aboutsummaryrefslogtreecommitdiffstats
path: root/frontends/blif
diff options
context:
space:
mode:
Diffstat (limited to 'frontends/blif')
0 files changed, 0 insertions, 0 deletions
d='n57' href='#n57'>57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
-- EMACS settings: -*-  tab-width: 2; indent-tabs-mode: t -*-
-- vim: tabstop=2:shiftwidth=2:noexpandtab
-- kate: tab-width 2; replace-tabs off; indent-width 2;
-- 
-- =============================================================================
-- Authors:					Thomas B. Preusser
--
-- Entity:					arith_addw
--
-- Description:
-- ------------------------------------
--	Implements wide addition providing several options all based
--	on an adaptation of a carry-select approach.
--	
--	References:
--		* Hong Diep Nguyen and Bogdan Pasca and Thomas B. Preusser:
--			FPGA-Specific Arithmetic Optimizations of Short-Latency Adders,
--			FPL 2011.
--			-> ARCH:     AAM, CAI, CCA
--			-> SKIPPING: CCC
--		
--		* Marcin Rogawski, Kris Gaj and Ekawat Homsirikamol:
--			A Novel Modular Adder for One Thousand Bits and More
--			Using Fast Carry Chains of Modern FPGAs, FPL 2014.
--			-> ARCH:		 PAI
--			-> SKIPPING: PPN_KS, PPN_BK
--	
-- License:
-- =============================================================================
-- Copyright 2007-2015 Technische Universitaet Dresden - Germany
--										 Chair for VLSI-Design, Diagnostics and Architecture
-- 
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
-- 
--		http://www.apache.org/licenses/LICENSE-2.0
-- 
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-- =============================================================================

library	IEEE;
use			IEEE.std_logic_1164.all;

library	PoC;
use			PoC.utils.all;
use			PoC.arith.all;


entity arith_addw is
  generic (
    N : positive;                    -- Operand Width
    K : positive;                    -- Block Count

    ARCH        : tArch     := AAM;        -- Architecture
    BLOCKING    : tBlocking := DFLT;       -- Blocking Scheme
    SKIPPING    : tSkipping := CCC;        -- Carry Skip Scheme
		P_INCLUSIVE : boolean   := false       -- Use Inclusive Propagate, i.e. c^1
  );
  port (
    a, b : in std_logic_vector(N-1 downto 0);
    cin  : in std_logic;

    s    : out std_logic_vector(N-1 downto 0);
    cout : out std_logic
  );
end entity;

use std.textio.all;

library	IEEE;
use			IEEE.numeric_std.all;


architecture rtl of arith_addw is

  -- Determine Block Boundaries
  type tBlocking_vector is array(tArch) of tBlocking;
  constant DEFAULT_BLOCKING : tBlocking_vector := (AAM => ASC, CAI => DESC, PAI => DESC, CCA => DESC);

  type integer_vector is array(natural range<>) of integer;
  impure function compute_blocks return integer_vector is
    variable  bs  : tBlocking := BLOCKING;
    variable  res : integer_vector(K-1 downto 0);

    variable l : line;
  begin
    if bs = DFLT then
      bs := DEFAULT_BLOCKING(ARCH);
    end if;
    case bs is
      when FIX =>
        assert N >= K
          report "Cannot have more blocks than input bits."
          severity failure;
        for i in res'range loop
          res(i) := ((i+1)*N+K/2)/K;
        end loop;

      when ASC =>
        assert N-K*(K-1)/2 >= K
          report "Too few input bits to implement growing block sizes."
          severity failure;
        for i in res'range loop
          res(i) := ((i+1)*(N-K*(K-1)/2)+K/2)/K + (i+1)*i/2;
        end loop;

      when DESC =>
        assert N-K*(K-1)/2 >= K
          report "Too few input bits to implement growing block sizes."
          severity failure;
        for i in res'range loop
          res(i) := ((i+1)*(N+K*(K-1)/2)+K/2)/K - (i+1)*i/2;
        end loop;

      when others =>
        report "Unknown blocking scheme: "&tBlocking'image(bs) severity failure;

    end case;
    --synthesis translate_off
    write(l, "Implementing "&integer'image(N)&"-bit wide adder: ARCH="&tArch'image(ARCH)&
             ", BLOCKING="&tBlocking'image(bs)&'[');
    for i in K-1 downto 1 loop
      write(l, res(i)-res(i-1));
      write(l, ',');
    end loop;
    write(l, res(0));
    write(l, "], SKIPPING="&tSkipping'image(SKIPPING));
    writeline(output, l);
    --synthesis translate_on
    return  res;
  end compute_blocks;
  constant BLOCKS : integer_vector(K-1 downto 0) := compute_blocks;

  signal g : std_logic_vector(K-1 downto 1);  -- Block Generate
  signal p : std_logic_vector(K-1 downto 1);  -- Block Propagate
  signal c : std_logic_vector(K-1 downto 1);  -- Block Carry-in
begin

  -----------------------------------------------------------------------------
  -- Rightmost Block + Carry Computation Core
  blkCore: block
    constant M : positive := BLOCKS(0);  -- Rightmost Block Width
  begin

    -- Carry Computation with Carry Chain
    genCCC: if SKIPPING = CCC generate
      signal x, y : unsigned(K+M-2 downto 0);
      signal z    : unsigned(K+M-1 downto 0);
    begin
      x <= unsigned(g & a(M-1 downto 0));
			genExcl: if not P_INCLUSIVE generate
				y <= unsigned((g or p) & b(M-1 downto 0));
				-- carry recovery for other blocks
				c <= std_logic_vector(z(K+M-2 downto M)) xor p;
			end generate genExcl;
			genIncl: if P_INCLUSIVE generate
				y <= unsigned(p & b(M-1 downto 0));
				-- carry recovery for other blocks
				c <= std_logic_vector(z(K+M-2 downto M)) xor (p xor g);
			end generate genIncl;
      z <= ('0' & x) + y + (0 to 0 => cin);

      -- output of rightmost block
      s(M-1 downto 0) <= std_logic_vector(z(M-1 downto 0));

      -- carry output
      cout <= z(z'left);
    end generate genCCC;

    -- LUT-based Carry Computations
    genLUT: if SKIPPING /= CCC generate
      signal z : unsigned(M downto 0);
    begin
      -- rightmost block
      z <= unsigned('0' & a(M-1 downto 0)) + unsigned(b(M-1 downto 0)) + (0 to 0 => cin);
      s(M-1 downto 0) <= std_logic_vector(z(M-1 downto 0));

      -- Plain linear LUT-based Carry Forwarding
      genPlain: if SKIPPING = PLAIN generate
        signal t : std_logic_vector(K downto 1);
      begin
        -- carry forwarding
        t(1)            <= z(M);
        t(K downto 2)   <= g or (p and c);
        c    <= t(K-1 downto 1);
        cout <= t(K);
      end generate genPlain;

			-- Kogge-Stone Parallel Prefix Network
			genPPN_KS: if SKIPPING = PPN_KS generate
				subtype tLevel is std_logic_vector(K-1 downto 0);
				type tLevels is array(natural range<>) of tLevel;
				constant LEVELS : positive := log2ceil(K);
				signal   pp, gg : tLevels(0 to LEVELS);
			begin
				-- carry forwarding
				pp(0) <= p & 'X';
				gg(0) <= g & z(M);
				genLevels: for i in 1 to LEVELS generate
					constant D : positive := 2**(i-1);
				begin
					pp(i) <= (pp(i-1)(K-1 downto D) and pp(i-1)(K-D-1 downto 0)) & pp(i-1)(D-1 downto 0);
					gg(i) <= (gg(i-1)(K-1 downto D) or (pp(i-1)(K-1 downto D) and gg(i-1)(K-D-1 downto 0))) & gg(i-1)(D-1 downto 0);
				end generate genLevels;
        c    <= gg(LEVELS)(K-2 downto 0);
        cout <= gg(LEVELS)(K-1);
      end generate genPPN_KS;

			-- Brent-Kung Parallel Prefix Network
			genPPN_BK: if SKIPPING = PPN_BK generate
				subtype tLevel is std_logic_vector(K-1 downto 0);
				type tLevels is array(natural range<>) of tLevel;
				constant LEVELS : positive := log2ceil(K);
				signal   pp, gg : tLevels(0 to 2*LEVELS-1);
			begin
				-- carry forwarding
				pp(0) <= p & 'X';
				gg(0) <= g & z(M);
				genMerge: for i in 1 to LEVELS generate
					constant D : positive := 2**(i-1);
				begin
					genBits: for j in 0 to K-1 generate
						genOp: if j mod (2*D) = 2*D-1 generate
							gg(i)(j) <= (pp(i-1)(j) and gg(i-1)(j-D)) or gg(i-1)(j);
							pp(i)(j) <=  pp(i-1)(j) and pp(i-1)(j-D);
						end generate;
						genCp: if j mod (2*D) /= 2*D-1 generate
							gg(i)(j) <= gg(i-1)(j);
							pp(i)(j) <= pp(i-1)(j);
						end generate;
					end generate;
				end generate genMerge;
				genSpread: for i in LEVELS+1 to 2*LEVELS-1 generate
					constant D : positive := 2**(2*LEVELS-i-1);
				begin
					genBits: for j in 0 to K-1 generate
						genOp: if j > D and (j+1) mod (2*D) = D generate
							gg(i)(j) <= (pp(i-1)(j) and gg(i-1)(j-D)) or gg(i-1)(j);
							pp(i)(j) <=  pp(i-1)(j) and pp(i-1)(j-D);
						end generate;
						genCp: if j <= D or (j+1) mod (2*D) /= D generate
							gg(i)(j) <= gg(i-1)(j);
							pp(i)(j) <= pp(i-1)(j);
						end generate;
					end generate;
				end generate genSpread;
        c    <= gg(gg'high)(K-2 downto 0);
        cout <= gg(gg'high)(K-1);
      end generate genPPN_BK;

    end generate genLUT;

  end block blkCore;

  -----------------------------------------------------------------------------
  -- Implement Carry-Select Variant
  --
  -- all but rightmost block, implementation architecture selected by ARCH
  genBlocks: for i in 1 to K-1 generate
    -- Covered Index Range
    constant LO : positive := BLOCKS(i-1);  -- Low  Bit Index
    constant HI : positive := BLOCKS(i)-1;  -- High Bit Index

    -- Internal Block Interface
    signal aa : unsigned(HI downto LO);
    signal bb : unsigned(HI downto LO);
    signal ss : unsigned(HI downto LO);
  begin

    -- Connect common block interface
    aa <= unsigned(a(HI downto LO));
    bb <= unsigned(b(HI downto LO));
    s(HI downto LO) <= std_logic_vector(ss);

    -- ARCH-specific Implementations

    --Add-Add-Multiplex
    genAAM: if ARCH = AAM generate
      signal s0 : unsigned(HI+1 downto LO);     -- Block Sum (cin=0)
      signal s1 : unsigned(HI+1 downto LO);     -- Block Sum (cin=1)
    begin
      s0 <= ('0' & aa) + bb;
      s1 <= ('0' & aa) + bb + 1;
      g(i) <= s0(HI+1);
			genExcl: if not P_INCLUSIVE generate
				p(i) <= s1(HI+1) xor s0(HI+1);
			end generate genExcl;
			genIncl: if P_INCLUSIVE generate
				p(i) <= s1(HI+1);
			end generate genIncl;

      ss <= s0(HI downto LO) when c(i) = '0' else s1(HI downto LO);