diff options
Diffstat (limited to 'docs/source/CHAPTER_Techmap.rst')
-rw-r--r-- | docs/source/CHAPTER_Techmap.rst | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/docs/source/CHAPTER_Techmap.rst b/docs/source/CHAPTER_Techmap.rst new file mode 100644 index 000000000..6cd1eb44f --- /dev/null +++ b/docs/source/CHAPTER_Techmap.rst @@ -0,0 +1,105 @@ +.. _chapter:techmap: + +Technology mapping +================== + +Previous chapters outlined how HDL code is transformed into an RTL netlist. The +RTL netlist is still based on abstract coarse-grain cell types like arbitrary +width adders and even multipliers. This chapter covers how an RTL netlist is +transformed into a functionally equivalent netlist utilizing the cell types +available in the target architecture. + +Technology mapping is often performed in two phases. In the first phase RTL +cells are mapped to an internal library of single-bit cells (see :numref:`Sec. +%s <sec:celllib_gates>`). In the second phase this netlist of internal gate +types is transformed to a netlist of gates from the target technology library. + +When the target architecture provides coarse-grain cells (such as block ram or +ALUs), these must be mapped to directly form the RTL netlist, as information on +the coarse-grain structure of the design is lost when it is mapped to bit-width +gate types. + +Cell substitution +----------------- + +The simplest form of technology mapping is cell substitution, as performed by +the techmap pass. This pass, when provided with a Verilog file that implements +the RTL cell types using simpler cells, simply replaces the RTL cells with the +provided implementation. + +When no map file is provided, techmap uses a built-in map file that maps the +Yosys RTL cell types to the internal gate library used by Yosys. The curious +reader may find this map file as techlibs/common/techmap.v in the Yosys source +tree. + +Additional features have been added to techmap to allow for conditional mapping +of cells (see :doc:`cmd/techmap`). This can for example be useful if the target +architecture supports hardware multipliers for certain bit-widths but not for +others. + +A usual synthesis flow would first use the techmap pass to directly map some RTL +cells to coarse-grain cells provided by the target architecture (if any) and +then use techmap with the built-in default file to map the remaining RTL cells +to gate logic. + +Subcircuit substitution +----------------------- + +Sometimes the target architecture provides cells that are more powerful than the +RTL cells used by Yosys. For example a cell in the target architecture that can +calculate the absolute-difference of two numbers does not match any single RTL +cell type but only combinations of cells. + +For these cases Yosys provides the extract pass that can match a given set of +modules against a design and identify the portions of the design that are +identical (i.e. isomorphic subcircuits) to any of the given modules. These +matched subcircuits are then replaced by instances of the given modules. + +The extract pass also finds basic variations of the given modules, such as +swapped inputs on commutative cell types. + +In addition to this the extract pass also has limited support for frequent +subcircuit mining, i.e. the process of finding recurring subcircuits in the +design. This has a few applications, including the design of new coarse-grain +architectures :cite:p:`intersynthFdlBookChapter`. + +The hard algorithmic work done by the extract pass (solving the isomorphic +subcircuit problem and frequent subcircuit mining) is performed using the +SubCircuit library that can also be used stand-alone without Yosys (see +:ref:`sec:SubCircuit`). + +.. _sec:techmap_extern: + +Gate-level technology mapping +----------------------------- + +On the gate-level the target architecture is usually described by a "Liberty +file". The Liberty file format is an industry standard format that can be used +to describe the behaviour and other properties of standard library cells . + +Mapping a design utilizing the Yosys internal gate library (e.g. as a result of +mapping it to this representation using the techmap pass) is performed in two +phases. + +First the register cells must be mapped to the registers that are available on +the target architectures. The target architecture might not provide all +variations of d-type flip-flops with positive and negative clock edge, +high-active and low-active asynchronous set and/or reset, etc. Therefore the +process of mapping the registers might add additional inverters to the design +and thus it is important to map the register cells first. + +Mapping of the register cells may be performed by using the dfflibmap pass. This +pass expects a Liberty file as argument (using the -liberty option) and only +uses the register cells from the Liberty file. + +Secondly the combinational logic must be mapped to the target architecture. This +is done using the external program ABC via the abc pass by using the -liberty +option to the pass. Note that in this case only the combinatorial cells are used +from the cell library. + +Occasionally Liberty files contain trade secrets (such as sensitive timing +information) that cannot be shared freely. This complicates processes such as +reporting bugs in the tools involved. When the information in the Liberty file +used by Yosys and ABC are not part of the sensitive information, the additional +tool yosys-filterlib (see :ref:`sec:filterlib`) can be used to strip the +sensitive information from the Liberty file. |