diff options
Diffstat (limited to 'backends/cxxrtl/cxxrtl_backend.cc')
-rw-r--r-- | backends/cxxrtl/cxxrtl_backend.cc | 2029 |
1 files changed, 1393 insertions, 636 deletions
diff --git a/backends/cxxrtl/cxxrtl_backend.cc b/backends/cxxrtl/cxxrtl_backend.cc index 5e5ba5ac0..404755b1e 100644 --- a/backends/cxxrtl/cxxrtl_backend.cc +++ b/backends/cxxrtl/cxxrtl_backend.cc @@ -22,6 +22,7 @@ #include "kernel/sigtools.h" #include "kernel/utils.h" #include "kernel/celltypes.h" +#include "kernel/mem.h" #include "kernel/log.h" USING_YOSYS_NAMESPACE @@ -194,27 +195,29 @@ bool is_extending_cell(RTLIL::IdString type) ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool)); } -bool is_elidable_cell(RTLIL::IdString type) +bool is_inlinable_cell(RTLIL::IdString type) { return is_unary_cell(type) || is_binary_cell(type) || type.in( - ID($mux), ID($concat), ID($slice), ID($pmux)); + ID($mux), ID($concat), ID($slice), ID($pmux), ID($bmux), ID($demux)); } -bool is_sync_ff_cell(RTLIL::IdString type) +bool is_ff_cell(RTLIL::IdString type) { return type.in( - ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce)); + ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce), + ID($adff), ID($adffe), ID($dffsr), ID($dffsre), + ID($aldff), ID($aldffe), + ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr)); } -bool is_ff_cell(RTLIL::IdString type) +bool is_internal_cell(RTLIL::IdString type) { - return is_sync_ff_cell(type) || type.in( - ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr)); + return !type.isPublic() && !type.begins_with("$paramod"); } -bool is_internal_cell(RTLIL::IdString type) +bool is_effectful_cell(RTLIL::IdString type) { - return type[0] == '$' && !type.begins_with("$paramod"); + return type.isPublic(); } bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell) @@ -224,24 +227,29 @@ bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell) return cell_module->get_bool_attribute(ID(cxxrtl_blackbox)); } +bool is_memwr_process(const RTLIL::Process *process) +{ + for (auto sync : process->syncs) + if (!sync->mem_write_actions.empty()) + return true; + return false; +} + enum class CxxrtlPortType { UNKNOWN = 0, // or mixed comb/sync COMB = 1, SYNC = 2, }; -CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port) +CxxrtlPortType cxxrtl_port_type(RTLIL::Module *module, RTLIL::IdString port) { - RTLIL::Module *cell_module = cell->module->design->module(cell->type); - if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) - return CxxrtlPortType::UNKNOWN; - RTLIL::Wire *cell_output_wire = cell_module->wire(port); - log_assert(cell_output_wire != nullptr); - bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb)); - bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync)); + RTLIL::Wire *output_wire = module->wire(port); + log_assert(output_wire != nullptr); + bool is_comb = output_wire->get_bool_attribute(ID(cxxrtl_comb)); + bool is_sync = output_wire->get_bool_attribute(ID(cxxrtl_sync)); if (is_comb && is_sync) log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n", - log_id(cell_module), log_signal(cell_output_wire)); + log_id(module), log_signal(output_wire)); else if (is_comb) return CxxrtlPortType::COMB; else if (is_sync) @@ -249,6 +257,14 @@ CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port) return CxxrtlPortType::UNKNOWN; } +CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port) +{ + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) + return CxxrtlPortType::UNKNOWN; + return cxxrtl_port_type(cell_module, port); +} + bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port) { return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB; @@ -265,18 +281,26 @@ struct FlowGraph { CONNECT, CELL_SYNC, CELL_EVAL, - PROCESS + PROCESS_SYNC, + PROCESS_CASE, + MEM_RDPORT, + MEM_WRPORTS, }; Type type; RTLIL::SigSig connect = {}; - const RTLIL::Cell *cell = NULL; - const RTLIL::Process *process = NULL; + const RTLIL::Cell *cell = nullptr; + const RTLIL::Process *process = nullptr; + const Mem *mem = nullptr; + int portidx; }; std::vector<Node*> nodes; dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses; - dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable; + dict<Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_comb_defs, node_sync_defs, node_uses; + dict<const RTLIL::Wire*, bool> wire_def_inlinable; + dict<const RTLIL::Wire*, dict<Node*, bool, hash_ptr_ops>> wire_use_inlinable; + dict<RTLIL::SigBit, bool> bit_has_state; ~FlowGraph() { @@ -284,18 +308,33 @@ struct FlowGraph { delete node; } - void add_defs(Node *node, const RTLIL::SigSpec &sig, bool fully_sync, bool elidable) + void add_defs(Node *node, const RTLIL::SigSpec &sig, bool is_ff, bool inlinable) { for (auto chunk : sig.chunks()) if (chunk.wire) { - if (fully_sync) + if (is_ff) { + // A sync def means that a wire holds design state because it is driven directly by + // a flip-flop output. Such a wire can never be unbuffered. wire_sync_defs[chunk.wire].insert(node); - else + node_sync_defs[node].insert(chunk.wire); + } else { + // A comb def means that a wire doesn't hold design state. It might still be connected, + // indirectly, to a flip-flop output. wire_comb_defs[chunk.wire].insert(node); + node_comb_defs[node].insert(chunk.wire); + } } - // Only comb defs of an entire wire in the right order can be elided. - if (!fully_sync && sig.is_wire()) - wire_def_elidable[sig.as_wire()] = elidable; + for (auto bit : sig.bits()) + bit_has_state[bit] |= is_ff; + // Only comb defs of an entire wire in the right order can be inlined. + if (!is_ff && sig.is_wire()) { + // Only a single def of a wire can be inlined. (Multiple defs of a wire are unsound, but we + // handle them anyway to avoid assertion failures later.) + if (!wire_def_inlinable.count(sig.as_wire())) + wire_def_inlinable[sig.as_wire()] = inlinable; + else + wire_def_inlinable[sig.as_wire()] = false; + } } void add_uses(Node *node, const RTLIL::SigSpec &sig) @@ -303,26 +342,41 @@ struct FlowGraph { for (auto chunk : sig.chunks()) if (chunk.wire) { wire_uses[chunk.wire].insert(node); - // Only a single use of an entire wire in the right order can be elided. - // (But the use can include other chunks.) - if (!wire_use_elidable.count(chunk.wire)) - wire_use_elidable[chunk.wire] = true; + node_uses[node].insert(chunk.wire); + // Only a single use of an entire wire in the right order can be inlined. (But the use can include + // other chunks.) This is tracked per-node because a wire used by multiple nodes can still be inlined + // if all but one of those nodes is dead. + if (!wire_use_inlinable[chunk.wire].count(node)) + wire_use_inlinable[chunk.wire][node] = true; else - wire_use_elidable[chunk.wire] = false; + wire_use_inlinable[chunk.wire][node] = false; } } - bool is_elidable(const RTLIL::Wire *wire) const + bool is_inlinable(const RTLIL::Wire *wire) const { - if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire)) - return wire_def_elidable.at(wire) && wire_use_elidable.at(wire); + // Can the wire be inlined at all? + if (wire_def_inlinable.count(wire)) + return wire_def_inlinable.at(wire); + return false; + } + + bool is_inlinable(const RTLIL::Wire *wire, const pool<Node*, hash_ptr_ops> &nodes) const + { + // Can the wire be inlined, knowing that the given nodes are reachable? + if (nodes.size() != 1) + return false; + Node *node = *nodes.begin(); + log_assert(node_uses.at(node).count(wire)); + if (is_inlinable(wire) && wire_use_inlinable.count(wire) && wire_use_inlinable.at(wire).count(node)) + return wire_use_inlinable.at(wire).at(node); return false; } // Connections void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn) { - add_defs(node, conn.first, /*fully_sync=*/false, /*elidable=*/true); + add_defs(node, conn.first, /*is_ff=*/false, /*inlinable=*/true); add_uses(node, conn.second); } @@ -368,8 +422,8 @@ struct FlowGraph { for (auto conn : cell->connections()) if (cell->output(conn.first)) if (is_cxxrtl_sync_port(cell, conn.first)) { - // See note regarding elidability below. - add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); + // See note regarding inlinability below. + add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false); } } @@ -377,19 +431,19 @@ struct FlowGraph { { for (auto conn : cell->connections()) { if (cell->output(conn.first)) { - if (is_elidable_cell(cell->type)) - add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/true); - else if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool())) - add_defs(node, conn.second, /*fully_sync=*/true, /*elidable=*/false); + if (is_inlinable_cell(cell->type)) + add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/true); + else if (is_ff_cell(cell->type)) + add_defs(node, conn.second, /*is_ff=*/true, /*inlinable=*/false); else if (is_internal_cell(cell->type)) - add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); + add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false); else if (!is_cxxrtl_sync_port(cell, conn.first)) { - // Although at first it looks like outputs of user-defined cells may always be elided, the reality is - // more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb + // Although at first it looks like outputs of user-defined cells may always be inlined, the reality is + // more complex. Fully sync outputs produce no defs and so don't participate in inlining. Fully comb // outputs are assigned in a different way depending on whether the cell's eval() immediately converged. - // Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify - // the infrastructure required to elide outputs of cells with many of them. - add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false); + // Unknown/mixed outputs could be inlined, but should be rare in practical designs and don't justify + // the infrastructure required to inline outputs of cells with many of them. + add_defs(node, conn.second, /*is_ff=*/false, /*inlinable=*/false); } } if (cell->input(conn.first)) @@ -424,10 +478,10 @@ struct FlowGraph { } // Processes - void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_) + void add_case_rule_defs_uses(Node *node, const RTLIL::CaseRule *case_) { for (auto &action : case_->actions) { - add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false); + add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false); add_uses(node, action.second); } for (auto sub_switch : case_->switches) { @@ -435,33 +489,89 @@ struct FlowGraph { for (auto sub_case : sub_switch->cases) { for (auto &compare : sub_case->compare) add_uses(node, compare); - add_case_defs_uses(node, sub_case); + add_case_rule_defs_uses(node, sub_case); } } } - void add_process_defs_uses(Node *node, const RTLIL::Process *process) + void add_sync_rules_defs_uses(Node *node, const RTLIL::Process *process) { - add_case_defs_uses(node, &process->root_case); - for (auto sync : process->syncs) - for (auto action : sync->actions) { + for (auto sync : process->syncs) { + for (auto &action : sync->actions) { if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe) - add_defs(node, action.first, /*is_sync=*/true, /*elidable=*/false); + add_defs(node, action.first, /*is_ff=*/true, /*inlinable=*/false); else - add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false); + add_defs(node, action.first, /*is_ff=*/false, /*inlinable=*/false); add_uses(node, action.second); } + for (auto &memwr : sync->mem_write_actions) { + add_uses(node, memwr.address); + add_uses(node, memwr.data); + add_uses(node, memwr.enable); + } + } } Node *add_node(const RTLIL::Process *process) { Node *node = new Node; - node->type = Node::Type::PROCESS; + node->type = Node::Type::PROCESS_SYNC; node->process = process; nodes.push_back(node); - add_process_defs_uses(node, process); + add_sync_rules_defs_uses(node, process); + + node = new Node; + node->type = Node::Type::PROCESS_CASE; + node->process = process; + nodes.push_back(node); + add_case_rule_defs_uses(node, &process->root_case); return node; } + + // Memories + void add_node(const Mem *mem) { + for (int i = 0; i < GetSize(mem->rd_ports); i++) { + auto &port = mem->rd_ports[i]; + Node *node = new Node; + node->type = Node::Type::MEM_RDPORT; + node->mem = mem; + node->portidx = i; + nodes.push_back(node); + add_defs(node, port.data, /*is_ff=*/port.clk_enable, /*inlinable=*/false); + add_uses(node, port.clk); + add_uses(node, port.en); + add_uses(node, port.arst); + add_uses(node, port.srst); + add_uses(node, port.addr); + bool transparent = false; + for (int j = 0; j < GetSize(mem->wr_ports); j++) { + auto &wrport = mem->wr_ports[j]; + if (port.transparency_mask[j]) { + // Our implementation of transparent read ports reads en, addr and data from every write port + // the read port is transparent with. + add_uses(node, wrport.en); + add_uses(node, wrport.addr); + add_uses(node, wrport.data); + transparent = true; + } + } + // Also we read the read address twice in this case (prevent inlining). + if (transparent) + add_uses(node, port.addr); + } + if (!mem->wr_ports.empty()) { + Node *node = new Node; + node->type = Node::Type::MEM_WRPORTS; + node->mem = mem; + nodes.push_back(node); + for (auto &port : mem->wr_ports) { + add_uses(node, port.clk); + add_uses(node, port.en); + add_uses(node, port.addr); + add_uses(node, port.data); + } + } + } }; std::vector<std::string> split_by(const std::string &str, const std::string &sep) @@ -515,6 +625,58 @@ std::string get_hdl_name(T *object) return object->name.str().substr(1); } +struct WireType { + enum Type { + // Non-referenced wire; is not a part of the design. + UNUSED, + // Double-buffered wire; is a class member, and holds design state. + BUFFERED, + // Single-buffered wire; is a class member, but holds no state. + MEMBER, + // Single-buffered wire; is a class member, and is computed on demand. + OUTLINE, + // Local wire; is a local variable in eval method. + LOCAL, + // Inline wire; is an unnamed temporary in eval method. + INLINE, + // Alias wire; is replaced with aliasee, except in debug info. + ALIAS, + // Const wire; is replaced with constant, except in debug info. + CONST, + }; + + Type type = UNUSED; + const RTLIL::Cell *cell_subst = nullptr; // for INLINE + RTLIL::SigSpec sig_subst = {}; // for INLINE, ALIAS, and CONST + + WireType() = default; + + WireType(Type type) : type(type) { + log_assert(type == UNUSED || type == BUFFERED || type == MEMBER || type == OUTLINE || type == LOCAL); + } + + WireType(Type type, const RTLIL::Cell *cell) : type(type), cell_subst(cell) { + log_assert(type == INLINE && is_inlinable_cell(cell->type)); + } + + WireType(Type type, RTLIL::SigSpec sig) : type(type), sig_subst(sig) { + log_assert(type == INLINE || (type == ALIAS && sig.is_wire()) || (type == CONST && sig.is_fully_const())); + } + + bool is_buffered() const { return type == BUFFERED; } + bool is_member() const { return type == BUFFERED || type == MEMBER || type == OUTLINE; } + bool is_outline() const { return type == OUTLINE; } + bool is_named() const { return is_member() || type == LOCAL; } + bool is_local() const { return type == LOCAL || type == INLINE; } + bool is_exact() const { return type == ALIAS || type == CONST; } +}; + +// Tests for a SigSpec that is a valid clock input, clocks have to have a backing wire and be a single bit +// using this instead of sig.is_wire() solves issues when the clock is a slice instead of a full wire +bool is_valid_clock(const RTLIL::SigSpec& sig) { + return sig.is_chunk() && sig.is_bit() && sig[0].wire; +} + struct CxxrtlWorker { bool split_intf = false; std::string intf_filename; @@ -522,6 +684,9 @@ struct CxxrtlWorker { std::ostream *impl_f = nullptr; std::ostream *intf_f = nullptr; + bool print_wire_types = false; + bool print_debug_wire_types = false; + bool run_hierarchy = false; bool run_flatten = false; bool run_proc = false; @@ -529,26 +694,27 @@ struct CxxrtlWorker { bool unbuffer_public = false; bool localize_internal = false; bool localize_public = false; - bool elide_internal = false; - bool elide_public = false; + bool inline_internal = false; + bool inline_public = false; bool debug_info = false; + bool debug_member = false; + bool debug_alias = false; + bool debug_eval = false; std::ostringstream f; std::string indent; int temporary = 0; dict<const RTLIL::Module*, SigMap> sigmaps; + dict<const RTLIL::Module*, std::vector<Mem>> mod_memories; + pool<std::pair<const RTLIL::Module*, RTLIL::IdString>> writable_memories; pool<const RTLIL::Wire*> edge_wires; + dict<const RTLIL::Wire*, RTLIL::Const> wire_init; dict<RTLIL::SigBit, RTLIL::SyncType> edge_types; - pool<const RTLIL::Memory*> writable_memories; - dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for; - dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires; - dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule; - pool<const RTLIL::Wire*> unbuffered_wires; - pool<const RTLIL::Wire*> localized_wires; - dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires; - dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires; + dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule, debug_schedule; + dict<const RTLIL::Wire*, WireType> wire_types, debug_wire_types; + dict<RTLIL::SigBit, bool> bit_has_state; dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations; dict<const RTLIL::Module*, bool> eval_converges; @@ -629,6 +795,11 @@ struct CxxrtlWorker { return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox))); } + std::string mangle(const Mem *mem) + { + return mangle_memory_name(mem->memid); + } + std::string mangle(const RTLIL::Memory *memory) { return mangle_memory_name(memory->name); @@ -763,11 +934,6 @@ struct CxxrtlWorker { f << "}"; } - void dump_const_init(const RTLIL::Const &data) - { - dump_const_init(data, data.size()); - } - void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) { f << "value<" << width << ">"; @@ -779,30 +945,37 @@ struct CxxrtlWorker { dump_const(data, data.size()); } - bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs) + bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs, bool for_debug = false) { if (chunk.wire == NULL) { dump_const(chunk.data, chunk.width, chunk.offset); return false; } else { - if (elided_wires.count(chunk.wire)) { - log_assert(!is_lhs); - const FlowGraph::Node &node = elided_wires[chunk.wire]; - switch (node.type) { - case FlowGraph::Node::Type::CONNECT: - dump_connect_elided(node.connect); - break; - case FlowGraph::Node::Type::CELL_EVAL: - log_assert(is_elidable_cell(node.cell->type)); - dump_cell_elided(node.cell); + const auto &wire_type = (for_debug ? debug_wire_types : wire_types)[chunk.wire]; + switch (wire_type.type) { + case WireType::BUFFERED: + f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); + break; + case WireType::MEMBER: + case WireType::LOCAL: + case WireType::OUTLINE: + f << mangle(chunk.wire); + break; + case WireType::INLINE: + log_assert(!is_lhs); + if (wire_type.cell_subst != nullptr) { + dump_cell_expr(wire_type.cell_subst, for_debug); break; - default: - log_assert(false); - } - } else if (unbuffered_wires[chunk.wire]) { - f << mangle(chunk.wire); - } else { - f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); + } + YS_FALLTHROUGH + case WireType::ALIAS: + case WireType::CONST: + log_assert(!is_lhs); + return dump_sigspec(wire_type.sig_subst.extract(chunk.offset, chunk.width), is_lhs, for_debug); + case WireType::UNUSED: + log_assert(is_lhs); + f << "value<" << chunk.width << ">()"; + return false; } if (chunk.width == chunk.wire->width && chunk.offset == 0) return false; @@ -814,92 +987,116 @@ struct CxxrtlWorker { } } - bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs) + bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs, bool for_debug = false) { if (sig.empty()) { f << "value<0>()"; return false; } else if (sig.is_chunk()) { - return dump_sigchunk(sig.as_chunk(), is_lhs); + return dump_sigchunk(sig.as_chunk(), is_lhs, for_debug); } else { - dump_sigchunk(*sig.chunks().rbegin(), is_lhs); - for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) { - f << ".concat("; - dump_sigchunk(*it, is_lhs); - f << ")"; + bool first = true; + auto chunks = sig.chunks(); + for (auto it = chunks.rbegin(); it != chunks.rend(); it++) { + if (!first) + f << ".concat("; + bool is_complex = dump_sigchunk(*it, is_lhs, for_debug); + if (!is_lhs && it->width == 1) { + size_t repeat = 1; + while ((it + repeat) != chunks.rend() && *(it + repeat) == *it) + repeat++; + if (repeat > 1) { + if (is_complex) + f << ".val()"; + f << ".repeat<" << repeat << ">()"; + } + it += repeat - 1; + } + if (!first) + f << ")"; + first = false; } return true; } } - void dump_sigspec_lhs(const RTLIL::SigSpec &sig) + void dump_sigspec_lhs(const RTLIL::SigSpec &sig, bool for_debug = false) { - dump_sigspec(sig, /*is_lhs=*/true); + dump_sigspec(sig, /*is_lhs=*/true, for_debug); } - void dump_sigspec_rhs(const RTLIL::SigSpec &sig) + void dump_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug = false) { // In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`, // it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit // type conversion, but only if the expression needs it. - bool is_complex = dump_sigspec(sig, /*is_lhs=*/false); + bool is_complex = dump_sigspec(sig, /*is_lhs=*/false, for_debug); if (is_complex) f << ".val()"; } - void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells) + void dump_inlined_cells(const std::vector<const RTLIL::Cell*> &cells) + { + if (cells.empty()) { + f << indent << "// connection\n"; + } else if (cells.size() == 1) { + dump_attrs(cells.front()); + f << indent << "// cell " << cells.front()->name.str() << "\n"; + } else { + f << indent << "// cells"; + for (auto cell : cells) + f << " " << cell->name.str(); + f << "\n"; + } + } + + void collect_sigspec_rhs(const RTLIL::SigSpec &sig, bool for_debug, std::vector<const RTLIL::Cell*> &cells) { for (auto chunk : sig.chunks()) { - if (!chunk.wire || !elided_wires.count(chunk.wire)) + if (!chunk.wire) continue; - - const FlowGraph::Node &node = elided_wires[chunk.wire]; - switch (node.type) { - case FlowGraph::Node::Type::CONNECT: - collect_connect(node.connect, cells); - break; - case FlowGraph::Node::Type::CELL_EVAL: - collect_cell_eval(node.cell, cells); + const auto &wire_type = wire_types[chunk.wire]; + switch (wire_type.type) { + case WireType::INLINE: + if (wire_type.cell_subst != nullptr) { + collect_cell_eval(wire_type.cell_subst, for_debug, cells); + break; + } + YS_FALLTHROUGH + case WireType::ALIAS: + collect_sigspec_rhs(wire_type.sig_subst, for_debug, cells); break; default: - log_assert(false); + break; } } } - void dump_connect_elided(const RTLIL::SigSig &conn) - { - dump_sigspec_rhs(conn.second); - } - - bool is_connect_elided(const RTLIL::SigSig &conn) + void dump_connect_expr(const RTLIL::SigSig &conn, bool for_debug = false) { - return conn.first.is_wire() && elided_wires.count(conn.first.as_wire()); + dump_sigspec_rhs(conn.second, for_debug); } - void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells) + void dump_connect(const RTLIL::SigSig &conn, bool for_debug = false) { - if (!is_connect_elided(conn)) - return; - - collect_sigspec_rhs(conn.second, cells); - } + std::vector<const RTLIL::Cell*> inlined_cells; + collect_sigspec_rhs(conn.second, for_debug, inlined_cells); + dump_inlined_cells(inlined_cells); - void dump_connect(const RTLIL::SigSig &conn) - { - if (is_connect_elided(conn)) - return; - - f << indent << "// connection\n"; f << indent; - dump_sigspec_lhs(conn.first); + dump_sigspec_lhs(conn.first, for_debug); f << " = "; - dump_connect_elided(conn); + dump_connect_expr(conn, for_debug); f << ";\n"; } - void dump_cell_sync(const RTLIL::Cell *cell) + void collect_connect(const RTLIL::SigSig &conn, bool for_debug, std::vector<const RTLIL::Cell*> &cells) + { + collect_sigspec_rhs(conn.second, for_debug, cells); + } + + void dump_cell_sync(const RTLIL::Cell *cell, bool for_debug = false) { const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; f << indent << "// cell " << cell->name.str() << " syncs\n"; @@ -907,12 +1104,12 @@ struct CxxrtlWorker { if (cell->output(conn.first)) if (is_cxxrtl_sync_port(cell, conn.first)) { f << indent; - dump_sigspec_lhs(conn.second); + dump_sigspec_lhs(conn.second, for_debug); f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n"; } } - void dump_cell_elided(const RTLIL::Cell *cell) + void dump_cell_expr(const RTLIL::Cell *cell, bool for_debug = false) { // Unary cells if (is_unary_cell(cell->type)) { @@ -920,7 +1117,7 @@ struct CxxrtlWorker { if (is_extending_cell(cell->type)) f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u'); f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">("; - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); f << ")"; // Binary cells } else if (is_binary_cell(cell->type)) { @@ -929,18 +1126,18 @@ struct CxxrtlWorker { f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') << (cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u'); f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">("; - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); f << ", "; - dump_sigspec_rhs(cell->getPort(ID::B)); + dump_sigspec_rhs(cell->getPort(ID::B), for_debug); f << ")"; // Muxes } else if (cell->type == ID($mux)) { f << "("; - dump_sigspec_rhs(cell->getPort(ID::S)); + dump_sigspec_rhs(cell->getPort(ID::S), for_debug); f << " ? "; - dump_sigspec_rhs(cell->getPort(ID::B)); + dump_sigspec_rhs(cell->getPort(ID::B), for_debug); f << " : "; - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); f << ")"; // Parallel (one-hot) muxes } else if (cell->type == ID($pmux)) { @@ -948,24 +1145,40 @@ struct CxxrtlWorker { int s_width = cell->getParam(ID::S_WIDTH).as_int(); for (int part = 0; part < s_width; part++) { f << "("; - dump_sigspec_rhs(cell->getPort(ID::S).extract(part)); + dump_sigspec_rhs(cell->getPort(ID::S).extract(part), for_debug); f << " ? "; - dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width)); + dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width), for_debug); f << " : "; } - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); for (int part = 0; part < s_width; part++) { f << ")"; } + // Big muxes + } else if (cell->type == ID($bmux)) { + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); + f << ".bmux<"; + f << cell->getParam(ID::WIDTH).as_int(); + f << ">("; + dump_sigspec_rhs(cell->getPort(ID::S), for_debug); + f << ").val()"; + // Demuxes + } else if (cell->type == ID($demux)) { + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); + f << ".demux<"; + f << GetSize(cell->getPort(ID::Y)); + f << ">("; + dump_sigspec_rhs(cell->getPort(ID::S), for_debug); + f << ").val()"; // Concats } else if (cell->type == ID($concat)) { - dump_sigspec_rhs(cell->getPort(ID::B)); + dump_sigspec_rhs(cell->getPort(ID::B), for_debug); f << ".concat("; - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); f << ").val()"; // Slices } else if (cell->type == ID($slice)) { - dump_sigspec_rhs(cell->getPort(ID::A)); + dump_sigspec_rhs(cell->getPort(ID::A), for_debug); f << ".slice<"; f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1; f << ","; @@ -976,61 +1189,33 @@ struct CxxrtlWorker { } } - bool is_cell_elided(const RTLIL::Cell *cell) - { - return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() && - elided_wires.count(cell->getPort(ID::Y).as_wire()); - } - - void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells) + void dump_cell_eval(const RTLIL::Cell *cell, bool for_debug = false) { - if (!is_cell_elided(cell)) - return; - - cells.push_back(cell->name); - for (auto port : cell->connections()) - if (port.first != ID::Y) - collect_sigspec_rhs(port.second, cells); - } - - void dump_cell_eval(const RTLIL::Cell *cell) - { - if (is_cell_elided(cell)) - return; - if (cell->type == ID($meminit)) - return; // Handled elsewhere. - - std::vector<RTLIL::IdString> elided_cells; - if (is_elidable_cell(cell->type)) { - for (auto port : cell->connections()) - if (port.first != ID::Y) - collect_sigspec_rhs(port.second, elided_cells); - } - if (elided_cells.empty()) { - dump_attrs(cell); - f << indent << "// cell " << cell->name.str() << "\n"; - } else { - f << indent << "// cells"; - for (auto elided_cell : elided_cells) - f << " " << elided_cell.str(); - f << "\n"; - } + std::vector<const RTLIL::Cell*> inlined_cells; + collect_cell_eval(cell, for_debug, inlined_cells); + dump_inlined_cells(inlined_cells); // Elidable cells - if (is_elidable_cell(cell->type)) { + if (is_inlinable_cell(cell->type)) { f << indent; - dump_sigspec_lhs(cell->getPort(ID::Y)); + dump_sigspec_lhs(cell->getPort(ID::Y), for_debug); f << " = "; - dump_cell_elided(cell); + dump_cell_expr(cell, for_debug); f << ";\n"; // Flip-flops } else if (is_ff_cell(cell->type)) { - if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) { + log_assert(!for_debug); + // Clocks might be slices of larger signals but should only ever be single bit + if (cell->hasPort(ID::CLK) && is_valid_clock(cell->getPort(ID::CLK))) { // Edge-sensitive logic RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0]; clk_bit = sigmaps[clk_bit.wire->module](clk_bit); - f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_") - << mangle(clk_bit) << ") {\n"; + if (clk_bit.wire) { + f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + } else { + f << indent << "if (false) {\n"; + } inc_indent(); if (cell->hasPort(ID::EN)) { f << indent << "if ("; @@ -1094,6 +1279,20 @@ struct CxxrtlWorker { dec_indent(); f << indent << "}\n"; } + if (cell->hasPort(ID::ALOAD)) { + // Asynchronous load + f << indent << "if ("; + dump_sigspec_rhs(cell->getPort(ID::ALOAD)); + f << " == value<1> {" << cell->getParam(ID::ALOAD_POLARITY).as_bool() << "u}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(cell->getPort(ID::Q)); + f << " = "; + dump_sigspec_rhs(cell->getPort(ID::AD)); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } if (cell->hasPort(ID::SET)) { // Asynchronous set (for individual bits) f << indent; @@ -1118,120 +1317,29 @@ struct CxxrtlWorker { dump_sigspec_rhs(cell->getPort(ID::CLR)); f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n"; } - // Memory ports - } else if (cell->type.in(ID($memrd), ID($memwr))) { - if (cell->getParam(ID::CLK_ENABLE).as_bool()) { - RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0]; - clk_bit = sigmaps[clk_bit.wire->module](clk_bit); - f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_") - << mangle(clk_bit) << ") {\n"; - inc_indent(); - } - RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()]; - std::string valid_index_temp = fresh_temporary(); - f << indent << "auto " << valid_index_temp << " = memory_index("; - dump_sigspec_rhs(cell->getPort(ID::ADDR)); - f << ", " << memory->start_offset << ", " << memory->size << ");\n"; - if (cell->type == ID($memrd)) { - bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones(); - if (has_enable) { - f << indent << "if ("; - dump_sigspec_rhs(cell->getPort(ID::EN)); - f << ") {\n"; - inc_indent(); - } - // The generated code has two bounds checks; one in an assertion, and another that guards the read. - // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless - // loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not - // just for release builds, but also to make sure the simulator (which is presumably embedded in some - // larger program) will never crash the code that calls into it. - // - // If assertions are disabled, out of bounds reads are defined to return zero. - f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n"; - f << indent << "if(" << valid_index_temp << ".valid) {\n"; - inc_indent(); - if (writable_memories[memory]) { - std::string lhs_temp = fresh_temporary(); - f << indent << "value<" << memory->width << "> " << lhs_temp << " = " - << mangle(memory) << "[" << valid_index_temp << ".index];\n"; - std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end()); - if (!memwr_cells.empty()) { - std::string addr_temp = fresh_temporary(); - f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = "; - dump_sigspec_rhs(cell->getPort(ID::ADDR)); - f << ";\n"; - std::sort(memwr_cells.begin(), memwr_cells.end(), - [](const RTLIL::Cell *a, const RTLIL::Cell *b) { - return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int(); - }); - for (auto memwr_cell : memwr_cells) { - f << indent << "if (" << addr_temp << " == "; - dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR)); - f << ") {\n"; - inc_indent(); - f << indent << lhs_temp << " = " << lhs_temp; - f << ".update("; - dump_sigspec_rhs(memwr_cell->getPort(ID::DATA)); - f << ", "; - dump_sigspec_rhs(memwr_cell->getPort(ID::EN)); - f << ");\n"; - dec_indent(); - f << indent << "}\n"; - } - } - f << indent; - dump_sigspec_lhs(cell->getPort(ID::DATA)); - f << " = " << lhs_temp << ";\n"; - } else { - f << indent; - dump_sigspec_lhs(cell->getPort(ID::DATA)); - f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n"; - } - dec_indent(); - f << indent << "} else {\n"; - inc_indent(); - f << indent; - dump_sigspec_lhs(cell->getPort(ID::DATA)); - f << " = value<" << memory->width << "> {};\n"; - dec_indent(); - f << indent << "}\n"; - if (has_enable) { - dec_indent(); - f << indent << "}\n"; - } - } else /*if (cell->type == ID($memwr))*/ { - log_assert(writable_memories[memory]); - // See above for rationale of having both the assert and the condition. - // - // If assertions are disabled, out of bounds writes are defined to do nothing. - f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n"; - f << indent << "if (" << valid_index_temp << ".valid) {\n"; - inc_indent(); - f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, "; - dump_sigspec_rhs(cell->getPort(ID::DATA)); - f << ", "; - dump_sigspec_rhs(cell->getPort(ID::EN)); - f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n"; - dec_indent(); - f << indent << "}\n"; - } - if (cell->getParam(ID::CLK_ENABLE).as_bool()) { - dec_indent(); - f << indent << "}\n"; - } // Internal cells } else if (is_internal_cell(cell->type)) { log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str()); // User cells } else { + log_assert(!for_debug); log_assert(cell->known()); + bool buffered_inputs = false; const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; for (auto conn : cell->connections()) - if (cell->input(conn.first) && !cell->output(conn.first)) { - f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = "; + if (cell->input(conn.first)) { + RTLIL::Module *cell_module = cell->module->design->module(cell->type); + log_assert(cell_module != nullptr && cell_module->wire(conn.first)); + RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first); + f << indent << mangle(cell) << access << mangle_wire_name(conn.first); + if (!is_cxxrtl_blackbox_cell(cell) && wire_types[cell_module_wire].is_buffered()) { + buffered_inputs = true; + f << ".next"; + } + f << " = "; dump_sigspec_rhs(conn.second); f << ";\n"; - if (getenv("CXXRTL_VOID_MY_WARRANTY")) { + if (getenv("CXXRTL_VOID_MY_WARRANTY") && conn.second.is_wire()) { // Until we have proper clock tree detection, this really awful hack that opportunistically // propagates prev_* values for clocks can be used to estimate how much faster a design could // be if only one clock edge was simulated by replacing: @@ -1240,19 +1348,11 @@ struct CxxrtlWorker { // with: // top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step(); // Don't rely on this; it will be removed without warning. - RTLIL::Module *cell_module = cell->module->design->module(cell->type); - if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) { - RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first); - if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) { - f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = "; - f << "prev_" << mangle(conn.second.as_wire()) << ";\n"; - } + if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) { + f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = "; + f << "prev_" << mangle(conn.second.as_wire()) << ";\n"; } } - } else if (cell->input(conn.first)) { - f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = "; - dump_sigspec_rhs(conn.second); - f << ";\n"; } auto assign_from_outputs = [&](bool cell_converged) { for (auto conn : cell->connections()) { @@ -1270,9 +1370,9 @@ struct CxxrtlWorker { // have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function, // and consider the fate of the localized wires that used to be output ports.) // - // Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell - // (which may be late bound) will converge immediately. Because of this, the choice between using .curr - // (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime. + // It is not possible to know apriori whether the cell (which may be late bound) will converge immediately. + // Because of this, the choice between using .curr (appropriate for buffered outputs) and .next (appropriate + // for unbuffered outputs) is made at runtime. if (cell_converged && is_cxxrtl_comb_port(cell, conn.first)) f << ".next;\n"; else @@ -1280,43 +1380,58 @@ struct CxxrtlWorker { } } }; - f << indent << "if (" << mangle(cell) << access << "eval()) {\n"; - inc_indent(); - assign_from_outputs(/*cell_converged=*/true); - dec_indent(); - f << indent << "} else {\n"; - inc_indent(); + if (buffered_inputs) { + // If we have any buffered inputs, there's no chance of converging immediately. + f << indent << mangle(cell) << access << "eval();\n"; f << indent << "converged = false;\n"; assign_from_outputs(/*cell_converged=*/false); - dec_indent(); - f << indent << "}\n"; + } else { + f << indent << "if (" << mangle(cell) << access << "eval()) {\n"; + inc_indent(); + assign_from_outputs(/*cell_converged=*/true); + dec_indent(); + f << indent << "} else {\n"; + inc_indent(); + f << indent << "converged = false;\n"; + assign_from_outputs(/*cell_converged=*/false); + dec_indent(); + f << indent << "}\n"; + } } } - void dump_assign(const RTLIL::SigSig &sigsig) + void collect_cell_eval(const RTLIL::Cell *cell, bool for_debug, std::vector<const RTLIL::Cell*> &cells) + { + cells.push_back(cell); + for (auto port : cell->connections()) + if (cell->input(port.first)) + collect_sigspec_rhs(port.second, for_debug, cells); + } + + void dump_assign(const RTLIL::SigSig &sigsig, bool for_debug = false) { f << indent; - dump_sigspec_lhs(sigsig.first); + dump_sigspec_lhs(sigsig.first, for_debug); f << " = "; - dump_sigspec_rhs(sigsig.second); + dump_sigspec_rhs(sigsig.second, for_debug); f << ";\n"; } - void dump_case_rule(const RTLIL::CaseRule *rule) + void dump_case_rule(const RTLIL::CaseRule *rule, bool for_debug = false) { for (auto action : rule->actions) - dump_assign(action); + dump_assign(action, for_debug); for (auto switch_ : rule->switches) - dump_switch_rule(switch_); + dump_switch_rule(switch_, for_debug); } - void dump_switch_rule(const RTLIL::SwitchRule *rule) + void dump_switch_rule(const RTLIL::SwitchRule *rule, bool for_debug = false) { // The switch attributes are printed before the switch condition is captured. dump_attrs(rule); std::string signal_temp = fresh_temporary(); f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = "; - dump_sigspec(rule->signal, /*is_lhs=*/false); + dump_sigspec(rule->signal, /*is_lhs=*/false, for_debug); f << ";\n"; bool first = true; @@ -1336,7 +1451,7 @@ struct CxxrtlWorker { first = false; if (compare.is_fully_def()) { f << signal_temp << " == "; - dump_sigspec(compare, /*is_lhs=*/false); + dump_sigspec(compare, /*is_lhs=*/false, for_debug); } else if (compare.is_fully_const()) { RTLIL::Const compare_mask, compare_value; for (auto bit : compare.as_const()) { @@ -1370,24 +1485,34 @@ struct CxxrtlWorker { } f << "{\n"; inc_indent(); - dump_case_rule(case_); + dump_case_rule(case_, for_debug); dec_indent(); } f << indent << "}\n"; } - void dump_process(const RTLIL::Process *proc) + void dump_process_case(const RTLIL::Process *proc, bool for_debug = false) { dump_attrs(proc); - f << indent << "// process " << proc->name.str() << "\n"; + f << indent << "// process " << proc->name.str() << " case\n"; // The case attributes (for root case) are always empty. log_assert(proc->root_case.attributes.empty()); - dump_case_rule(&proc->root_case); + dump_case_rule(&proc->root_case, for_debug); + } + + void dump_process_syncs(const RTLIL::Process *proc, bool for_debug = false) + { + dump_attrs(proc); + f << indent << "// process " << proc->name.str() << " syncs\n"; for (auto sync : proc->syncs) { + log_assert(!for_debug || sync->type == RTLIL::STa); + RTLIL::SigBit sync_bit; if (!sync->signal.empty()) { sync_bit = sync->signal[0]; sync_bit = sigmaps[sync_bit.wire->module](sync_bit); + if (!sync_bit.is_wire()) + continue; // a clock, or more commonly a reset, can be tied to a constant driver } pool<std::string> events; @@ -1427,129 +1552,364 @@ struct CxxrtlWorker { } f << ") {\n"; inc_indent(); - for (auto action : sync->actions) - dump_assign(action); + for (auto &action : sync->actions) + dump_assign(action, for_debug); + for (auto &memwr : sync->mem_write_actions) { + RTLIL::Memory *memory = proc->module->memories.at(memwr.memid); + std::string valid_index_temp = fresh_temporary(); + f << indent << "auto " << valid_index_temp << " = memory_index("; + dump_sigspec_rhs(memwr.address); + f << ", " << memory->start_offset << ", " << memory->size << ");\n"; + // See below for rationale of having both the assert and the condition. + // + // If assertions are disabled, out of bounds writes are defined to do nothing. + f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n"; + f << indent << "if (" << valid_index_temp << ".valid) {\n"; + inc_indent(); + f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, "; + dump_sigspec_rhs(memwr.data); + f << ", "; + dump_sigspec_rhs(memwr.enable); + f << ");\n"; + dec_indent(); + f << indent << "}\n"; + } dec_indent(); f << indent << "}\n"; } } } - void dump_wire(const RTLIL::Wire *wire, bool is_local_context) + void dump_mem_rdport(const Mem *mem, int portidx, bool for_debug = false) { - if (elided_wires.count(wire)) - return; - - if (localized_wires[wire] && is_local_context) { - dump_attrs(wire); - f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n"; + auto &port = mem->rd_ports[portidx]; + dump_attrs(&port); + f << indent << "// memory " << mem->memid.str() << " read port " << portidx << "\n"; + if (port.clk_enable) { + log_assert(!for_debug); + RTLIL::SigBit clk_bit = port.clk[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + if (clk_bit.wire) { + f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + } else { + f << indent << "if (false) {\n"; + } + inc_indent(); } - if (!localized_wires[wire] && !is_local_context) { - std::string width; - if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) { - width = wire->get_string_attribute(ID(cxxrtl_width)); + std::vector<const RTLIL::Cell*> inlined_cells_addr; + collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr); + if (!inlined_cells_addr.empty()) + dump_inlined_cells(inlined_cells_addr); + std::string valid_index_temp = fresh_temporary(); + f << indent << "auto " << valid_index_temp << " = memory_index("; + // Almost all non-elidable cells cannot appear in debug_eval(), but $memrd is an exception; asynchronous + // memory read ports can. + dump_sigspec_rhs(port.addr, for_debug); + f << ", " << mem->start_offset << ", " << mem->size << ");\n"; + bool has_enable = port.clk_enable && !port.en.is_fully_ones(); + if (has_enable) { + std::vector<const RTLIL::Cell*> inlined_cells_en; + collect_sigspec_rhs(port.en, for_debug, inlined_cells_en); + if (!inlined_cells_en.empty()) + dump_inlined_cells(inlined_cells_en); + f << indent << "if ("; + dump_sigspec_rhs(port.en); + f << ") {\n"; + inc_indent(); + } + // The generated code has two bounds checks; one in an assertion, and another that guards the read. + // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless + // loudly crashes if an illegal condition is encountered. The assert may be turned off with -DCXXRTL_NDEBUG + // not only for release builds, but also to make sure the simulator (which is presumably embedded in some + // larger program) will never crash the code that calls into it. + // + // If assertions are disabled, out of bounds reads are defined to return zero. + f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds read\");\n"; + f << indent << "if(" << valid_index_temp << ".valid) {\n"; + inc_indent(); + if (!mem->wr_ports.empty()) { + std::string lhs_temp = fresh_temporary(); + f << indent << "value<" << mem->width << "> " << lhs_temp << " = " + << mangle(mem) << "[" << valid_index_temp << ".index];\n"; + bool transparent = false; + for (auto bit : port.transparency_mask) + if (bit) + transparent = true; + if (transparent) { + std::string addr_temp = fresh_temporary(); + f << indent << "const value<" << port.addr.size() << "> &" << addr_temp << " = "; + dump_sigspec_rhs(port.addr); + f << ";\n"; + for (int i = 0; i < GetSize(mem->wr_ports); i++) { + auto &wrport = mem->wr_ports[i]; + if (!port.transparency_mask[i]) + continue; + f << indent << "if (" << addr_temp << " == "; + dump_sigspec_rhs(wrport.addr); + f << ") {\n"; + inc_indent(); + f << indent << lhs_temp << " = " << lhs_temp; + f << ".update("; + dump_sigspec_rhs(wrport.data); + f << ", "; + dump_sigspec_rhs(wrport.en); + f << ");\n"; + dec_indent(); + f << indent << "}\n"; + } + } + f << indent; + dump_sigspec_lhs(port.data); + f << " = " << lhs_temp << ";\n"; } else { - width = std::to_string(wire->width); + f << indent; + dump_sigspec_lhs(port.data); + f << " = " << mangle(mem) << "[" << valid_index_temp << ".index];\n"; } - - dump_attrs(wire); + dec_indent(); + f << indent << "} else {\n"; + inc_indent(); f << indent; - if (wire->port_input && wire->port_output) - f << "/*inout*/ "; - else if (wire->port_input) - f << "/*input*/ "; - else if (wire->port_output) - f << "/*output*/ "; - f << (unbuffered_wires[wire] ? "value" : "wire") << "<" << width << "> " << mangle(wire); - if (wire->has_attribute(ID::init)) { - f << " "; - dump_const_init(wire->attributes.at(ID::init)); + dump_sigspec_lhs(port.data); + f << " = value<" << mem->width << "> {};\n"; + dec_indent(); + f << indent << "}\n"; + if (has_enable && !port.ce_over_srst) { + dec_indent(); + f << indent << "}\n"; + } + if (port.srst != State::S0) { + // Synchronous reset + std::vector<const RTLIL::Cell*> inlined_cells_srst; + collect_sigspec_rhs(port.srst, for_debug, inlined_cells_srst); + if (!inlined_cells_srst.empty()) + dump_inlined_cells(inlined_cells_srst); + f << indent << "if ("; + dump_sigspec_rhs(port.srst); + f << " == value<1> {1u}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(port.data); + f << " = "; + dump_const(port.srst_value); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + if (has_enable && port.ce_over_srst) { + dec_indent(); + f << indent << "}\n"; + } + if (port.clk_enable) { + dec_indent(); + f << indent << "}\n"; + } + if (port.arst != State::S0) { + // Asynchronous reset + std::vector<const RTLIL::Cell*> inlined_cells_arst; + collect_sigspec_rhs(port.arst, for_debug, inlined_cells_arst); + if (!inlined_cells_arst.empty()) + dump_inlined_cells(inlined_cells_arst); + f << indent << "if ("; + dump_sigspec_rhs(port.arst); + f << " == value<1> {1u}) {\n"; + inc_indent(); + f << indent; + dump_sigspec_lhs(port.data); + f << " = "; + dump_const(port.arst_value); + f << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + } + + void dump_mem_wrports(const Mem *mem, bool for_debug = false) + { + log_assert(!for_debug); + for (int portidx = 0; portidx < GetSize(mem->wr_ports); portidx++) { + auto &port = mem->wr_ports[portidx]; + dump_attrs(&port); + f << indent << "// memory " << mem->memid.str() << " write port " << portidx << "\n"; + if (port.clk_enable) { + RTLIL::SigBit clk_bit = port.clk[0]; + clk_bit = sigmaps[clk_bit.wire->module](clk_bit); + if (clk_bit.wire) { + f << indent << "if (" << (port.clk_polarity ? "posedge_" : "negedge_") + << mangle(clk_bit) << ") {\n"; + } else { + f << indent << "if (false) {\n"; + } + inc_indent(); } - f << ";\n"; - if (edge_wires[wire]) { - if (unbuffered_wires[wire]) { - f << indent << "value<" << width << "> prev_" << mangle(wire); - if (wire->has_attribute(ID::init)) { - f << " "; - dump_const_init(wire->attributes.at(ID::init)); + std::vector<const RTLIL::Cell*> inlined_cells_addr; + collect_sigspec_rhs(port.addr, for_debug, inlined_cells_addr); + if (!inlined_cells_addr.empty()) + dump_inlined_cells(inlined_cells_addr); + std::string valid_index_temp = fresh_temporary(); + f << indent << "auto " << valid_index_temp << " = memory_index("; + dump_sigspec_rhs(port.addr); + f << ", " << mem->start_offset << ", " << mem->size << ");\n"; + // See above for rationale of having both the assert and the condition. + // + // If assertions are disabled, out of bounds writes are defined to do nothing. + f << indent << "CXXRTL_ASSERT(" << valid_index_temp << ".valid && \"out of bounds write\");\n"; + f << indent << "if (" << valid_index_temp << ".valid) {\n"; + inc_indent(); + std::vector<const RTLIL::Cell*> inlined_cells; + collect_sigspec_rhs(port.data, for_debug, inlined_cells); + collect_sigspec_rhs(port.en, for_debug, inlined_cells); + if (!inlined_cells.empty()) + dump_inlined_cells(inlined_cells); + f << indent << mangle(mem) << ".update(" << valid_index_temp << ".index, "; + dump_sigspec_rhs(port.data); + f << ", "; + dump_sigspec_rhs(port.en); + f << ", " << portidx << ");\n"; + dec_indent(); + f << indent << "}\n"; + if (port.clk_enable) { + dec_indent(); + f << indent << "}\n"; + } + } + } + + void dump_wire(const RTLIL::Wire *wire, bool is_local) + { + const auto &wire_type = wire_types[wire]; + if (!wire_type.is_named() || wire_type.is_local() != is_local) + return; + + dump_attrs(wire); + f << indent; + if (wire->port_input && wire->port_output) + f << "/*inout*/ "; + else if (wire->port_input) + f << "/*input*/ "; + else if (wire->port_output) + f << "/*output*/ "; + f << (wire_type.is_buffered() ? "wire" : "value"); + if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) { + f << "<" << wire->get_string_attribute(ID(cxxrtl_width)) << ">"; + } else { + f << "<" << wire->width << ">"; + } + f << " " << mangle(wire) << ";\n"; + if (edge_wires[wire]) { + if (!wire_type.is_buffered()) { + f << indent << "value<" << wire->width << "> prev_" << mangle(wire) << ";\n"; + } + for (auto edge_type : edge_types) { + if (edge_type.first.wire == wire) { + std::string prev, next; + if (!wire_type.is_buffered()) { + prev = "prev_" + mangle(edge_type.first.wire); + next = mangle(edge_type.first.wire); + } else { + prev = mangle(edge_type.first.wire) + ".curr"; + next = mangle(edge_type.first.wire) + ".next"; } - f << ";\n"; - } - for (auto edge_type : edge_types) { - if (edge_type.first.wire == wire) { - std::string prev, next; - if (unbuffered_wires[wire]) { - prev = "prev_" + mangle(edge_type.first.wire); - next = mangle(edge_type.first.wire); - } else { - prev = mangle(edge_type.first.wire) + ".curr"; - next = mangle(edge_type.first.wire) + ".next"; - } - prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; - next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; - if (edge_type.second != RTLIL::STn) { - f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n"; - inc_indent(); - f << indent << "return !" << prev << " && " << next << ";\n"; - dec_indent(); - f << indent << "}\n"; - } - if (edge_type.second != RTLIL::STp) { - f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n"; - inc_indent(); - f << indent << "return " << prev << " && !" << next << ";\n"; - dec_indent(); - f << indent << "}\n"; - } + prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; + next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()"; + if (edge_type.second != RTLIL::STn) { + f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n"; + inc_indent(); + f << indent << "return !" << prev << " && " << next << ";\n"; + dec_indent(); + f << indent << "}\n"; + } + if (edge_type.second != RTLIL::STp) { + f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n"; + inc_indent(); + f << indent << "return " << prev << " && !" << next << ";\n"; + dec_indent(); + f << indent << "}\n"; } } } } } - void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory) + void dump_debug_wire(const RTLIL::Wire *wire, bool is_local) { - vector<const RTLIL::Cell*> init_cells; - for (auto cell : module->cells()) - if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str()) - init_cells.push_back(cell); + const auto &wire_type = wire_types[wire]; + if (wire_type.is_member()) + return; - std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { - int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int(); - int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int(); - return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr); - }); + const auto &debug_wire_type = debug_wire_types[wire]; + if (!debug_wire_type.is_named() || debug_wire_type.is_local() != is_local) + return; - dump_attrs(memory); - f << indent << "memory<" << memory->width << "> " << mangle(memory) - << " { " << memory->size << "u"; - if (init_cells.empty()) { - f << " };\n"; - } else { - f << ",\n"; - inc_indent(); - for (auto cell : init_cells) { - dump_attrs(cell); - RTLIL::Const data = cell->getPort(ID::DATA).as_const(); - size_t width = cell->getParam(ID::WIDTH).as_int(); - size_t words = cell->getParam(ID::WORDS).as_int(); - f << indent << "memory<" << memory->width << ">::init<" << words << "> { " - << stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {"; + dump_attrs(wire); + f << indent; + if (debug_wire_type.is_outline()) + f << "/*outline*/ "; + f << "value<" << wire->width << "> " << mangle(wire) << ";\n"; + } + + void dump_reset_method(RTLIL::Module *module) + { + int mem_init_idx = 0; + inc_indent(); + for (auto wire : module->wires()) { + const auto &wire_type = wire_types[wire]; + if (!wire_type.is_named() || wire_type.is_local()) continue; + if (!wire_init.count(wire)) continue; + + f << indent << mangle(wire) << " = "; + if (wire_types[wire].is_buffered()) { + f << "wire<" << wire->width << ">"; + } else { + f << "value<" << wire->width << ">"; + } + dump_const_init(wire_init.at(wire), wire->width); + f << ";\n"; + + if (edge_wires[wire] && !wire_types[wire].is_buffered()) { + f << indent << "prev_" << mangle(wire) << " = "; + dump_const(wire_init.at(wire), wire->width); + f << ";\n"; + } + } + for (auto &mem : mod_memories[module]) { + for (auto &init : mem.inits) { + if (init.removed) + continue; + dump_attrs(&init); + int words = GetSize(init.data) / mem.width; + f << indent << "static const value<" << mem.width << "> "; + f << "mem_init_" << ++mem_init_idx << "[" << words << "] {"; inc_indent(); - for (size_t n = 0; n < words; n++) { + for (int n = 0; n < words; n++) { if (n % 4 == 0) f << "\n" << indent; else f << " "; - dump_const(data, width, n * width, /*fixed_width=*/true); + dump_const(init.data, mem.width, n * mem.width, /*fixed_width=*/true); f << ","; } dec_indent(); - f << "\n" << indent << "}},\n"; + f << "\n"; + f << indent << "};\n"; + f << indent << "std::copy(std::begin(mem_init_" << mem_init_idx << "), "; + f << "std::end(mem_init_" << mem_init_idx << "), "; + f << "&" << mangle(&mem) << ".data[" << stringf("%#x", init.addr.as_int()) << "]);\n"; } - dec_indent(); - f << indent << "};\n"; - } + } + for (auto cell : module->cells()) { + if (is_internal_cell(cell->type)) + continue; + f << indent << mangle(cell); + RTLIL::Module *cell_module = module->design->module(cell->type); + if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) { + f << "->reset();\n"; + } else { + f << ".reset();\n"; + } + } + dec_indent(); } void dump_eval_method(RTLIL::Module *module) @@ -1574,7 +1934,7 @@ struct CxxrtlWorker { } } for (auto wire : module->wires()) - dump_wire(wire, /*is_local_context=*/true); + dump_wire(wire, /*is_local=*/true); for (auto node : schedule[module]) { switch (node.type) { case FlowGraph::Node::Type::CONNECT: @@ -1586,8 +1946,17 @@ struct CxxrtlWorker { case FlowGraph::Node::Type::CELL_EVAL: dump_cell_eval(node.cell); break; - case FlowGraph::Node::Type::PROCESS: - dump_process(node.process); + case FlowGraph::Node::Type::PROCESS_CASE: + dump_process_case(node.process); + break; + case FlowGraph::Node::Type::PROCESS_SYNC: + dump_process_syncs(node.process); + break; + case FlowGraph::Node::Type::MEM_RDPORT: + dump_mem_rdport(node.mem, node.portidx); + break; + case FlowGraph::Node::Type::MEM_WRPORTS: + dump_mem_wrports(node.mem); break; } } @@ -1596,32 +1965,63 @@ struct CxxrtlWorker { dec_indent(); } + void dump_debug_eval_method(RTLIL::Module *module) + { + inc_indent(); + for (auto wire : module->wires()) + dump_debug_wire(wire, /*is_local=*/true); + for (auto node : debug_schedule[module]) { + switch (node.type) { + case FlowGraph::Node::Type::CONNECT: + dump_connect(node.connect, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::CELL_SYNC: + dump_cell_sync(node.cell, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::CELL_EVAL: + dump_cell_eval(node.cell, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::PROCESS_CASE: + dump_process_case(node.process, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::PROCESS_SYNC: + dump_process_syncs(node.process, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::MEM_RDPORT: + dump_mem_rdport(node.mem, node.portidx, /*for_debug=*/true); + break; + case FlowGraph::Node::Type::MEM_WRPORTS: + dump_mem_wrports(node.mem, /*for_debug=*/true); + break; + default: + log_abort(); + } + } + dec_indent(); + } + void dump_commit_method(RTLIL::Module *module) { inc_indent(); f << indent << "bool changed = false;\n"; for (auto wire : module->wires()) { - if (elided_wires.count(wire)) - continue; - if (unbuffered_wires[wire]) { - if (edge_wires[wire]) - f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n"; - continue; - } - if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0) - f << indent << "changed |= " << mangle(wire) << ".commit();\n"; + const auto &wire_type = wire_types[wire]; + if (wire_type.type == WireType::MEMBER && edge_wires[wire]) + f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n"; + if (wire_type.is_buffered()) + f << indent << "if (" << mangle(wire) << ".commit()) changed = true;\n"; } if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) { - for (auto memory : module->memories) { - if (!writable_memories[memory.second]) + for (auto &mem : mod_memories[module]) { + if (!writable_memories.count({module, mem.memid})) continue; - f << indent << "changed |= " << mangle(memory.second) << ".commit();\n"; + f << indent << "if (" << mangle(&mem) << ".commit()) changed = true;\n"; } for (auto cell : module->cells()) { if (is_internal_cell(cell->type)) continue; const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : "."; - f << indent << "changed |= " << mangle(cell) << access << "commit();\n"; + f << indent << "if (" << mangle(cell) << access << "commit()) changed = true;\n"; } } f << indent << "return changed;\n"; @@ -1631,50 +2031,138 @@ struct CxxrtlWorker { void dump_debug_info_method(RTLIL::Module *module) { size_t count_public_wires = 0; - size_t count_const_wires = 0; - size_t count_alias_wires = 0; size_t count_member_wires = 0; + size_t count_undriven = 0; + size_t count_driven_sync = 0; + size_t count_driven_comb = 0; + size_t count_mixed_driver = 0; + size_t count_alias_wires = 0; + size_t count_const_wires = 0; + size_t count_inline_wires = 0; size_t count_skipped_wires = 0; inc_indent(); f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n"; for (auto wire : module->wires()) { - if (wire->name[0] != '\\') - continue; - if (module->get_bool_attribute(ID(cxxrtl_blackbox)) && (wire->port_id == 0)) + const auto &debug_wire_type = debug_wire_types[wire]; + if (!wire->name.isPublic()) continue; count_public_wires++; - if (debug_const_wires.count(wire)) { - // Wire tied to a constant - f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = "; - dump_const(debug_const_wires[wire]); - f << ";\n"; - f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); - f << ", debug_item(const_" << mangle(wire) << ", "; - f << wire->start_offset << "));\n"; - count_const_wires++; - } else if (debug_alias_wires.count(wire)) { - // Alias of a member wire - f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); - f << ", debug_item(debug_alias(), " << mangle(debug_alias_wires[wire]) << ", "; - f << wire->start_offset << "));\n"; - count_alias_wires++; - } else if (!localized_wires.count(wire)) { - // Member wire - f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); - f << ", debug_item(" << mangle(wire) << ", "; - f << wire->start_offset << "));\n"; - count_member_wires++; - } else { - count_skipped_wires++; + switch (debug_wire_type.type) { + case WireType::BUFFERED: + case WireType::MEMBER: { + // Member wire + std::vector<std::string> flags; + + if (wire->port_input && wire->port_output) + flags.push_back("INOUT"); + else if (wire->port_output) + flags.push_back("OUTPUT"); + else if (wire->port_input) + flags.push_back("INPUT"); + + bool has_driven_sync = false; + bool has_driven_comb = false; + bool has_undriven = false; + if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) { + for (auto bit : SigSpec(wire)) + if (!bit_has_state.count(bit)) + has_undriven = true; + else if (bit_has_state[bit]) + has_driven_sync = true; + else + has_driven_comb = true; + } else if (wire->port_output) { + switch (cxxrtl_port_type(module, wire->name)) { + case CxxrtlPortType::SYNC: + has_driven_sync = true; + break; + case CxxrtlPortType::COMB: + has_driven_comb = true; + break; + case CxxrtlPortType::UNKNOWN: + has_driven_sync = has_driven_comb = true; + break; + } + } else { + has_undriven = true; + } + if (has_undriven) + flags.push_back("UNDRIVEN"); + if (!has_driven_sync && !has_driven_comb && has_undriven) + count_undriven++; + if (has_driven_sync) + flags.push_back("DRIVEN_SYNC"); + if (has_driven_sync && !has_driven_comb && !has_undriven) + count_driven_sync++; + if (has_driven_comb) + flags.push_back("DRIVEN_COMB"); + if (!has_driven_sync && has_driven_comb && !has_undriven) + count_driven_comb++; + if (has_driven_sync + has_driven_comb + has_undriven > 1) + count_mixed_driver++; + + f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); + f << ", debug_item(" << mangle(wire) << ", " << wire->start_offset; + bool first = true; + for (auto flag : flags) { + if (first) { + first = false; + f << ", "; + } else { + f << "|"; + } + f << "debug_item::" << flag; + } + f << "));\n"; + count_member_wires++; + break; + } + case WireType::ALIAS: { + // Alias of a member wire + const RTLIL::Wire *aliasee = debug_wire_type.sig_subst.as_wire(); + f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); + f << ", debug_item("; + // If the aliasee is an outline, then the alias must be an outline, too; otherwise downstream + // tooling has no way to find out about the outline. + if (debug_wire_types[aliasee].is_outline()) + f << "debug_eval_outline"; + else + f << "debug_alias()"; + f << ", " << mangle(aliasee) << ", " << wire->start_offset << "));\n"; + count_alias_wires++; + break; + } + case WireType::CONST: { + // Wire tied to a constant + f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = "; + dump_const(debug_wire_type.sig_subst.as_const()); + f << ";\n"; + f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); + f << ", debug_item(const_" << mangle(wire) << ", " << wire->start_offset << "));\n"; + count_const_wires++; + break; + } + case WireType::OUTLINE: { + // Localized or inlined, but rematerializable wire + f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire)); + f << ", debug_item(debug_eval_outline, " << mangle(wire) << ", " << wire->start_offset << "));\n"; + count_inline_wires++; + break; + } + default: { + // Localized or inlined wire with no debug information + count_skipped_wires++; + break; + } } } if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) { - for (auto &memory_it : module->memories) { - if (memory_it.first[0] != '\\') + for (auto &mem : mod_memories[module]) { + if (!mem.memid.isPublic()) continue; - f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second)); - f << ", debug_item(" << mangle(memory_it.second) << ", "; - f << memory_it.second->start_offset << "));\n"; + f << indent << "items.add(path + " << escape_cxx_string(mem.packed ? get_hdl_name(mem.cell) : get_hdl_name(mem.mem)); + f << ", debug_item(" << mangle(&mem) << ", "; + f << mem.start_offset << "));\n"; } for (auto cell : module->cells()) { if (is_internal_cell(cell->type)) @@ -1688,10 +2176,18 @@ struct CxxrtlWorker { log_debug("Debug information statistics for module `%s':\n", log_id(module)); log_debug(" Public wires: %zu, of which:\n", count_public_wires); - log_debug(" Const wires: %zu\n", count_const_wires); - log_debug(" Alias wires: %zu\n", count_alias_wires); - log_debug(" Member wires: %zu\n", count_member_wires); - log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires); + log_debug(" Member wires: %zu, of which:\n", count_member_wires); + log_debug(" Undriven: %zu (incl. inputs)\n", count_undriven); + log_debug(" Driven sync: %zu\n", count_driven_sync); + log_debug(" Driven comb: %zu\n", count_driven_comb); + log_debug(" Mixed driver: %zu\n", count_mixed_driver); + if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) { + log_debug(" Inline wires: %zu\n", count_inline_wires); + log_debug(" Alias wires: %zu\n", count_alias_wires); + log_debug(" Const wires: %zu\n", count_const_wires); + log_debug(" Other wires: %zu%s\n", count_skipped_wires, + count_skipped_wires > 0 ? " (debug unavailable)" : ""); + } } void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map) @@ -1731,9 +2227,13 @@ struct CxxrtlWorker { inc_indent(); for (auto wire : module->wires()) { if (wire->port_id != 0) - dump_wire(wire, /*is_local_context=*/false); + dump_wire(wire, /*is_local=*/false); } f << "\n"; + f << indent << "void reset() override {\n"; + dump_reset_method(module); + f << indent << "}\n"; + f << "\n"; f << indent << "bool eval() override {\n"; dump_eval_method(module); f << indent << "}\n"; @@ -1777,11 +2277,14 @@ struct CxxrtlWorker { f << indent << "struct " << mangle(module) << " : public module {\n"; inc_indent(); for (auto wire : module->wires()) - dump_wire(wire, /*is_local_context=*/false); - f << "\n"; + dump_wire(wire, /*is_local=*/false); + for (auto wire : module->wires()) + dump_debug_wire(wire, /*is_local=*/false); bool has_memories = false; - for (auto memory : module->memories) { - dump_memory(module, memory.second); + for (auto &mem : mod_memories[module]) { + dump_attrs(&mem); + f << indent << "memory<" << mem.width << "> " << mangle(&mem) + << " { " << mem.size << "u };\n"; has_memories = true; } if (has_memories) @@ -1802,16 +2305,36 @@ struct CxxrtlWorker { dump_metadata_map(cell->attributes); f << ");\n"; } else { - f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n"; + f << indent << mangle(cell_module) << " " << mangle(cell) << " {interior()};\n"; } has_cells = true; } if (has_cells) f << "\n"; + f << indent << mangle(module) << "(interior) {}\n"; + f << indent << mangle(module) << "() {\n"; + inc_indent(); + f << indent << "reset();\n"; + dec_indent(); + f << indent << "};\n"; + f << "\n"; + f << indent << "void reset() override;\n"; f << indent << "bool eval() override;\n"; f << indent << "bool commit() override;\n"; - if (debug_info) + if (debug_info) { + if (debug_eval) { + f << "\n"; + f << indent << "void debug_eval();\n"; + for (auto wire : module->wires()) + if (debug_wire_types[wire].is_outline()) { + f << indent << "debug_outline debug_eval_outline { std::bind(&" + << mangle(module) << "::debug_eval, this) };\n"; + break; + } + } + f << "\n"; f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n"; + } dec_indent(); f << indent << "}; // struct " << mangle(module) << "\n"; f << "\n"; @@ -1822,6 +2345,10 @@ struct CxxrtlWorker { { if (module->get_bool_attribute(ID(cxxrtl_blackbox))) return; + f << indent << "void " << mangle(module) << "::reset() {\n"; + dump_reset_method(module); + f << indent << "}\n"; + f << "\n"; f << indent << "bool " << mangle(module) << "::eval() {\n"; dump_eval_method(module); f << indent << "}\n"; @@ -1831,6 +2358,13 @@ struct CxxrtlWorker { f << indent << "}\n"; f << "\n"; if (debug_info) { + if (debug_eval) { + f << indent << "void " << mangle(module) << "::debug_eval() {\n"; + dump_debug_eval_method(module); + f << indent << "}\n"; + f << "\n"; + } + f << indent << "CXXRTL_EXTREMELY_COLD\n"; f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n"; dump_debug_info_method(module); f << indent << "}\n"; @@ -1935,6 +2469,7 @@ struct CxxrtlWorker { f << "} // namespace " << design_ns << "\n"; f << "\n"; if (top_module != nullptr && debug_info) { + f << "extern \"C\"\n"; f << "cxxrtl_toplevel " << design_ns << "_create() {\n"; inc_indent(); std::string top_type = design_ns + "::" + mangle(top_module); @@ -1959,7 +2494,9 @@ struct CxxrtlWorker { void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type) { signal = sigmap(signal); - log_assert(signal.is_wire() && signal.is_bit()); + if (signal.is_fully_const()) + return; // a clock, or more commonly a reset, can be tied to a constant driver + log_assert(is_valid_clock(signal)); log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe); RTLIL::SigBit sigbit = signal[0]; @@ -1967,7 +2504,8 @@ struct CxxrtlWorker { edge_types[sigbit] = type; else if (edge_types[sigbit] != type) edge_types[sigbit] = RTLIL::STe; - edge_wires.insert(signal.as_wire()); + // Cannot use as_wire because signal might not be a full wire, instead extract the wire from the sigbit + edge_wires.insert(sigbit.wire); } void analyze_design(RTLIL::Design *design) @@ -1982,11 +2520,21 @@ struct CxxrtlWorker { SigMap &sigmap = sigmaps[module]; sigmap.set(module); + std::vector<Mem> &memories = mod_memories[module]; + memories = Mem::get_all_memories(module); + for (auto &mem : memories) { + mem.narrow(); + mem.coalesce_inits(); + } + if (module->get_bool_attribute(ID(cxxrtl_blackbox))) { for (auto port : module->ports) { RTLIL::Wire *wire = module->wire(port); - if (wire->port_input && !wire->port_output) - unbuffered_wires.insert(wire); + if (wire->port_input && !wire->port_output) { + wire_types[wire] = debug_wire_types[wire] = {WireType::MEMBER}; + } else if (wire->port_input || wire->port_output) { + wire_types[wire] = debug_wire_types[wire] = {WireType::BUFFERED}; + } if (wire->has_attribute(ID(cxxrtl_edge))) { RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)]; if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire)) @@ -2016,18 +2564,24 @@ struct CxxrtlWorker { continue; } + for (auto wire : module->wires()) + if (wire->has_attribute(ID::init)) + wire_init[wire] = wire->attributes.at(ID::init); + + // Construct a flow graph where each node is a basic computational operation generally corresponding + // to a fragment of the RTLIL netlist. FlowGraph flow; for (auto conn : module->connections()) flow.add_node(conn); - dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes; - dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>, - pool<const RTLIL::Cell*>> memwr_per_domain; for (auto cell : module->cells()) { if (!cell->known()) log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type)); + if (cell->is_mem_cell()) + continue; + RTLIL::Module *cell_module = design->module(cell->type); if (cell_module && cell_module->get_blackbox_attribute() && @@ -2039,58 +2593,54 @@ struct CxxrtlWorker { cell_module->get_bool_attribute(ID(cxxrtl_template))) blackbox_specializations[cell_module].insert(template_args(cell)); - FlowGraph::Node *node = flow.add_node(cell); + flow.add_node(cell); // Various DFF cells are treated like posedge/negedge processes, see above for details. - if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) { - if (cell->getPort(ID::CLK).is_wire()) + if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($aldff), ID($aldffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) { + if (is_valid_clock(cell->getPort(ID::CLK))) register_edge_signal(sigmap, cell->getPort(ID::CLK), cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn); } - // Similar for memory port cells. - if (cell->type.in(ID($memrd), ID($memwr))) { - if (cell->getParam(ID::CLK_ENABLE).as_bool()) { - if (cell->getPort(ID::CLK).is_wire()) - register_edge_signal(sigmap, cell->getPort(ID::CLK), - cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn); - } - memrw_cell_nodes[cell] = node; - } - // Optimize access to read-only memories. - if (cell->type == ID($memwr)) - writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]); - // Collect groups of memory write ports in the same domain. - if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) { - RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0]; - const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()]; - memwr_per_domain[{clk_bit, memory}].insert(cell); - } - // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence - // of RTLIL memory objects and $memrd/$memwr/$meminit cells. - if (cell->type.in(ID($mem))) - log_assert(false); } - for (auto cell : module->cells()) { - // Collect groups of memory write ports read by every transparent read port. - if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() && - cell->getParam(ID::TRANSPARENT).as_bool()) { - RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0]; - const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()]; - for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) { - transparent_for[cell].insert(memwr_cell); - // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell - // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly. - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN)); - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR)); - flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA)); + + for (auto &mem : memories) { + flow.add_node(&mem); + + // Clocked memory cells are treated like posedge/negedge processes as well. + for (auto &port : mem.rd_ports) { + if (port.clk_enable) + if (is_valid_clock(port.clk)) + register_edge_signal(sigmap, port.clk, + port.clk_polarity ? RTLIL::STp : RTLIL::STn); + // For read ports, also move initial value to wire_init (if any). + for (int i = 0; i < GetSize(port.data); i++) { + if (port.init_value[i] != State::Sx) { + SigBit bit = port.data[i]; + if (bit.wire) { + auto &init = wire_init[bit.wire]; + if (init == RTLIL::Const()) { + init = RTLIL::Const(State::Sx, GetSize(bit.wire)); + } + init[bit.offset] = port.init_value[i]; + } + } } } + for (auto &port : mem.wr_ports) { + if (port.clk_enable) + if (is_valid_clock(port.clk)) + register_edge_signal(sigmap, port.clk, + port.clk_polarity ? RTLIL::STp : RTLIL::STn); + } + + if (!mem.wr_ports.empty()) + writable_memories.insert({module, mem.memid}); } for (auto proc : module->processes) { flow.add_node(proc.second); - for (auto sync : proc.second->syncs) + for (auto sync : proc.second->syncs) { switch (sync->type) { // Edge-type sync rules require pre-registration. case RTLIL::STp: @@ -2113,59 +2663,46 @@ struct CxxrtlWorker { case RTLIL::STi: log_assert(false); } + for (auto &memwr : sync->mem_write_actions) { + writable_memories.insert({module, memwr.memid}); + } + } } - for (auto wire : module->wires()) { - if (!flow.is_elidable(wire)) continue; - if (wire->port_id != 0) continue; - if (wire->get_bool_attribute(ID::keep)) continue; - if (wire->name.begins_with("$") && !elide_internal) continue; - if (wire->name.begins_with("\\") && !elide_public) continue; - if (edge_wires[wire]) continue; - log_assert(flow.wire_comb_defs[wire].size() == 1); - elided_wires[wire] = **flow.wire_comb_defs[wire].begin(); - } - - dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs; - for (auto wire_comb_def : flow.wire_comb_defs) - for (auto node : wire_comb_def.second) - node_defs[node].insert(wire_comb_def.first); - + // Construct a linear order of the flow graph that minimizes the amount of feedback arcs. A flow graph + // without feedback arcs can generally be evaluated in a single pass, i.e. it always requires only + // a single delta cycle. Scheduler<FlowGraph::Node> scheduler; - dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map; + dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_vertex_map; for (auto node : flow.nodes) - node_map[node] = scheduler.add(node); - for (auto node_def : node_defs) { - auto vertex = node_map[node_def.first]; - for (auto wire : node_def.second) + node_vertex_map[node] = scheduler.add(node); + for (auto node_comb_def : flow.node_comb_defs) { + auto vertex = node_vertex_map[node_comb_def.first]; + for (auto wire : node_comb_def.second) for (auto succ_node : flow.wire_uses[wire]) { - auto succ_vertex = node_map[succ_node]; + auto succ_vertex = node_vertex_map[succ_node]; vertex->succs.insert(succ_vertex); succ_vertex->preds.insert(vertex); } } - auto eval_order = scheduler.schedule(); - pool<FlowGraph::Node*, hash_ptr_ops> evaluated; + // Find out whether the order includes any feedback arcs. + std::vector<FlowGraph::Node*> node_order; + pool<FlowGraph::Node*, hash_ptr_ops> evaluated_nodes; pool<const RTLIL::Wire*> feedback_wires; - for (auto vertex : eval_order) { + for (auto vertex : scheduler.schedule()) { auto node = vertex->data; - schedule[module].push_back(*node); + node_order.push_back(node); // Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi // is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be // caused by a true logic loop, but usually are a benign result of dependency tracking that works - // on wire, not bit, level. Nevertheless, feedback wires cannot be localized. - evaluated.insert(node); - for (auto wire : node_defs[node]) + // on wire, not bit, level. Nevertheless, feedback wires cannot be unbuffered. + evaluated_nodes.insert(node); + for (auto wire : flow.node_comb_defs[node]) for (auto succ_node : flow.wire_uses[wire]) - if (evaluated[succ_node]) { + if (evaluated_nodes[succ_node]) feedback_wires.insert(wire); - // Feedback wires may never be elided because feedback requires state, but the point of elision - // (and localization) is to eliminate state. - elided_wires.erase(wire); - } } - if (!feedback_wires.empty()) { has_feedback_arcs = true; log("Module `%s' contains feedback arcs through wires:\n", log_id(module)); @@ -2173,21 +2710,92 @@ struct CxxrtlWorker { log(" %s\n", log_id(wire)); } + // Conservatively assign wire types. Assignment of types BUFFERED and MEMBER is final, but assignment + // of type LOCAL may be further refined to UNUSED or INLINE. for (auto wire : module->wires()) { + auto &wire_type = wire_types[wire]; + wire_type = {WireType::BUFFERED}; + if (feedback_wires[wire]) continue; if (wire->port_output && !module->get_bool_attribute(ID::top)) continue; - if (wire->name.begins_with("$") && !unbuffer_internal) continue; - if (wire->name.begins_with("\\") && !unbuffer_public) continue; + if (!wire->name.isPublic() && !unbuffer_internal) continue; + if (wire->name.isPublic() && !unbuffer_public) continue; if (flow.wire_sync_defs.count(wire) > 0) continue; - unbuffered_wires.insert(wire); + wire_type = {WireType::MEMBER}; + if (edge_wires[wire]) continue; if (wire->get_bool_attribute(ID::keep)) continue; if (wire->port_input || wire->port_output) continue; - if (wire->name.begins_with("$") && !localize_internal) continue; - if (wire->name.begins_with("\\") && !localize_public) continue; - localized_wires.insert(wire); + if (!wire->name.isPublic() && !localize_internal) continue; + if (wire->name.isPublic() && !localize_public) continue; + wire_type = {WireType::LOCAL}; + } + + // Discover nodes reachable from primary outputs (i.e. members) and collect reachable wire users. + pool<FlowGraph::Node*, hash_ptr_ops> worklist; + for (auto node : flow.nodes) { + if (node->type == FlowGraph::Node::Type::CELL_EVAL && is_effectful_cell(node->cell->type)) + worklist.insert(node); // node has effects + else if (node->type == FlowGraph::Node::Type::MEM_WRPORTS) + worklist.insert(node); // node is memory write + else if (node->type == FlowGraph::Node::Type::PROCESS_SYNC && is_memwr_process(node->process)) + worklist.insert(node); // node is memory write + else if (flow.node_sync_defs.count(node)) + worklist.insert(node); // node is a flip-flop + else if (flow.node_comb_defs.count(node)) { + for (auto wire : flow.node_comb_defs[node]) + if (wire_types[wire].is_member()) + worklist.insert(node); // node drives public wires + } + } + dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> live_wires; + pool<FlowGraph::Node*, hash_ptr_ops> live_nodes; + while (!worklist.empty()) { + auto node = worklist.pop(); + live_nodes.insert(node); + for (auto wire : flow.node_uses[node]) { + live_wires[wire].insert(node); + for (auto pred_node : flow.wire_comb_defs[wire]) + if (!live_nodes[pred_node]) + worklist.insert(pred_node); + } } + // Refine wire types taking into account the amount of uses from reachable nodes only. + for (auto wire : module->wires()) { + auto &wire_type = wire_types[wire]; + if (!wire_type.is_local()) continue; + if (live_wires[wire].empty()) { + wire_type = {WireType::UNUSED}; // wire never used + continue; + } + + if (!wire->name.isPublic() && !inline_internal) continue; + if (wire->name.isPublic() && !inline_public) continue; + if (flow.is_inlinable(wire, live_wires[wire])) { + if (flow.wire_comb_defs[wire].size() > 1) + log_cmd_error("Wire %s.%s has multiple drivers!\n", log_id(module), log_id(wire)); + log_assert(flow.wire_comb_defs[wire].size() == 1); + FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin(); + switch (node->type) { + case FlowGraph::Node::Type::CELL_EVAL: + if (!is_inlinable_cell(node->cell->type)) continue; + wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell + break; + case FlowGraph::Node::Type::CONNECT: + wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig + break; + default: continue; + } + live_nodes.erase(node); + } + } + + // Emit reachable nodes in eval(). + for (auto node : node_order) + if (live_nodes[node]) + schedule[module].push_back(*node); + // For maximum performance, the state of the simulation (which is the same as the set of its double buffered // wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain // no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However, @@ -2195,10 +2803,9 @@ struct CxxrtlWorker { // as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs // also require more than one delta cycle to converge. pool<const RTLIL::Wire*> buffered_comb_wires; - for (auto wire : module->wires()) { - if (flow.wire_comb_defs[wire].size() > 0 && !unbuffered_wires[wire] && !feedback_wires[wire]) + for (auto wire : module->wires()) + if (wire_types[wire].is_buffered() && !feedback_wires[wire] && flow.wire_comb_defs[wire].size() > 0) buffered_comb_wires.insert(wire); - } if (!buffered_comb_wires.empty()) { has_buffered_comb_wires = true; log("Module `%s' contains buffered combinatorial wires:\n", log_id(module)); @@ -2206,44 +2813,154 @@ struct CxxrtlWorker { log(" %s\n", log_id(wire)); } + // Record whether eval() requires only one delta cycle in this module. eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty(); if (debug_info) { - // Find wires that alias other wires or are tied to a constant; debug information can be enriched with these - // at essentially zero additional cost. - // - // Note that the information collected here can't be used for optimizing the netlist: debug information queries - // are pure and run on a design in a stable state, which allows assumptions that do not otherwise hold. + // Annotate wire bits with the type of their driver; this is exposed in the debug metadata. + for (auto item : flow.bit_has_state) + bit_has_state.insert(item); + + // Assign debug information wire types to public wires according to the chosen debug level. + // Unlike with optimized wire types, all assignments here are final. for (auto wire : module->wires()) { - if (wire->name[0] != '\\') - continue; - if (!unbuffered_wires[wire]) - continue; - const RTLIL::Wire *wire_it = wire; - while (1) { - if (!(flow.wire_def_elidable.count(wire_it) && flow.wire_def_elidable[wire_it])) - break; // not an alias: complex def - log_assert(flow.wire_comb_defs[wire_it].size() == 1); - FlowGraph::Node *node = *flow.wire_comb_defs[wire_it].begin(); - if (node->type != FlowGraph::Node::Type::CONNECT) - break; // not an alias: def by cell - RTLIL::SigSpec rhs_sig = node->connect.second; - if (rhs_sig.is_wire()) { - RTLIL::Wire *rhs_wire = rhs_sig.as_wire(); - if (unbuffered_wires[rhs_wire]) { - wire_it = rhs_wire; // maybe an alias - } else { - debug_alias_wires[wire] = rhs_wire; // is an alias + const auto &wire_type = wire_types[wire]; + auto &debug_wire_type = debug_wire_types[wire]; + + if (!debug_info) continue; + if (wire->port_input || wire_type.is_buffered()) + debug_wire_type = wire_type; // wire contains state + else if (!wire->name.isPublic()) + continue; // internal and stateless + + if (!debug_member) continue; + if (wire_type.is_member()) + debug_wire_type = wire_type; // wire is a member + + if (!debug_alias) continue; + const RTLIL::Wire *it = wire; + while (flow.is_inlinable(it)) { + log_assert(flow.wire_comb_defs[it].size() == 1); + FlowGraph::Node *node = *flow.wire_comb_defs[it].begin(); + if (node->type != FlowGraph::Node::Type::CONNECT) break; // not an alias + RTLIL::SigSpec rhs = node->connect.second; + if (rhs.is_fully_const()) { + debug_wire_type = {WireType::CONST, rhs}; // wire replaced with const + } else if (rhs.is_wire()) { + if (wire_types[rhs.as_wire()].is_member()) + debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with wire + else if (debug_eval && rhs.as_wire()->name.isPublic()) + debug_wire_type = {WireType::ALIAS, rhs}; // wire replaced with outline + it = rhs.as_wire(); // and keep looking + continue; + } + break; + } + + if (!debug_eval) continue; + if (!debug_wire_type.is_exact() && !wire_type.is_member()) + debug_wire_type = {WireType::OUTLINE}; // wire is local or inlined + } + + // Discover nodes reachable from primary outputs (i.e. outlines) up until primary inputs (i.e. members) + // and collect reachable wire users. + pool<FlowGraph::Node*, hash_ptr_ops> worklist; + for (auto node : flow.nodes) { + if (flow.node_comb_defs.count(node)) + for (auto wire : flow.node_comb_defs[node]) + if (debug_wire_types[wire].is_outline()) + worklist.insert(node); // node drives outline + } + dict<const RTLIL::Wire*, pool<FlowGraph::Node*, hash_ptr_ops>> debug_live_wires; + pool<FlowGraph::Node*, hash_ptr_ops> debug_live_nodes; + while (!worklist.empty()) { + auto node = worklist.pop(); + debug_live_nodes.insert(node); + for (auto wire : flow.node_uses[node]) { + if (debug_wire_types[wire].is_member()) + continue; // node uses member + if (debug_wire_types[wire].is_exact()) + continue; // node uses alias or const + debug_live_wires[wire].insert(node); + for (auto pred_node : flow.wire_comb_defs[wire]) + if (!debug_live_nodes[pred_node]) + worklist.insert(pred_node); + } + } + + // Assign debug information wire types to internal wires used by reachable nodes. This is similar + // to refining optimized wire types with the exception that the assignments here are first and final. + for (auto wire : module->wires()) { + const auto &wire_type = wire_types[wire]; + auto &debug_wire_type = debug_wire_types[wire]; + if (wire->name.isPublic()) continue; + + if (debug_live_wires[wire].empty()) { + continue; // wire never used + } else if (flow.is_inlinable(wire, debug_live_wires[wire])) { + log_assert(flow.wire_comb_defs[wire].size() == 1); + FlowGraph::Node *node = *flow.wire_comb_defs[wire].begin(); + switch (node->type) { + case FlowGraph::Node::Type::CELL_EVAL: + if (!is_inlinable_cell(node->cell->type)) continue; + debug_wire_type = {WireType::INLINE, node->cell}; // wire replaced with cell + break; + case FlowGraph::Node::Type::CONNECT: + debug_wire_type = {WireType::INLINE, node->connect.second}; // wire replaced with sig break; + default: continue; + } + debug_live_nodes.erase(node); + } else if (wire_type.is_member() || wire_type.type == WireType::LOCAL) { + debug_wire_type = wire_type; // wire not inlinable + } else { + log_assert(wire_type.type == WireType::INLINE || + wire_type.type == WireType::UNUSED); + if (flow.wire_comb_defs[wire].size() == 0) { + if (wire_init.count(wire)) { // wire never modified + debug_wire_type = {WireType::CONST, wire_init.at(wire)}; + } else { + debug_wire_type = {WireType::CONST, RTLIL::SigSpec(RTLIL::S0, wire->width)}; } - } else if (rhs_sig.is_fully_const()) { - debug_const_wires[wire] = rhs_sig.as_const(); // is a const - break; } else { - break; // not an alias: complex rhs + debug_wire_type = {WireType::LOCAL}; // wire used only for debug } } } + + // Emit reachable nodes in debug_eval(). + for (auto node : node_order) + if (debug_live_nodes[node]) + debug_schedule[module].push_back(*node); + } + + auto show_wire_type = [&](const RTLIL::Wire* wire, const WireType &wire_type) { + const char *type_str; + switch (wire_type.type) { + case WireType::UNUSED: type_str = "UNUSED"; break; + case WireType::BUFFERED: type_str = "BUFFERED"; break; + case WireType::MEMBER: type_str = "MEMBER"; break; + case WireType::OUTLINE: type_str = "OUTLINE"; break; + case WireType::LOCAL: type_str = "LOCAL"; break; + case WireType::INLINE: type_str = "INLINE"; break; + case WireType::ALIAS: type_str = "ALIAS"; break; + case WireType::CONST: type_str = "CONST"; break; + default: type_str = "(invalid)"; + } + if (wire_type.sig_subst.empty()) + log_debug(" %s: %s\n", log_signal((RTLIL::Wire*)wire), type_str); + else + log_debug(" %s: %s = %s\n", log_signal((RTLIL::Wire*)wire), type_str, log_signal(wire_type.sig_subst)); + }; + if (print_wire_types && !wire_types.empty()) { + log_debug("Wire types:\n"); + for (auto wire_type : wire_types) + show_wire_type(wire_type.first, wire_type.second); + } + if (print_debug_wire_types && !debug_wire_types.empty()) { + log_debug("Debug wire types:\n"); + for (auto debug_wire_type : debug_wire_types) + show_wire_type(debug_wire_type.first, debug_wire_type.second); } } if (has_feedback_arcs || has_buffered_comb_wires) { @@ -2263,9 +2980,9 @@ struct CxxrtlWorker { } } - void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem) + void check_design(RTLIL::Design *design, bool &has_sync_init) { - has_sync_init = has_packed_mem = false; + has_sync_init = false; for (auto module : design->modules()) { if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox))) @@ -2281,19 +2998,19 @@ struct CxxrtlWorker { for (auto sync : proc.second->syncs) if (sync->type == RTLIL::STi) has_sync_init = true; - - for (auto cell : module->cells()) - if (cell->type == ID($mem)) - has_packed_mem = true; } } void prepare_design(RTLIL::Design *design) { bool did_anything = false; - bool has_sync_init, has_packed_mem; + bool has_sync_init; log_push(); - check_design(design, has_sync_init, has_packed_mem); + check_design(design, has_sync_init); + if (run_hierarchy) { + Pass::call(design, "hierarchy -auto-top"); + did_anything = true; + } if (run_flatten) { Pass::call(design, "flatten"); did_anything = true; @@ -2309,14 +3026,10 @@ struct CxxrtlWorker { Pass::call(design, "proc_init"); did_anything = true; } - if (has_packed_mem) { - Pass::call(design, "memory_unpack"); - did_anything = true; - } // Recheck the design if it was modified. - if (has_sync_init || has_packed_mem) - check_design(design, has_sync_init, has_packed_mem); - log_assert(!(has_sync_init || has_packed_mem)); + if (did_anything) + check_design(design, has_sync_init); + log_assert(!has_sync_init); log_pop(); if (did_anything) log_spacer(); @@ -2326,8 +3039,7 @@ struct CxxrtlWorker { struct CxxrtlBackend : public Backend { static const int DEFAULT_OPT_LEVEL = 6; - static const int OPT_LEVEL_DEBUG = 4; - static const int DEFAULT_DEBUG_LEVEL = 1; + static const int DEFAULT_DEBUG_LEVEL = 4; CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { } void help() override @@ -2488,6 +3200,9 @@ struct CxxrtlBackend : public Backend { log("\n"); log("The following options are supported by this backend:\n"); log("\n"); + log(" -print-wire-types, -print-debug-wire-types\n"); + log(" enable additional debug logging, for pass developers.\n"); + log("\n"); log(" -header\n"); log(" generate separate interface (.h) and implementation (.cc) files.\n"); log(" if specified, the backend must be called with a filename, and filename\n"); @@ -2498,6 +3213,11 @@ struct CxxrtlBackend : public Backend { log(" place the generated code into namespace <ns-name>. if not specified,\n"); log(" \"cxxrtl_design\" is used.\n"); log("\n"); + log(" -nohierarchy\n"); + log(" use design hierarchy as-is. in most designs, a top module should be\n"); + log(" present as it is exposed through the C API and has unbuffered outputs\n"); + log(" for improved performance; it will be determined automatically if absent.\n"); + log("\n"); log(" -noflatten\n"); log(" don't flatten the design. fully flattened designs can evaluate within\n"); log(" one delta cycle if they have no combinatorial feedback.\n"); @@ -2518,13 +3238,13 @@ struct CxxrtlBackend : public Backend { log(" no optimization.\n"); log("\n"); log(" -O1\n"); - log(" localize internal wires if possible.\n"); + log(" unbuffer internal wires if possible.\n"); log("\n"); log(" -O2\n"); - log(" like -O1, and unbuffer internal wires if possible.\n"); + log(" like -O1, and localize internal wires if possible.\n"); log("\n"); log(" -O3\n"); - log(" like -O2, and elide internal wires if possible.\n"); + log(" like -O2, and inline internal wires if possible.\n"); log("\n"); log(" -O4\n"); log(" like -O3, and unbuffer public wires not marked (*keep*) if possible.\n"); @@ -2533,27 +3253,38 @@ struct CxxrtlBackend : public Backend { log(" like -O4, and localize public wires not marked (*keep*) if possible.\n"); log("\n"); log(" -O6\n"); - log(" like -O5, and elide public wires not marked (*keep*) if possible.\n"); - log("\n"); - log(" -Og\n"); - log(" highest optimization level that provides debug information for all\n"); - log(" public wires. currently, alias for -O%d.\n", OPT_LEVEL_DEBUG); + log(" like -O5, and inline public wires not marked (*keep*) if possible.\n"); log("\n"); log(" -g <level>\n"); log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL); log(" more visibility and generate more code, but do not pessimize evaluation.\n"); log("\n"); log(" -g0\n"); - log(" no debug information.\n"); + log(" no debug information. the C API is disabled.\n"); log("\n"); log(" -g1\n"); - log(" debug information for non-optimized public wires. this also makes it\n"); - log(" possible to use the C API.\n"); + log(" include bare minimum of debug information necessary to access all design\n"); + log(" state. the C API is enabled.\n"); + log("\n"); + log(" -g2\n"); + log(" like -g1, but include debug information for all public wires that are\n"); + log(" directly accessible through the C++ interface.\n"); + log("\n"); + log(" -g3\n"); + log(" like -g2, and include debug information for public wires that are tied\n"); + log(" to a constant or another public wire.\n"); + log("\n"); + log(" -g4\n"); + log(" like -g3, and compute debug information on demand for all public wires\n"); + log(" that were optimized out.\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override { + bool print_wire_types = false; + bool print_debug_wire_types = false; + bool nohierarchy = false; bool noflatten = false; bool noproc = false; int opt_level = DEFAULT_OPT_LEVEL; @@ -2565,6 +3296,18 @@ struct CxxrtlBackend : public Backend { size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { + if (args[argidx] == "-print-wire-types") { + print_wire_types = true; + continue; + } + if (args[argidx] == "-print-debug-wire-types") { + print_debug_wire_types = true; + continue; + } + if (args[argidx] == "-nohierarchy") { + nohierarchy = true; + continue; + } if (args[argidx] == "-noflatten") { noflatten = true; continue; @@ -2574,12 +3317,14 @@ struct CxxrtlBackend : public Backend { continue; } if (args[argidx] == "-Og") { - opt_level = OPT_LEVEL_DEBUG; + log_warning("The `-Og` option has been removed. Use `-g3` instead for complete " + "design coverage regardless of optimization level.\n"); continue; } if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") { argidx++; - opt_level = OPT_LEVEL_DEBUG; + log_warning("The `-Og` option has been removed. Use `-g3` instead for complete " + "design coverage regardless of optimization level.\n"); continue; } if (args[argidx] == "-O" && argidx+1 < args.size()) { @@ -2610,12 +3355,15 @@ struct CxxrtlBackend : public Backend { } extra_args(f, filename, args, argidx); + worker.print_wire_types = print_wire_types; + worker.print_debug_wire_types = print_debug_wire_types; + worker.run_hierarchy = !nohierarchy; worker.run_flatten = !noflatten; worker.run_proc = !noproc; switch (opt_level) { // the highest level here must match DEFAULT_OPT_LEVEL case 6: - worker.elide_public = true; + worker.inline_public = true; YS_FALLTHROUGH case 5: worker.localize_public = true; @@ -2624,7 +3372,7 @@ struct CxxrtlBackend : public Backend { worker.unbuffer_public = true; YS_FALLTHROUGH case 3: - worker.elide_internal = true; + worker.inline_internal = true; YS_FALLTHROUGH case 2: worker.localize_internal = true; @@ -2639,6 +3387,15 @@ struct CxxrtlBackend : public Backend { } switch (debug_level) { // the highest level here must match DEFAULT_DEBUG_LEVEL + case 4: + worker.debug_eval = true; + YS_FALLTHROUGH + case 3: + worker.debug_alias = true; + YS_FALLTHROUGH + case 2: + worker.debug_member = true; + YS_FALLTHROUGH case 1: worker.debug_info = true; YS_FALLTHROUGH |