diff options
Diffstat (limited to 'manual/APPNOTE_010_Verilog_to_BLIF.tex')
-rw-r--r-- | manual/APPNOTE_010_Verilog_to_BLIF.tex | 466 |
1 files changed, 0 insertions, 466 deletions
diff --git a/manual/APPNOTE_010_Verilog_to_BLIF.tex b/manual/APPNOTE_010_Verilog_to_BLIF.tex deleted file mode 100644 index 16254d593..000000000 --- a/manual/APPNOTE_010_Verilog_to_BLIF.tex +++ /dev/null @@ -1,466 +0,0 @@ - -% IEEEtran howto: -% http://ftp.univie.ac.at/packages/tex/macros/latex/contrib/IEEEtran/IEEEtran_HOWTO.pdf -\documentclass[9pt,technote,a4paper]{IEEEtran} - -\usepackage[T1]{fontenc} % required for luximono! -\usepackage[scaled=0.8]{luximono} % typewriter font with bold face - -% To install the luximono font files: -% getnonfreefonts-sys --all or -% getnonfreefonts-sys luximono -% -% when there are trouble you might need to: -% - Create /etc/texmf/updmap.d/99local-luximono.cfg -% containing the single line: Map ul9.map -% - Run update-updmap followed by mktexlsr and updmap-sys -% -% This commands must be executed as root with a root environment -% (i.e. run "sudo su" and then execute the commands in the root -% shell, don't just prefix the commands with "sudo"). - -\usepackage[unicode,bookmarks=false]{hyperref} -\usepackage[english]{babel} -\usepackage[utf8]{inputenc} -\usepackage{amssymb} -\usepackage{amsmath} -\usepackage{amsfonts} -\usepackage{units} -\usepackage{nicefrac} -\usepackage{eurosym} -\usepackage{graphicx} -\usepackage{verbatim} -\usepackage{algpseudocode} -\usepackage{scalefnt} -\usepackage{xspace} -\usepackage{color} -\usepackage{colortbl} -\usepackage{multirow} -\usepackage{hhline} -\usepackage{listings} -\usepackage{float} - -\usepackage{tikz} -\usetikzlibrary{calc} -\usetikzlibrary{arrows} -\usetikzlibrary{scopes} -\usetikzlibrary{through} -\usetikzlibrary{shapes.geometric} - -\lstset{basicstyle=\ttfamily,frame=trBL,xleftmargin=2em,xrightmargin=1em,numbers=left} - -\begin{document} - -\title{Yosys Application Note 010: \\ Converting Verilog to BLIF} -\author{Claire Xenia Wolf \\ November 2013} -\maketitle - -\begin{abstract} -Verilog-2005 is a powerful Hardware Description Language (HDL) that can be used -to easily create complex designs from small HDL code. It is the preferred -method of design entry for many designers\footnote{The other half prefers VHDL, -a very different but -- of course -- equally powerful language.}. - -The Berkeley Logic Interchange Format (BLIF) \cite{blif} is a simple file format for -exchanging sequential logic between programs. It is easy to generate and -easy to parse and is therefore the preferred method of design entry for -many authors of logic synthesis tools. - -Yosys \cite{yosys} is a feature-rich -Open-Source Verilog synthesis tool that can be used to bridge the gap between -the two file formats. It implements most of Verilog-2005 and thus can be used -to import modern behavioral Verilog designs into BLIF-based design flows -without dependencies on proprietary synthesis tools. - -The scope of Yosys goes of course far beyond Verilog logic synthesis. But -it is a useful and important feature and this Application Note will focus -on this aspect of Yosys. -\end{abstract} - -\section{Installation} - -Yosys written in C++ (using features from C++11) and is tested on modern Linux. -It should compile fine on most UNIX systems with a C++11 compiler. The README -file contains useful information on building Yosys and its prerequisites. - -Yosys is a large and feature-rich program with a couple of dependencies. It is, -however, possible to deactivate some of the dependencies in the Makefile, -resulting in features in Yosys becoming unavailable. When problems with building -Yosys are encountered, a user who is only interested in the features of Yosys -that are discussed in this Application Note may deactivate {\tt TCL}, {\tt Qt} -and {\tt MiniSAT} support in the {\tt Makefile} and may opt against building -{\tt yosys-abc}. - -\bigskip - -This Application Note is based on GIT Rev. {\tt e216e0e} from 2013-11-23 of -Yosys \cite{yosys}. The Verilog sources used for the examples are taken from -yosys-bigsim \cite{bigsim}, a collection of real-world designs used for -regression testing Yosys. - -\section{Getting Started} - -We start our tour with the Navr\'e processor from yosys-bigsim. The Navr\'e -processor \cite{navre} is an Open Source AVR clone. It is a single module ({\tt -softusb\_navre}) in a single design file ({\tt softusb\_navre.v}). It also is -using only features that map nicely to the BLIF format, for example it only -uses synchronous resets. - -Converting {\tt softusb\_navre.v} to {\tt softusb\_navre.blif} could not be -easier: - -\begin{figure}[H] -\begin{lstlisting}[language=sh] -yosys -o softusb_navre.blif -S softusb_navre.v -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Calling Yosys without script file} -\end{figure} - -Behind the scenes Yosys is controlled by synthesis scripts that execute -commands that operate on Yosys' internal state. For example, the {\tt -o -softusb\_navre.blif} option just adds the command {\tt write\_blif -softusb\_navre.blif} to the end of the script. Likewise a file on the -command line -- {\tt softusb\_navre.v} in this case -- adds the command -{\tt read\_verilog softusb\_navre.v} to the beginning of the -synthesis script. In both cases the file type is detected from the -file extension. - -Finally the option {\tt -S} instantiates a built-in default synthesis script. -Instead of using {\tt -S} one could also specify the synthesis commands -for the script on the command line using the {\tt -p} option, either using -individual options for each command or by passing one big command string -with a semicolon-separated list of commands. But in most cases it is more -convenient to use an actual script file. - -\section{Using a Synthesis Script} - -With a script file we have better control over Yosys. The following script -file replicates what the command from the last section did: - -\begin{figure}[H] -\begin{lstlisting}[language=sh] -read_verilog softusb_navre.v -hierarchy -proc; opt; memory; opt; techmap; opt -write_blif softusb_navre.blif -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{\tt softusb\_navre.ys} -\end{figure} - -The first and last line obviously read the Verilog file and write the BLIF -file. - -\medskip - -The 2nd line checks the design hierarchy and instantiates parametrized -versions of the modules in the design, if necessary. In the case of this -simple design this is a no-op. However, as a general rule a synthesis script -should always contain this command as first command after reading the input -files. - -\medskip - -The 3rd line does most of the actual work: - -\begin{itemize} -\item The command {\tt opt} is the Yosys' built-in optimizer. It can perform -some simple optimizations such as const-folding and removing unconnected parts -of the design. It is common practice to call opt after each major step in the -synthesis procedure. In cases where too much optimization is not appreciated -(for example when analyzing a design), it is recommended to call {\tt clean} -instead of {\tt opt}. -\item The command {\tt proc} converts {\it processes} (Yosys' internal -representation of Verilog {\tt always}- and {\tt initial}-blocks) to circuits -of multiplexers and storage elements (various types of flip-flops). -\item The command {\tt memory} converts Yosys' internal representations of -arrays and array accesses to multi-port block memories, and then maps this -block memories to address decoders and flip-flops, unless the option {\tt -nomap} -is used, in which case the multi-port block memories stay in the design -and can then be mapped to architecture-specific memory primitives using -other commands. -\item The command {\tt techmap} turns a high-level circuit with coarse grain -cells such as wide adders and multipliers to a fine-grain circuit of simple -logic primitives and single-bit storage elements. The command does that by -substituting the complex cells by circuits of simpler cells. It is possible -to provide a custom set of rules for this process in the form of a Verilog -source file, as we will see in the next section. -\end{itemize} - -Now Yosys can be run with the filename of the synthesis script as argument: - -\begin{figure}[H] -\begin{lstlisting}[language=sh] -yosys softusb_navre.ys -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Calling Yosys with script file} -\end{figure} - -\medskip - -Now that we are using a synthesis script we can easily modify how Yosys -synthesizes the design. The first thing we should customize is the -call to the {\tt hierarchy} command: - -Whenever it is known that there are no implicit blackboxes in the design, i.e. -modules that are referenced but are not defined, the {\tt hierarchy} command -should be called with the {\tt -check} option. This will then cause synthesis -to fail when implicit blackboxes are found in the design. - -The 2nd thing we can improve regarding the {\tt hierarchy} command is that we -can tell it the name of the top level module of the design hierarchy. It will -then automatically remove all modules that are not referenced from this top -level module. - -\medskip - -For many designs it is also desired to optimize the encodings for the finite -state machines (FSMs) in the design. The {\tt fsm} command finds FSMs, extracts -them, performs some basic optimizations and then generate a circuit from -the extracted and optimized description. It would also be possible to tell -the {\tt fsm} command to leave the FSMs in their extracted form, so they can be -further processed using custom commands. But in this case we don't want that. - -\medskip - -So now we have the final synthesis script for generating a BLIF file -for the Navr\'e CPU: - -\begin{figure}[H] -\begin{lstlisting}[language=sh] -read_verilog softusb_navre.v -hierarchy -check -top softusb_navre -proc; opt; memory; opt; fsm; opt; techmap; opt -write_blif softusb_navre.blif -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{{\tt softusb\_navre.ys} (improved)} -\end{figure} - -\section{Advanced Example: The Amber23 ARMv2a CPU} - -Our 2nd example is the Amber23 \cite{amber} -ARMv2a CPU. Once again we base our example on the Verilog code that is included -in yosys-bigsim \cite{bigsim}. - -\begin{figure}[b!] -\begin{lstlisting}[language=sh] -read_verilog a23_alu.v -read_verilog a23_barrel_shift_fpga.v -read_verilog a23_barrel_shift.v -read_verilog a23_cache.v -read_verilog a23_coprocessor.v -read_verilog a23_core.v -read_verilog a23_decode.v -read_verilog a23_execute.v -read_verilog a23_fetch.v -read_verilog a23_multiply.v -read_verilog a23_ram_register_bank.v -read_verilog a23_register_bank.v -read_verilog a23_wishbone.v -read_verilog generic_sram_byte_en.v -read_verilog generic_sram_line_en.v -hierarchy -check -top a23_core -add -global_input globrst 1 -proc -global_arst globrst -techmap -map adff2dff.v -opt; memory; opt; fsm; opt; techmap -write_blif amber23.blif -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{\tt amber23.ys} -\label{aber23.ys} -\end{figure} - -The problem with this core is that it contains no dedicated reset logic. -Instead the coding techniques shown in Listing~\ref{glob_arst} are used to -define reset values for the global asynchronous reset in an FPGA -implementation. This design can not be expressed in BLIF as it is. Instead we -need to use a synthesis script that transforms this form to synchronous resets that -can be expressed in BLIF. - -(Note that there is no problem if this coding techniques are used to model -ROM, where the register is initialized using this syntax but is never updated -otherwise.) - -\medskip - -Listing~\ref{aber23.ys} shows the synthesis script for the Amber23 core. In -line 17 the {\tt add} command is used to add a 1-bit wide global input signal -with the name {\tt globrst}. That means that an input with that name is added -to each module in the design hierarchy and then all module instantiations are -altered so that this new signal is connected throughout the whole design -hierarchy. - -\begin{figure}[t!] -\begin{lstlisting}[language=Verilog] -reg [7:0] a = 13, b; -initial b = 37; -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Implicit coding of global asynchronous resets} -\label{glob_arst} -\end{figure} - -\begin{figure}[b!] -\begin{lstlisting}[language=Verilog] -(* techmap_celltype = "$adff" *) -module adff2dff (CLK, ARST, D, Q); - -parameter WIDTH = 1; -parameter CLK_POLARITY = 1; -parameter ARST_POLARITY = 1; -parameter ARST_VALUE = 0; - -input CLK, ARST; -input [WIDTH-1:0] D; -output reg [WIDTH-1:0] Q; - -wire [1023:0] _TECHMAP_DO_ = "proc"; - -wire _TECHMAP_FAIL_ = - !CLK_POLARITY || !ARST_POLARITY; - -always @(posedge CLK) - if (ARST) - Q <= ARST_VALUE; - else - Q <= D; - -endmodule -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{\tt adff2dff.v} -\label{adff2dff.v} -\end{figure} - -In line 18 the {\tt proc} command is called. But in this script the signal name -{\tt globrst} is passed to the command as a global reset signal for resetting -the registers to their assigned initial values. - -Finally in line 19 the {\tt techmap} command is used to replace all instances -of flip-flops with asynchronous resets with flip-flops with synchronous resets. -The map file used for this is shown in Listing~\ref{adff2dff.v}. Note how the -{\tt techmap\_celltype} attribute is used in line 1 to tell the techmap command -which cells to replace in the design, how the {\tt \_TECHMAP\_FAIL\_} wire in -lines 15 and 16 (which evaluates to a constant value) determines if the -parameter set is compatible with this replacement circuit, and how the {\tt -\_TECHMAP\_DO\_} wire in line 13 provides a mini synthesis-script to be used to -process this cell. - -\begin{figure*} -\begin{lstlisting}[language=C] -#include <stdint.h> -#include <stdbool.h> - -#define BITMAP_SIZE 64 -#define OUTPORT 0x10000000 - -static uint32_t bitmap[BITMAP_SIZE/32]; - -static void bitmap_set(uint32_t idx) { bitmap[idx/32] |= 1 << (idx % 32); } -static bool bitmap_get(uint32_t idx) { return (bitmap[idx/32] & (1 << (idx % 32))) != 0; } -static void output(uint32_t val) { *((volatile uint32_t*)OUTPORT) = val; } - -int main() { - uint32_t i, j, k; - output(2); - for (i = 0; i < BITMAP_SIZE; i++) { - if (bitmap_get(i)) continue; - output(3+2*i); - for (j = 2*(3+2*i);; j += 3+2*i) { - if (j%2 == 0) continue; - k = (j-3)/2; - if (k >= BITMAP_SIZE) break; - bitmap_set(k); - } - } - output(0); - return 0; -} -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Test program for the Amber23 CPU (Sieve of Eratosthenes). Compiled using -GCC 4.6.3 for ARM with {\tt -Os -marm -march=armv2a -mno-thumb-interwork --ffreestanding}, linked with {\tt -{}-fix-v4bx} set and booted with a custom -setup routine written in ARM assembler.} -\label{sieve} -\end{figure*} - -\section{Verification of the Amber23 CPU} - -The BLIF file for the Amber23 core, generated using Listings~\ref{aber23.ys} -and \ref{adff2dff.v} and the version of the Amber23 RTL source that is bundled -with yosys-bigsim, was verified using the test-bench from yosys-bigsim. -It successfully executed the program shown in Listing~\ref{sieve} in the -test-bench. - -For simulation the BLIF file was converted back to Verilog using ABC -\cite{ABC}. So this test includes the successful transformation of the BLIF -file into ABC's internal format as well. - -The only thing left to write about the simulation itself is that it probably -was one of the most energy inefficient and time consuming ways of successfully -calculating the first 31 primes the author has ever conducted. - -\section{Limitations} - -At the time of this writing Yosys does not support multi-dimensional memories, -does not support writing to individual bits of array elements, does not -support initialization of arrays with {\tt \$readmemb} and {\tt \$readmemh}, -and has only limited support for tristate logic, to name just a few -limitations. - -That being said, Yosys can synthesize an overwhelming majority of real-world -Verilog RTL code. The remaining cases can usually be modified to be compatible -with Yosys quite easily. - -The various designs in yosys-bigsim are a good place to look for examples -of what is within the capabilities of Yosys. - -\section{Conclusion} - -Yosys is a feature-rich Verilog-2005 synthesis tool. It has many uses, but -one is to provide an easy gateway from high-level Verilog code to low-level -logic circuits. - -The command line option {\tt -S} can be used to quickly synthesize Verilog -code to BLIF files without a hassle. - -With custom synthesis scripts it becomes possible to easily perform high-level -optimizations, such as re-encoding FSMs. In some extreme cases, such as the -Amber23 ARMv2 CPU, the more advanced Yosys features can be used to change a -design to fit a certain need without actually touching the RTL code. - -\begin{thebibliography}{9} - -\bibitem{yosys} -Claire Xenia Wolf. The Yosys Open SYnthesis Suite. \\ -\url{https://yosyshq.net/yosys/} - -\bibitem{bigsim} -yosys-bigsim, a collection of real-world Verilog designs for regression testing purposes. \\ -\url{https://github.com/YosysHQ/yosys-bigsim} - -\bibitem{navre} -Sebastien Bourdeauducq. Navr\'e AVR clone (8-bit RISC). \\ -\url{http://opencores.org/project,navre} - -\bibitem{amber} -Conor Santifort. Amber ARM-compatible core. \\ -\url{http://opencores.org/project,amber} - -\bibitem{ABC} -Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and Verification. \\ -\url{http://www.eecs.berkeley.edu/~alanmi/abc/} - -\bibitem{blif} -Berkeley Logic Interchange Format (BLIF) \\ -\url{http://vlsi.colorado.edu/~vis/blif.ps} - -\end{thebibliography} - - -\end{document} |