diff options
Diffstat (limited to 'libs/ezsat/puzzle3d.cc')
-rw-r--r-- | libs/ezsat/puzzle3d.cc | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/libs/ezsat/puzzle3d.cc b/libs/ezsat/puzzle3d.cc new file mode 100644 index 000000000..1655e6972 --- /dev/null +++ b/libs/ezsat/puzzle3d.cc @@ -0,0 +1,293 @@ +/* + * ezSAT -- A simple and easy to use CNF generator for SAT solvers + * + * Copyright (C) 2013 Clifford Wolf <clifford@clifford.at> + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +#include "ezminisat.h" +#include <stdio.h> +#include <assert.h> + +#define DIM_X 5 +#define DIM_Y 5 +#define DIM_Z 5 + +#define NUM_124 6 +#define NUM_223 6 + +ezMiniSAT ez; +int blockidx = 0; +std::map<int, std::string> blockinfo; +std::vector<int> grid[DIM_X][DIM_Y][DIM_Z]; + +struct blockgeom_t +{ + int center_x, center_y, center_z; + int size_x, size_y, size_z; + int var; + + void mirror_x() { center_x *= -1; } + void mirror_y() { center_y *= -1; } + void mirror_z() { center_z *= -1; } + + void rotate_x() { int tmp[4] = { center_y, center_z, size_y, size_z }; center_y = tmp[1]; center_z = -tmp[0]; size_y = tmp[3]; size_z = tmp[2]; } + void rotate_y() { int tmp[4] = { center_x, center_z, size_x, size_z }; center_x = tmp[1]; center_z = -tmp[0]; size_x = tmp[3]; size_z = tmp[2]; } + void rotate_z() { int tmp[4] = { center_x, center_y, size_x, size_y }; center_x = tmp[1]; center_y = -tmp[0]; size_x = tmp[3]; size_y = tmp[2]; } + + bool operator< (const blockgeom_t &other) const { + if (center_x != other.center_x) return center_x < other.center_x; + if (center_y != other.center_y) return center_y < other.center_y; + if (center_z != other.center_z) return center_z < other.center_z; + if (size_x != other.size_x) return size_x < other.size_x; + if (size_y != other.size_y) return size_y < other.size_y; + if (size_z != other.size_z) return size_z < other.size_z; + if (var != other.var) return var < other.var; + return false; + } +}; + +// geometry data for spatial symmetry constraints +std::set<blockgeom_t> blockgeom; + +int add_block(int pos_x, int pos_y, int pos_z, int size_x, int size_y, int size_z, int blockidx) +{ + char buffer[1024]; + snprintf(buffer, 1024, "block(%d,%d,%d,%d,%d,%d,%d);", size_x, size_y, size_z, pos_x, pos_y, pos_z, blockidx); + + int var = ez.literal(); + blockinfo[var] = buffer; + + for (int ix = pos_x; ix < pos_x+size_x; ix++) + for (int iy = pos_y; iy < pos_y+size_y; iy++) + for (int iz = pos_z; iz < pos_z+size_z; iz++) + grid[ix][iy][iz].push_back(var); + + blockgeom_t bg; + bg.size_x = 2*size_x; + bg.size_y = 2*size_y; + bg.size_z = 2*size_z; + bg.center_x = (2*pos_x + size_x) - DIM_X; + bg.center_y = (2*pos_y + size_y) - DIM_Y; + bg.center_z = (2*pos_z + size_z) - DIM_Z; + bg.var = var; + + assert(blockgeom.count(bg) == 0); + blockgeom.insert(bg); + + return var; +} + +void add_block_positions_124(std::vector<int> &block_positions_124) +{ + block_positions_124.clear(); + for (int size_x = 1; size_x <= 4; size_x *= 2) + for (int size_y = 1; size_y <= 4; size_y *= 2) + for (int size_z = 1; size_z <= 4; size_z *= 2) { + if (size_x == size_y || size_y == size_z || size_z == size_x) + continue; + for (int ix = 0; ix <= DIM_X-size_x; ix++) + for (int iy = 0; iy <= DIM_Y-size_y; iy++) + for (int iz = 0; iz <= DIM_Z-size_z; iz++) + block_positions_124.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++)); + } +} + +void add_block_positions_223(std::vector<int> &block_positions_223) +{ + block_positions_223.clear(); + for (int orientation = 0; orientation < 3; orientation++) { + int size_x = orientation == 0 ? 3 : 2; + int size_y = orientation == 1 ? 3 : 2; + int size_z = orientation == 2 ? 3 : 2; + for (int ix = 0; ix <= DIM_X-size_x; ix++) + for (int iy = 0; iy <= DIM_Y-size_y; iy++) + for (int iz = 0; iz <= DIM_Z-size_z; iz++) + block_positions_223.push_back(add_block(ix, iy, iz, size_x, size_y, size_z, blockidx++)); + } +} + +// use simple built-in random number generator to +// ensure determinism of the program across platforms +uint32_t xorshift32() { + static uint32_t x = 314159265; + x ^= x << 13; + x ^= x >> 17; + x ^= x << 5; + return x; +} + +void condense_exclusives(std::vector<int> &vars) +{ + std::map<int, std::set<int>> exclusive; + + for (int ix = 0; ix < DIM_X; ix++) + for (int iy = 0; iy < DIM_Y; iy++) + for (int iz = 0; iz < DIM_Z; iz++) { + for (int a : grid[ix][iy][iz]) + for (int b : grid[ix][iy][iz]) + if (a != b) + exclusive[a].insert(b); + } + + std::vector<std::vector<int>> pools; + + for (int a : vars) + { + std::vector<int> candidate_pools; + for (size_t i = 0; i < pools.size(); i++) + { + for (int b : pools[i]) + if (exclusive[a].count(b) == 0) + goto no_candidate_pool; + candidate_pools.push_back(i); + no_candidate_pool:; + } + + if (candidate_pools.size() > 0) { + int p = candidate_pools[xorshift32() % candidate_pools.size()]; + pools[p].push_back(a); + } else { + pools.push_back(std::vector<int>()); + pools.back().push_back(a); + } + } + + std::vector<int> new_vars; + for (auto &pool : pools) + { + std::vector<int> formula; + int var = ez.literal(); + + for (int a : pool) + formula.push_back(ez.OR(ez.NOT(a), var)); + formula.push_back(ez.OR(ez.expression(ezSAT::OpOr, pool), ez.NOT(var))); + + ez.assume(ez.onehot(pool, true)); + ez.assume(ez.expression(ezSAT::OpAnd, formula)); + new_vars.push_back(var); + } + + printf("Condensed %d variables into %d one-hot pools.\n", int(vars.size()), int(new_vars.size())); + vars.swap(new_vars); +} + +int main() +{ + printf("\nCreating SAT encoding..\n"); + + // add 1x2x4 blocks + std::vector<int> block_positions_124; + add_block_positions_124(block_positions_124); + condense_exclusives(block_positions_124); + ez.assume(ez.manyhot(block_positions_124, NUM_124)); + + // add 2x2x3 blocks + std::vector<int> block_positions_223; + add_block_positions_223(block_positions_223); + condense_exclusives(block_positions_223); + ez.assume(ez.manyhot(block_positions_223, NUM_223)); + + // add constraint for max one block per grid element + for (int ix = 0; ix < DIM_X; ix++) + for (int iy = 0; iy < DIM_Y; iy++) + for (int iz = 0; iz < DIM_Z; iz++) { + assert(grid[ix][iy][iz].size() > 0); + ez.assume(ez.onehot(grid[ix][iy][iz], true)); + } + + printf("Found %d possible block positions.\n", int(blockgeom.size())); + + // look for spatial symmetries + std::set<std::set<blockgeom_t>> symmetries; + symmetries.insert(blockgeom); + bool keep_running = true; + while (keep_running) { + keep_running = false; + std::set<std::set<blockgeom_t>> old_sym; + old_sym.swap(symmetries); + for (auto &old_sym_set : old_sym) + { + std::set<blockgeom_t> mx, my, mz; + std::set<blockgeom_t> rx, ry, rz; + for (auto &bg : old_sym_set) { + blockgeom_t bg_mx = bg, bg_my = bg, bg_mz = bg; + blockgeom_t bg_rx = bg, bg_ry = bg, bg_rz = bg; + bg_mx.mirror_x(), bg_my.mirror_y(), bg_mz.mirror_z(); + bg_rx.rotate_x(), bg_ry.rotate_y(), bg_rz.rotate_z(); + mx.insert(bg_mx), my.insert(bg_my), mz.insert(bg_mz); + rx.insert(bg_rx), ry.insert(bg_ry), rz.insert(bg_rz); + } + if (!old_sym.count(mx) || !old_sym.count(my) || !old_sym.count(mz) || + !old_sym.count(rx) || !old_sym.count(ry) || !old_sym.count(rz)) + keep_running = true; + symmetries.insert(old_sym_set); + symmetries.insert(mx); + symmetries.insert(my); + symmetries.insert(mz); + symmetries.insert(rx); + symmetries.insert(ry); + symmetries.insert(rz); + } + } + + // add constraints to eliminate all the spatial symmetries + std::vector<std::vector<int>> vecvec; + for (auto &sym : symmetries) { + std::vector<int> vec; + for (auto &bg : sym) + vec.push_back(bg.var); + vecvec.push_back(vec); + } + for (size_t i = 1; i < vecvec.size(); i++) + ez.assume(ez.ordered(vecvec[0], vecvec[1])); + + printf("Found and eliminated %d spatial symmetries.\n", int(symmetries.size())); + printf("Generated %d clauses over %d variables.\n", ez.numCnfVariables(), int(ez.cnf().size())); + + std::vector<int> modelExpressions; + std::vector<bool> modelValues; + + for (auto &it : blockinfo) + modelExpressions.push_back(it.first); + + int solution_counter = 0; + while (1) + { + printf("\nSolving puzzle..\n"); + bool ok = ez.solve(modelExpressions, modelValues); + + if (!ok) { + printf("No more solutions found!\n"); + break; + } + + printf("Puzzle solution:\n"); + std::vector<int> constraint; + for (size_t i = 0; i < modelExpressions.size(); i++) + if (modelValues[i]) { + constraint.push_back(ez.NOT(modelExpressions[i])); + printf("%s\n", blockinfo.at(modelExpressions[i]).c_str()); + } + ez.assume(ez.expression(ezSAT::OpOr, constraint)); + solution_counter++; + } + + printf("\nFound %d distinct solutions.\n", solution_counter); + printf("Have a nice day.\n\n"); + + return 0; +} + |