle_wire_name(conn.first);
+ if (!is_cxxrtl_blackbox_cell(cell) && wire_types[cell_module_wire].is_buffered()) {
+ buffered_inputs = true;
+ f << ".next";
+ }
+ f << " = ";
dump_sigspec_rhs(conn.second);
f << ";\n";
if (getenv("CXXRTL_VOID_MY_WARRANTY")) {
@@ -1247,19 +1351,11 @@ struct CxxrtlWorker {
// with:
// top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
// Don't rely on this; it will be removed without warning.
- RTLIL::Module *cell_module = cell->module->design->module(cell->type);
- if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) {
- RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
- if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
- f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
- f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
- }
+ if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
+ f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
+ f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
}
}
- } else if (cell->input(conn.first)) {
- f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = ";
- dump_sigspec_rhs(conn.second);
- f << ";\n";
}
auto assign_from_outputs = [&](bool cell_converged) {
for (auto conn : cell->connections()) {
@@ -1277,9 +1373,9 @@ struct CxxrtlWorker {
// have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
// and consider the fate of the localized wires that used to be output ports.)
//
- // Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell
- // (which may be late bound) will converge immediately. Because of this, the choice between using .curr
- // (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime.
+ // It is not possible to know apriori whether the cell (which may be late bound) will converge immediately.
+ // Because of this, the choice between using .curr (appropriate for buffered outputs) and .next (appropriate
+ // for unbuffered outputs) is made at runtime.
if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
f << ".next;\n";
else
@@ -1287,19 +1383,34 @@ struct CxxrtlWorker {
}
}
};
- f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
- inc_indent();
- assign_from_outputs(/*cell_converged=*/true);
- dec_indent();
- f << indent << "} else {\n";
- inc_indent();
+ if (buffered_inputs) {
+ // If we have any buffered inputs, there's no chance of converging immediately.
+ f << indent << mangle(cell) << access << "eval();\n";
f << indent << "converged = false;\n";
assign_from_outputs(/*cell_converged=*/false);
- dec_indent();
- f << indent << "}\n";
+ } else {
+ f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
+ inc_indent();
+ assign_from_outputs(/*cell_converged=*/true);
+ dec_indent();
+ f << indent << "} else {\n";
+ inc_indent();
+ f << indent << "converged = false;\n";
+ assign_from_outputs(/*cell_converged=*/false);
+ dec_indent();
+ f << indent << "}\n";
+ }
}
}
+ void collect_cell_eval(const RTLIL::Cell *cell, bool for_debug, std::vector<const RTLIL::Cell*> &cells)
+ {
+ cells.push_back(cell);
+ for (auto port : cell->connections())
+ if (cell->input(port.first))
+ collect_sigspec_rhs(port.second, for_debug, cells);
+ }
+
void dump_assign(const RTLIL::SigSig &sigsig)
{
f << indent;
@@ -1383,13 +1494,19 @@ struct CxxrtlWorker {
f << indent << "}\n";
}
- void dump_process(const RTLIL::Process *proc)
+ void dump_process_case(const RTLIL::Process *proc)
{
dump_attrs(proc);
- f << indent << "// process " << proc->name.str() << "\n";
+ f << indent << "// process " << proc->name.str() << " case\n";
// The case attributes (for root case) are always empty.
log_assert(proc->root_case.attributes.empty());
dump_case_rule(&proc->root_case);
+ }
+
+ void dump_process_syncs(const RTLIL::Process *proc)
+ {
+ dump_attrs(proc);
+ f << indent << "// process " << proc->name.str() << " syncs\n";
for (auto sync : proc->syncs) {
RTLIL::SigBit sync_bit;
if (!sync->signal.empty()) {
@@ -1442,78 +1559,89 @@ struct CxxrtlWorker {
}
}
- void dump_wire(const RTLIL::Wire *wire, bool is_local_context)
+ void dump_wire(const RTLIL::Wire *wire, bool is_local)
{
- if (elided_wires.count(wire))
+ const auto &wire_type = wire_types[wire];
+ if (!wire_type.is_named() || wire_type.is_local() != is_local)
return;
- if (localized_wires[wire] && is_local_context) {
- dump_attrs(wire);
- f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
+ dump_attrs(wire);
+ f << indent;
+ if (wire->port_input && wire->port_output)
+ f << "/*inout*/ ";
+ else if (wire->port_input)
+ f << "/*input*/ ";
+ else if (wire->port_output)
+ f << "/*output*/ ";
+ f << (wire_type.is_buffered() ? "wire" : "value");
+ if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
+ f << "<" << wire->get_string_attribute(ID(cxxrtl_width)) << ">";
+ } else {
+ f << "<" << wire->width << ">";
}
- if (!localized_wires[wire] && !is_local_context) {
- std::string width;
- if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
- width = wire->get_string_attribute(ID(cxxrtl_width));
- } else {
- width = std::to_string(wire->width);
- }
-
- dump_attrs(wire);
- f << indent;
- if (wire->port_input && wire->port_output)
- f << "/*inout*/ ";
- else if (wire->port_input)
- f << "/*input*/ ";
- else if (wire->port_output)
- f << "/*output*/ ";
- f << (unbuffered_wires[wire] ? "value" : "wire") << "<" << width << "> " << mangle(wire);
- if (wire->has_attribute(ID::init)) {
- f << " ";
- dump_const_init(wire->attributes.at(ID::init));
+ f << " " << mangle(wire);
+ if (wire->has_attribute(ID::init)) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID::init));
+ }
+ f << ";\n";
+ if (edge_wires[wire]) {
+ if (!wire_type.is_buffered()) {
+ f << indent << "value<" << wire->width << "> prev_" << mangle(wire);
+ if (wire->has_attribute(ID::init)) {
+ f << " ";
+ dump_const_init(wire->attributes.at(ID::init));
+ }
+ f << ";\n";
}
- f << ";\n";
- if (edge_wires[wire]) {
- if (unbuffered_wires[wire]) {
- f << indent << "value<" << width << "> prev_" << mangle(wire);
- if (wire->has_attribute(ID::init)) {
- f << " ";
- dump_const_init(wire->attributes.at(ID::init));
+ for (auto edge_type : edge_types) {
+ if (edge_type.first.wire == wire) {
+ std::string prev, next;
+ if (!wire_type.is_buffered()) {
+ prev = "prev_" + mangle(edge_type.first.wire);
+ next = mangle(edge_type.first.wire);
+ } else {
+ prev = mangle(edge_type.first.wire) + ".curr";
+ next = mangle(edge_type.first.wire) + ".next";
}
- f << ";\n";
- }
- for (auto edge_type : edge_types) {
- if (edge_type.first.wire == wire) {
- std::string prev, next;
- if (unbuffered_wires[wire]) {
- prev = "prev_" + mangle(edge_type.first.wire);
- next = mangle(edge_type.first.wire);
- } else {
- prev = mangle(edge_type.first.wire) + ".curr";
- next = mangle(edge_type.first.wire) + ".next";
- }
- prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
- next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
- if (edge_type.second != RTLIL::STn) {
- f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
- inc_indent();
- f << indent << "return !" << prev << " && " << next << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
- if (edge_type.second != RTLIL::STp) {
- f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
- inc_indent();
- f << indent << "return " << prev << " && !" << next << ";\n";
- dec_indent();
- f << indent << "}\n";
- }
+ prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
+ next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
+ if (edge_type.second != RTLIL::STn) {
+ f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
+ inc_indent();
+ f << indent << "return !" << prev << " && " << next << ";\n";
+ dec_indent();
+ f << indent << "}\n";
+ }
+ if (edge_type.second != RTLIL::STp) {
+ f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
+ inc_indent();
+ f << indent << "return " << prev << " && !" << next << ";\n";
+ dec_indent();
+ f << indent << "}\n";
}
}
}
}
}
+ void dump_debug_wire(const RTLIL::Wire *wire, bool is_local)
+ {
+ const auto &wire_type = wire_types[wire];
+ if (wire_type.is_member())
+ return;
+
+ const auto &debug_wire_type = debug_wire_types[wire];
+ if (!debug_wire_type.is_named() || debug_wire_type.is_local() != is_local)
+ return;
+
+ dump_attrs(wire);
+ f << indent;
+ if (debug_wire_type.is_outline())
+ f << "/*outline*/ ";
+ f << "value<" << wire->width << "> " << mangle(wire) << ";\n";
+ }
+
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
{
vector<const RTLIL::Cell*> init_cells;
@@ -1581,7 +1709,7 @@ struct CxxrtlWorker {
}
}
for (auto wire : module->wires())
- dump_wire(wire, /*is_local_context=*/true);
+ dump_wire(wire, /*is_local=*/true);
for (auto node : schedule[module]) {
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
@@ -1593,8 +1721,11 @@ struct CxxrtlWorker {
case FlowGraph::Node::Type::CELL_EVAL:
dump_cell_eval(node.cell);
break;
- case FlowGraph::Node::Type::PROCESS:
- dump_process(node.process);
+ case FlowGraph::Node::Type::PROCESS_SYNC:
+ dump_process_syncs(node.process);
+ break;
+ case FlowGraph::Node::Type::PROCESS_CASE:
+ dump_process_case(node.process);
break;
}
}
@@ -1603,32 +1734,51 @@ struct CxxrtlWorker {
dec_indent();
}
+ void dump_debug_eval_method(RTLIL::Module *module)
+ {
+ inc_indent();
+ for (auto wire : module->wires())
+ dump_debug_wire(wire, /*is_local=*/true);
+ for (auto node : debug_schedule[module]) {
+ switch (node.type) {
+ case FlowGraph::Node::Type::CONNECT:
+ dump_connect(node.connect, /*for_debug=*/true);
+ break;
+ case FlowGraph::Node::Type::CELL_SYNC:
+ dump_cell_sync(node.cell, /*for_debug=*/true);
+ break;
+ case FlowGraph::Node::Type::CELL_EVAL:
+ dump_cell_eval(node.cell, /*for_debug=*/true);
+ break;
+ default:
+ log_abort();
+ }
+ }
+ dec_indent();
+ }
+
void dump_commit_method(RTLIL::Module *module)
{
inc_indent();
f << indent << "bool changed = false;\n";
for (auto wire : module->wires()) {
- if (elided_wires.count(wire))
- continue;
- if (unbuffered_wires[wire]) {
- if (edge_wires[wire])
- f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
- continue;
- }
- if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0)
- f << indent << "changed |= " << mangle(wire) << ".commit();\n";
+ const auto &wire_type = wire_types[wire];
+ if (wire_type.type == WireType::MEMBER && edge_wires[wire])
+ f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
+ if (wire_type.is_buffered())
+ f << indent << "if (" << mangle(wire) << ".commit()) changed = true;\n";
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto memory : module->memories) {
if (!writable_memories[memory.second])
continue;
- f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
+ f << indent << "if (" << mangle(memory.second) << ".commit()) changed = true;\n";
}
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
continue;
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
- f << indent << "changed |= " << mangle(cell) << access << "commit();\n";
+ f << indent << "if (" << mangle(cell) << access << "commit()) changed = true;\n";
}
}
f << indent << "return changed;\n";
@@ -1638,96 +1788,134 @@ struct CxxrtlWorker {
void dump_debug_info_method(RTLIL::Module *module)
{
size_t count_public_wires = 0;
- size_t count_const_wires = 0;
- size_t count_alias_wires = 0;
size_t count_member_wires = 0;
- size_t count_skipped_wires = 0;
+ size_t count_undriven = 0;
size_t count_driven_sync = 0;
size_t count_driven_comb = 0;
- size_t count_undriven = 0;
size_t count_mixed_driver = 0;
+ size_t count_alias_wires = 0;
+ size_t count_const_wires = 0;
+ size_t count_inline_wires = 0;
+ size_t count_skipped_wires = 0;
inc_indent();
f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
for (auto wire : module->wires()) {
- if (wire->name[0] != '\\')
- continue;
- if (module->get_bool_attribute(ID(cxxrtl_blackbox)) && (wire->port_id == 0))
+ const auto &debug_wire_type = debug_wire_types[wire];
+ if (!wire->name.isPublic())
continue;
count_public_wires++;
- if (debug_const_wires.count(wire)) {
- // Wire tied to a constant
- f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
- dump_const(debug_const_wires[wire]);
- f << ";\n";
- f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(const_" << mangle(wire) << ", ";
- f << wire->start_offset << "));\n";
- count_const_wires++;
- } else if (debug_alias_wires.count(wire)) {
- // Alias of a member wire
- f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(debug_alias(), " << mangle(debug_alias_wires[wire]) << ", ";
- f << wire->start_offset << "));\n";
- count_alias_wires++;
- } else if (!localized_wires.count(wire)) {
- // Member wire
- std::vector<std::string> flags;
-
- if (wire->port_input && wire->port_output)
- flags.push_back("INOUT");
- else if (wire->port_input)
- flags.push_back("INPUT");
- else if (wire->port_output)
- flags.push_back("OUTPUT");
-
- bool has_driven_sync = false;
- bool has_driven_comb = false;
- bool has_undriven = false;
- SigSpec sig(wire);
- for (auto bit : sig.bits())
- if (!bit_has_state.count(bit))
- has_undriven = true;
- else if (bit_has_state[bit])
- has_driven_sync = true;
- else
- has_driven_comb = true;
- if (has_driven_sync)
- flags.push_back("DRIVEN_SYNC");
- if (has_driven_sync && !has_driven_comb && !has_undriven)
- count_driven_sync++;
- if (has_driven_comb)
- flags.push_back("DRIVEN_COMB");
- if (!has_driven_sync && has_driven_comb && !has_undriven)
- count_driven_comb++;
- if (has_undriven)
- flags.push_back("UNDRIVEN");
- if (!has_driven_sync && !has_driven_comb && has_undriven)
- count_undriven++;
- if (has_driven_sync + has_driven_comb + has_undriven > 1)
- count_mixed_driver++;
-
- f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
- f << ", debug_item(" << mangle(wire) << ", ";
- f << wire->start_offset;
- bool first = true;
- for (auto flag : flags) {
- if (first) {
- first = false;
- f << ", ";
+ switch (debug_wire_type.type) {
+ case WireType::BUFFERED:
+ case WireType::MEMBER: {
+ // Member wire
+ std::vector<std::string> flags;
+
+ if (wire->port_input && wire->port_output)
+ flags.push_back("INOUT");
+ else if (wire->port_output)
+ flags.push_back("OUTPUT");
+ else if (wire->port_input)
+ flags.push_back("INPUT");
+
+ bool has_driven_sync = false;
+ bool has_driven_comb = false;
+ bool has_undriven = false;
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ for (auto bit : SigSpec(wire))
+ if (!bit_has_state.count(bit))
+ has_undriven = true;
+ else if (bit_has_state[bit])
+ has_driven_sync = true;
+ else
+ has_driven_comb = true;
+ } else if (wire->port_output) {
+ switch (cxxrtl_port_type(module, wire->name)) {
+ case CxxrtlPortType::SYNC:
+ has_driven_sync = true;
+ break;
+ case CxxrtlPortType::COMB:
+ has_driven_comb = true;
+ break;
+ case CxxrtlPortType::UNKNOWN:
+ has_driven_sync = has_driven_comb = true;
+ break;
+ }
} else {
- f << "|";
+ has_undriven = true;
}
- f << "debug_item::" << flag;
+ if (has_undriven)
+ flags.push_back("UNDRIVEN");
+ if (!has_driven_sync && !has_driven_comb && has_undriven)
+ count_undriven++;
+ if (has_driven_sync)
+ flags.push_back("DRIVEN_SYNC");
+ if (has_driven_sync && !has_driven_comb && !has_undriven)
+ count_driven_sync++;
+ if (has_driven_comb)
+ flags.push_back("DRIVEN_COMB");
+ if (!has_driven_sync && has_driven_comb && !has_undriven)
+ count_driven_comb++;
+ if (has_driven_sync + has_driven_comb + has_undriven > 1)
+ count_mixed_driver++;
+
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(" << mangle(wire) << ", " << wire->start_offset;
+ bool first = true;
+ for (auto flag : flags) {
+ if (first) {
+ first = false;
+ f << ", ";
+ } else {
+ f << "|";
+ }
+ f << "debug_item::" << flag;
+ }
+ f << "));\n";
+ count_member_wires++;
+ break;
+ }
+ case WireType::ALIAS: {
+ // Alias of a member wire
+ const RTLIL::Wire *aliasee = debug_wire_type.sig_subst.as_wire();
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(";
+ // If the aliasee is an outline, then the alias must be an outline, too; otherwise downstream
+ // tooling has no way to find out about the outline.
+ if (debug_wire_types[aliasee].is_outline())
+ f << "debug_eval_outline";
+ else
+ f << "debug_alias()";
+ f << ", " << mangle(aliasee) << ", " << wire->start_offset << "));\n";
+ count_alias_wires++;
+ break;
+ }
+ case WireType::CONST: {
+ // Wire tied to a constant
+ f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
+ dump_const(debug_wire_type.sig_subst.as_const());
+ f << ";\n";
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(const_" << mangle(wire) << ", " << wire->start_offset << "));\n";
+ count_const_wires++;
+ break;
+ }
+ case WireType::OUTLINE: {
+ // Localized or inlined, but rematerializable wire
+ f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
+ f << ", debug_item(debug_eval_outline, " << mangle(wire) << ", " << wire->start_offset << "));\n";
+ count_inline_wires++;
+ break;
+ }
+ default: {
+ // Localized or inlined wire with no debug information
+ count_skipped_wires++;
+ break;
}
- f << "));\n";
- count_member_wires++;
- } else {
- count_skipped_wires++;
}
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto &memory_it : module->memories) {
- if (memory_it.first[0] != '\\')
+ if (!memory_it.first.isPublic())
continue;
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
f << ", debug_item(" << mangle(memory_it.second) << ", ";
@@ -1745,14 +1933,18 @@ struct CxxrtlWorker {
log_debug("Debug information statistics for module `%s':\n", log_id(module));
log_debug(" Public wires: %zu, of which:\n", count_public_wires);
- log_debug(" Const wires: %zu\n", count_const_wires);
- log_debug(" Alias wires: %zu\n", count_alias_wires);
log_debug(" Member wires: %zu, of which:\n", count_member_wires);
+ log_debug(" Undriven: %zu (incl. inputs)\n", count_undriven);
log_debug(" Driven sync: %zu\n", count_driven_sync);
log_debug(" Driven comb: %zu\n", count_driven_comb);
- log_debug(" Undriven: %zu\n", count_undriven);
log_debug(" Mixed driver: %zu\n", count_mixed_driver);
- log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires);
+ if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ log_debug(" Inline wires: %zu\n", count_inline_wires);
+ log_debug(" Alias wires: %zu\n", count_alias_wires);
+ log_debug(" Const wires: %zu\n", count_const_wires);
+ log_debug(" Other wires: %zu%s\n", count_skipped_wires,
+ count_skipped_wires > 0 ? " (debug unavailable)" : "");
+ }
}
void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
@@ -1792,7 +1984,7 @@ struct CxxrtlWorker {
inc_indent();
for (auto wire : module->wires()) {
if (wire->port_id != 0)
- dump_wire(wire, /*is_local_context=*/false);
+ dump_wire(wire, /*is_local=*/false);
}
f << "\n";
f << indent << "bool eval() override {\n";
@@ -1838,8 +2030,9 @@ struct CxxrtlWorker {
f << indent << "struct " << mangle(module) << " : public module {\n";
inc_indent();
for (auto wire : module->wires())
- dump_wire(wire, /*is_local_context=*/false);
- f << "\n";
+ dump_wire(wire, /*is_local=*/false);
+ for (auto wire : module->wires())
+ dump_debug_wire(wire, /*is_local=*/false);
bool has_memories = false;
for (auto memory : module->memories) {
dump_memory(module, memory.second);
@@ -1869,10 +2062,62 @@ struct CxxrtlWorker {
}
if (has_cells)
f << "\n";
+ f << indent << mangle(module) << "() {}\n";
+ if (has_cells) {
+ f << indent << mangle(module) << "(adopt, " << mangle(module) << " other) :\n";
+ bool first = true;
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ if (first) {
+ first = false;
+ } else {
+ f << ",\n";
+ }
+ RTLIL::Module *cell_module = module->design->module(cell->type);
+ if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
+ f << indent << " " << mangle(cell) << "(std::move(other." << mangle(cell) << "))";
+ } else {
+ f << indent << " " << mangle(cell) << "(adopt {}, std::move(other." << mangle(cell) << "))";
+ }
+ }
+ f << " {\n";
+ inc_indent();
+ for (auto cell : module->cells()) {
+ if (is_internal_cell(cell->type))
+ continue;
+ RTLIL::Module *cell_module = module->design->module(cell->type);
+ if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
+ f << indent << mangle(cell) << "->reset();\n";
+ }
+ dec_indent();
+ f << indent << "}\n";
+ } else {
+ f << indent << mangle(module) << "(adopt, " << mangle(module) << " other) {}\n";
+ }
+ f << "\n";
+ f << indent << "void reset() override {\n";
+ inc_indent();
+ f << indent << "*this = " << mangle(module) << "(adopt {}, std::move(*this));\n";
+ dec_indent();
+ f << indent << "}\n";
+ f << "\n";
f << indent << "bool eval() override;\n";
f << indent << "bool commit() override;\n";
- if (debug_info)
+ if (debug_info) {
+ if (debug_eval) {
+ f << "\n";
+ f << indent << "void debug_eval();\n";
+ for (auto wire : module->wires())
+ if (debug_wire_types[wire].is_outline()) {
+ f << indent << "debug_outline debug_eval_outline { std::bind(&"
+ << mangle(module) << "::debug_eval, this) };\n";
+ break;
+ }
+ }
+ f << "\n";
f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
+ }
dec_indent();
f << indent << "}; // struct " << mangle(module) << "\n";
f << "\n";
@@ -1892,6 +2137,13 @@ struct CxxrtlWorker {
f << indent << "}\n";
f << "\n";
if (debug_info) {
+ if (debug_eval) {
+ f << indent << "void " << mangle(module) << "::debug_eval() {\n";
+ dump_debug_eval_method(module);
+ f << indent << "}\n";
+ f << "\n";
+ }
+ f << indent << "CXXRTL_EXTREMELY_COLD\n";
f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
dump_debug_info_method(module);
f << indent << "}\n";
@@ -2021,7 +2273,7 @@ struct CxxrtlWorker {
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
{
signal = sigmap(signal);
- log_assert(signal.is_wire() && signal.is_bit());
+ log_assert(is_valid_clock(signal));
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
RTLIL::SigBit sigbit = signal[0];
@@ -2029,7 +2281,8 @@ struct CxxrtlWorker {
edge_types[sigbit] = type;
else if (edge_types[sigbit] != type)
edge_types[sigbit] = RTLIL::STe;
- edge_wires.insert(signal.as_wire());
+ // Cannot use as_wire because signal might not be a full wire, instead extract the wire from the sigbit
+ edge_wires.insert(sigbit.wire);
}
void analyze_design(RTLIL::Design *design)
@@ -2047,8 +2300,11 @@ struct CxxrtlWorker {
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto port : module->ports) {
RTLIL::Wire *wire = module->wire(port);
- if (wire->port_input && !wire->port_output)
- unbuffered_wires.insert(wire);
+ if (wire->port_input && !wire->port_output) {
+ wire_types[wire] = debug_wire_types[wire] = {WireType::MEMBER};
+ } else if (wire->port_input || wire->port_output) {
+ wire_types[wire] = debug_wire_types[wire] = {WireType::BUFFERED};
+ }
if (wire->has_attribute(ID(cxxrtl_edge))) {
RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
@@ -2078,6 +2334,8 @@ struct CxxrtlWorker {
continue;
}
+ // Construct a flow graph where each node is a basic computational operation generally corresponding
+ // to a fragment of the RTLIL netlist.
FlowGraph flow;
for (auto conn : module->connections())
@@ -2105,14 +2363,14 @@ struct CxxrtlWorker {
// Various DFF cells are treated like posedge/negedge processes, see above for details.
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
- if (cell->getPort(ID::CLK).is_wire())
+ if (is_valid_clock(cell->getPort(ID::CLK)))
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
// Similar for memory port cells.
if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
- if (cell->getPort(ID::CLK).is_wire())
+ if (is_valid_clock(cell->getPort(ID::CLK)))
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
@@ -2122,7 +2380,7 @@ struct CxxrtlWorker {
if (cell->type == ID($memwr))
writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
// Collect groups of memory write ports in the same domain.
- if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) {
+ if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK))) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
memwr_per_domain[{clk_bit, memory}].insert(cell);
@@ -2134,7 +2392,7 @@ struct CxxrtlWorker {
}
for (auto cell : module->cells()) {
// Collect groups of memory write ports read by every transparent read port.
- if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() &&
+ if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK)) &&
cell->getParam(ID::TRANSPARENT).as_bool()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
@@ -2177,59 +2435,40 @@ struct CxxrtlWorker {
}
}
- for (auto wire : module->wires()) {
- if (!flow.is_elidable(wire)) continue;
- if (wire->port_id != 0) continue;
- if (wire->get_bool_attribute(ID::keep)) continue;
- if (wire->name.begins_with("$") && !elide_internal) continue;
- if (wire->name.begins_with("\\") && !elide_public) continue;
- if (edge_wires[wire]) continue;
- if (flow.wire_comb_defs[wire].size() > 1)
- log_cmd_error("Wire %s.%s has multiple drivers.\n", log_id(module), log_id(wire));
- log_assert(flow.wire_comb_defs[wire].size() == 1);
- elided_wires[wire] = **flow.wire_comb_defs[wire].begin();
- }
-
- dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
- for (auto wire_comb_def : flow.wire_comb_defs)
- for (auto node : wire_comb_def.second)
- node_defs[node].insert(wire_comb_def.first);
-
+ // Construct a linear order of the flow graph that minimizes the amount of feedback arcs. A flow graph
+ // without feedback arcs can generally be evaluated in a single pass, i.e. it always requires only
+ // a single delta cycle.
Scheduler<FlowGraph::Node> scheduler;
- dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
+ dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_vertex_map;
for (auto node : flow.nodes)
- node_map[node] = scheduler.add(node);
- for (auto node_def : node_defs) {
- auto vertex = node_map[node_def.first];
- for (auto wire : node_def.second)
+ node_vertex_map[node] = scheduler.add(node);
+ for (auto node_comb_def : flow.node_comb_defs) {
+ auto vertex = node_vertex_map[node_comb_def.first];
+ for (auto wire : node_comb_def.second)
for (auto succ_node : flow.wire_uses[wire]) {
- auto succ_vertex = node_map[succ_node];
+ auto succ_vertex = node_vertex_map[succ_node];
vertex->succs.insert(succ_vertex);
succ_vertex->preds.insert(vertex);
}
}
- auto eval_order = scheduler.schedule();
- pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
+ // Find out whether the order includes any feedback arcs.
+ std::vector<FlowGraph::Node*> node_order;
+ pool<FlowGraph::Node*, hash_ptr_ops> evaluated_nodes;
pool<const RTLIL::Wire*> feedback_wires;
- for (auto vertex : eval_order) {
+ for (auto vertex : scheduler.schedule()) {
auto node = vertex->data;
- schedule[module].push_back(*node);
+ node_order.push_back(node);
// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
// caused by a true logic loop, but usually are a benign result of dependency tracking that works
- // on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
- evaluated.insert(node);
- for (auto wire : node_defs[node])
+ // on wire, not bit, level. Nevertheless, feedback wires cannot be unbuffered.
+ evaluated_nodes.insert(node);
+ for (auto wire : flow.node_comb_defs[node])
for (auto succ_node : flow.wire_uses[wire])
- if (evaluated[succ_node]) {
+ if (evaluated_nodes[succ_node])
feedback_wires.insert(wire);
- // Feedback wires may never be elided because feedback requires state, but the point of elision
- // (and localization) is to eliminate state.
- elided_wires.erase(wire);
- }
}
-
if (!feedback_wires.empty()) {
has_feedback_arcs = true;
log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
@@ -2237,21 +2476,86 @@ struct CxxrtlWorker {
log(" %s\n", log_id(wire));
}
+ // Conservatively assign wire types. Assignment of types BUFFERED and MEMBER is final, but assignment
+ // of type LOCAL may be further refined to UNUSED or INLINE.
for (auto wire : module->wires()) {
+ auto &wire_type = wire_types[wire];
+ wire_type = {WireType::BUFFERED};
+
if (feedback_wires[wire]) continue;
if (wire->port_output && !module->get_bool_attribute(ID::top)) continue;
- if (wire->name.begins_with("$") && !unbuffer_internal) continue;
- if (wire->name.begins_with("\\") && !unbuffer_public) continue;
+ if (!wire->name.isPublic() && !unbuffer_internal) continue;
+ if (wire->name.isPublic() && !unbuffer_public) continue;
if (flow.wire_sync_defs.count(wire) > 0) continue;
- unbuffered_wires.insert(wire);
+ wire_type = {WireType::MEMBER};
+
if (edge_wires[wire]) continue;
if (wire->get_bool_attribute(ID::keep)) continue;
if (wire->port_input || wire->port_output) continue;
- if (wire->name.begins_with("$") && !localize_internal) continue;
- if (wire->name.begins_with("\\") && !localize_public) continue;
- localized_wires.insert(wire);
+ if (!wire->name.isPublic() && !localize_internal) continue;
+ if (wire->name.isPublic() && !localize_public) continue;
+ wire_type = {WireType::LOCAL};
+ }
+
+ // Discover nodes reachable from primary outputs (i.e. members) and collect reachable wire users.
+ pool<FlowGraph::Node*, hash_ptr_ops> worklist;
+ for (auto node : flow.nodes) {
+ if (node->type == FlowGraph::Node::Type::CELL_EVAL && is_effectful_cell(node->cell->type))
+ worklist.insert(node); // node has effects
+ else if (flow.node_sync_defs.count(node))
+ worklist.insert(node); // node is a flip-flop
+ else if (flow.node_comb_defs.count(node)) {
+ for (auto wire : flow.node_comb_defs[node])
+ if (wire_types[wire].is_member())
+ worklist.insert(node); // node drives public wires
+ }
+ }
+ dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> live_wires;
+ pool<FlowGraph::Node*, hash_ptr_ops> live_nodes;
+ while (!worklist.empty()) {
+ auto node = worklist.pop();
+ live_nodes.insert(node);
+ for (auto wire : flow.node_uses[node]) {
+ live_wires[wire].insert(node);
+ for (auto pred_node : flow.wire_comb_defs[wire])
+ if (!live_nodes[pred_node])
+ worklist.insert(pred_node);
+ }
+ }
+
+ // Refine wire types taking into account the amount of uses from reachable nodes only.
+ for (auto wire : module->wires()) {
+ auto &wire_type = wire_types[wire];
+ if (!wire_type.is_local()) continue;
+ if (!wire->name.isPublic() && !inline_internal) continue;
+ if (wire->name.isPublic() && !inline_public) continue;
+
+ if (live_wires[wire].empty()) {
+ wire_type = {WireType::UNUSED}; // wire never used
+ } else if (flow.is_inlinable(wire, live_wires[wire])) {
+ if (flow.wire_comb_defs[wire].size() > 1)
+ log_cmd_error("Wire %s.%s has multiple drivers!\n", log_id(module), log_id(wire));
+ log_assert(flow.wire_comb_defs[wire].size() == 1);
+ FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin();
+ switch (node->type) {
+ case FlowGraph::Node::Type::CELL_EVAL:
+ if (!is_inlinable_cell(node->cell->type)) continue;
+ wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell
+ break;
+ case FlowGraph::Node::Type::CONNECT:
+ wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig
+ break;
+ default: continue;
+ }
+ live_nodes.erase(node);
+ }
}
+ // Emit reachable nodes in eval().
+ for (auto node : node_order)
+ if (live_nodes[node])
+ schedule[module].push_back(*node);
+
// For maximum performance, the state of the simulation (which is the same as the set of its double buffered
// wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
// no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
@@ -2259,10 +2563,9 @@ struct CxxrtlWorker {
// as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
// also require more than one delta cycle to converge.
pool<const RTLIL::Wire*> buffered_comb_wires;
- for (auto wire : module->wires()) {
- if (flow.wire_comb_defs[wire].size() > 0 && !unbuffered_wires[wire] && !feedback_wires[wire])
+ for (auto wire : module->wires())
+ if (wire_types[wire].is_buffered() && !feedback_wires[wire] && flow.wire_comb_defs[wire].size() > 0)
buffered_comb_wires.insert(wire);
- }
if (!buffered_comb_wires.empty()) {
has_buffered_comb_wires = true;
log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
@@ -2270,47 +2573,116 @@ struct CxxrtlWorker {
log(" %s\n", log_id(wire));
}
+ // Record whether eval() requires only one delta cycle in this module.
eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();
- for (auto item : flow.bit_has_state)
- bit_has_state.insert(item);
-
if (debug_info) {
- // Find wires that alias other wires or are tied to a constant; debug information can be enriched with these
- // at essentially zero additional cost.
- //
- // Note that the information collected here can't be used for optimizing the netlist: debug information queries
- // are pure and run on a design in a stable state, which allows assumptions that do not otherwise hold.
+ // Annotate wire bits with the type of their driver; this is exposed in the debug metadata.
+ for (auto item : flow.bit_has_state)
+ bit_has_state.insert(item);
+
+ // Assign debug information wire types to public wires according to the chosen debug level.
+ // Unlike with optimized wire types, all assignments here are final.
for (auto wire : module->wires()) {
- if (wire->name[0] != '\\')
- continue;
- if (!unbuffered_wires[wire])
- continue;
- const RTLIL::Wire *wire_it = wire;
- while (1) {
- if (!(flow.wire_def_elidable.count(wire_it) && flow.wire_def_elidable[wire_it]))
- break; // not an alias: complex def
- log_assert(flow.wire_comb_defs[wire_it].size() == 1);
- FlowGraph::Node *node = *flow.wire_comb_defs[wire_it].begin();
- if (node->type != FlowGraph::Node::Type::CONNECT)
- break; // not an alias: def by cell
- RTLIL::SigSpec rhs_sig = node->connect.second;
- if (rhs_sig.is_wire()) {
- RTLIL::Wire *rhs_wire = rhs_sig.as_wire();
- if (unbuffered_wires[rhs_wire]) {
- wire_it = rhs_wire; // maybe an alias
- } else {
- debug_alias_wires[wire] = rhs_wire; // is an alias
+ const auto &wire_type = wire_types[wire];
+ auto &debug_wire_type = debug_wire_types[wire];
+ if (wire_type.type == WireType::UNUSED) continue;
+ if (!wire->name.isPublic()) continue;
+
+ if (!debug_info) continue;
+ if (wire->port_input || wire_type.is_buffered())
+ debug_wire_type = wire_type; // wire contains state
+
+ if (!debug_member) continue;
+ if (wire_type.is_member())
+ debug_wire_type = wire_type; // wire is a member
+
+ if (!debug_alias) continue;
+ const RTLIL::Wire *it = wire;
+ while (flow.is_inlinable(it)) {
+ log_assert(flow.wire_comb_defs[it].size() == 1);
+ FlowGraph::Node *node = *flow.wire_comb_defs[it].begin();
+ if (node->type != FlowGraph::Node::Type::CONNECT) break; // not an alias
+ RTLIL::SigSpec rhs = node->connect.second;
+ if (rhs.is_fully_const()) {
+ debug_wire_type = {WireType::CONST, rhs}; // wire replaced with const
+ } else if (rhs.is_wire()) {
+ if (wire_types[rhs.as_wire()].is_member())
+ debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with wire
+ else if (debug_eval && rhs.as_wire()->name.isPublic())
+ debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with outline
+ it = rhs.as_wire(); // and keep looking
+ continue;
+ }
+ break;
+ }
+
+ if (!debug_eval) continue;
+ if (!debug_wire_type.is_exact() && !wire_type.is_member())
+ debug_wire_type = {WireType::OUTLINE}; // wire is local or inlined
+ }
+
+ // Discover nodes reachable from primary outputs (i.e. outlines) up until primary inputs (i.e. members)
+ // and collect reachable wire users.
+ pool<FlowGraph::Node*, hash_ptr_ops> worklist;
+ for (auto node : flow.nodes) {
+ if (flow.node_comb_defs.count(node))
+ for (auto wire : flow.node_comb_defs[node])
+ if (debug_wire_types[wire].is_outline())
+ worklist.insert(node); // node drives outline
+ }
+ dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> debug_live_wires;
+ pool<FlowGraph::Node*, hash_ptr_ops> debug_live_nodes;
+ while (!worklist.empty()) {
+ auto node = worklist.pop();
+ debug_live_nodes.insert(node);
+ for (auto wire : flow.node_uses[node]) {
+ if (debug_wire_types[wire].is_member())
+ continue; // node uses member
+ if (debug_wire_types[wire].is_exact())
+ continue; // node uses alias or const
+ debug_live_wires[wire].insert(node);
+ for (auto pred_node : flow.wire_comb_defs[wire])
+ if (!debug_live_nodes[pred_node])
+ worklist.insert(pred_node);
+ }
+ }
+
+ // Assign debug information wire types to internal wires used by reachable nodes. This is similar
+ // to refining optimized wire types with the exception that the assignments here are first and final.
+ for (auto wire : module->wires()) {
+ const auto &wire_type = wire_types[wire];
+ auto &debug_wire_type = debug_wire_types[wire];
+ if (wire->name.isPublic()) continue;
+
+ if (live_wires[wire].empty() || debug_live_wires[wire].empty()) {
+ continue; // wire never used
+ } else if (flow.is_inlinable(wire, debug_live_wires[wire])) {
+ log_assert(flow.wire_comb_defs[wire].size() == 1);
+ FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin();
+ switch (node->type) {
+ case FlowGraph::Node::Type::CELL_EVAL:
+ if (!is_inlinable_cell(node->cell->type)) continue;
+ debug_wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell
break;
- }
- } else if (rhs_sig.is_fully_const()) {
- debug_const_wires[wire] = rhs_sig.as_const(); // is a const
- break;
- } else {
- break; // not an alias: complex rhs
+ case FlowGraph::Node::Type::CONNECT:
+ debug_wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig
+ break;
+ default: continue;
}
+ debug_live_nodes.erase(node);
+ } else if (wire_type.is_local()) {
+ debug_wire_type = {WireType::LOCAL}; // wire not inlinable
+ } else {
+ log_assert(wire_type.is_member());
+ debug_wire_type = wire_type; // wire is a member
}
}
+
+ // Emit reachable nodes in debug_eval().
+ for (auto node : node_order)
+ if (debug_live_nodes[node])
+ debug_schedule[module].push_back(*node);
}
}
if (has_feedback_arcs || has_buffered_comb_wires) {
@@ -2401,8 +2773,7 @@ struct CxxrtlWorker {
struct CxxrtlBackend : public Backend {
static const int DEFAULT_OPT_LEVEL = 6;
- static const int OPT_LEVEL_DEBUG = 4;
- static const int DEFAULT_DEBUG_LEVEL = 1;
+ static const int DEFAULT_DEBUG_LEVEL = 4;
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
void help() override
@@ -2598,13 +2969,13 @@ struct CxxrtlBackend : public Backend {
log(" no optimization.\n");
log("\n");
log(" -O1\n");
- log(" localize internal wires if possible.\n");
+ log(" unbuffer internal wires if possible.\n");
log("\n");
log(" -O2\n");
- log(" like -O1, and unbuffer internal wires if possible.\n");
+ log(" like -O1, and localize internal wires if possible.\n");
log("\n");
log(" -O3\n");
- log(" like -O2, and elide internal wires if possible.\n");
+ log(" like -O2, and inline internal wires if possible.\n");
log("\n");
log(" -O4\n");
log(" like -O3, and unbuffer public wires not marked (*keep*) if possible.\n");
@@ -2613,22 +2984,30 @@ struct CxxrtlBackend : public Backend {
log(" like -O4, and localize public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O6\n");
- log(" like -O5, and elide public wires not marked (*keep*) if possible.\n");
- log("\n");
- log(" -Og\n");
- log(" highest optimization level that provides debug information for all\n");
- log(" public wires. currently, alias for -O%d.\n", OPT_LEVEL_DEBUG);
+ log(" like -O5, and inline public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -g <level>\n");
log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
log(" more visibility and generate more code, but do not pessimize evaluation.\n");
log("\n");
log(" -g0\n");
- log(" no debug information.\n");
+ log(" no debug information. the C API is disabled.\n");
log("\n");
log(" -g1\n");
- log(" debug information for non-optimized public wires. this also makes it\n");
- log(" possible to use the C API.\n");
+ log(" include bare minimum of debug information necessary to access all design\n");
+ log(" state. the C API is enabled.\n");
+ log("\n");
+ log(" -g2\n");
+ log(" like -g1, but include debug information for all public wires that are\n");
+ log(" directly accessible through the C++ interface.\n");
+ log("\n");
+ log(" -g3\n");
+ log(" like -g2, and include debug information for public wires that are tied\n");
+ log(" to a constant or another public wire.\n");
+ log("\n");
+ log(" -g4\n");
+ log(" like -g3, and compute debug information on demand for all public wires\n");
+ log(" that were optimized out.\n");
log("\n");
}
@@ -2659,12 +3038,14 @@ struct CxxrtlBackend : public Backend {
continue;
}
if (args[argidx] == "-Og") {
- opt_level = OPT_LEVEL_DEBUG;
+ log_warning("The `-Og` option has been removed. Use `-g3` instead for complete "
+ "design coverage regardless of optimization level.\n");
continue;
}
if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") {
argidx++;
- opt_level = OPT_LEVEL_DEBUG;
+ log_warning("The `-Og` option has been removed. Use `-g3` instead for complete "
+ "design coverage regardless of optimization level.\n");
continue;
}
if (args[argidx] == "-O" && argidx+1 < args.size()) {
@@ -2701,7 +3082,7 @@ struct CxxrtlBackend : public Backend {
switch (opt_level) {
// the highest level here must match DEFAULT_OPT_LEVEL
case 6:
- worker.elide_public = true;
+ worker.inline_public = true;
YS_FALLTHROUGH
case 5:
worker.localize_public = true;
@@ -2710,7 +3091,7 @@ struct CxxrtlBackend : public Backend {
worker.unbuffer_public = true;
YS_FALLTHROUGH
case 3:
- worker.elide_internal = true;
+ worker.inline_internal = true;
YS_FALLTHROUGH
case 2:
worker.localize_internal = true;
@@ -2725,6 +3106,15 @@ struct CxxrtlBackend : public Backend {
}
switch (debug_level) {
// the highest level here must match DEFAULT_DEBUG_LEVEL
+ case 4:
+ worker.debug_eval = true;
+ YS_FALLTHROUGH
+ case 3:
+ worker.debug_alias = true;
+ YS_FALLTHROUGH
+ case 2:
+ worker.debug_member = true;
+ YS_FALLTHROUGH
case 1:
worker.debug_info = true;
YS_FALLTHROUGH