diff options
Diffstat (limited to 'manual/APPNOTE_012_Verilog_to_BTOR.tex')
-rw-r--r-- | manual/APPNOTE_012_Verilog_to_BTOR.tex | 435 |
1 files changed, 0 insertions, 435 deletions
diff --git a/manual/APPNOTE_012_Verilog_to_BTOR.tex b/manual/APPNOTE_012_Verilog_to_BTOR.tex deleted file mode 100644 index aabdc63c4..000000000 --- a/manual/APPNOTE_012_Verilog_to_BTOR.tex +++ /dev/null @@ -1,435 +0,0 @@ - -% IEEEtran howto: -% http://ftp.univie.ac.at/packages/tex/macros/latex/contrib/IEEEtran/IEEEtran_HOWTO.pdf -\documentclass[9pt,technote,a4paper]{IEEEtran} - -\usepackage[T1]{fontenc} % required for luximono! -\usepackage[scaled=0.8]{luximono} % typewriter font with bold face - -% To install the luximono font files: -% getnonfreefonts-sys --all or -% getnonfreefonts-sys luximono -% -% when there are trouble you might need to: -% - Create /etc/texmf/updmap.d/99local-luximono.cfg -% containing the single line: Map ul9.map -% - Run update-updmap followed by mktexlsr and updmap-sys -% -% This commands must be executed as root with a root environment -% (i.e. run "sudo su" and then execute the commands in the root -% shell, don't just prefix the commands with "sudo"). - -\usepackage[unicode,bookmarks=false]{hyperref} -\usepackage[english]{babel} -\usepackage[utf8]{inputenc} -\usepackage{amssymb} -\usepackage{amsmath} -\usepackage{amsfonts} -\usepackage{units} -\usepackage{nicefrac} -\usepackage{eurosym} -\usepackage{graphicx} -\usepackage{verbatim} -\usepackage{algpseudocode} -\usepackage{scalefnt} -\usepackage{xspace} -\usepackage{color} -\usepackage{colortbl} -\usepackage{multirow} -\usepackage{hhline} -\usepackage{listings} -\usepackage{float} - -\usepackage{tikz} -\usetikzlibrary{calc} -\usetikzlibrary{arrows} -\usetikzlibrary{scopes} -\usetikzlibrary{through} -\usetikzlibrary{shapes.geometric} - -\lstset{basicstyle=\ttfamily,frame=trBL,xleftmargin=2em,xrightmargin=1em,numbers=left} - -\begin{document} - -\title{Yosys Application Note 012: \\ Converting Verilog to BTOR} -\author{Ahmed Irfan and Claire Xenia Wolf \\ April 2015} -\maketitle - -\begin{abstract} -Verilog-2005 is a powerful Hardware Description Language (HDL) that -can be used to easily create complex designs from small HDL code. -BTOR~\cite{btor} is a bit-precise word-level format for model -checking. It is a simple format and easy to parse. It allows to model -the model checking problem over the theory of bit-vectors with -one-dimensional arrays, thus enabling to model Verilog designs with -registers and memories. Yosys~\cite{yosys} is an Open-Source Verilog -synthesis tool that can be used to convert Verilog designs with simple -assertions to BTOR format. - -\end{abstract} - -\section{Installation} - -Yosys written in C++ (using features from C++11) and is tested on -modern Linux. It should compile fine on most UNIX systems with a -C++11 compiler. The README file contains useful information on -building Yosys and its prerequisites. - -Yosys is a large and feature-rich program with some dependencies. For -this work, we may deactivate other extra features such as {\tt TCL} -and {\tt ABC} support in the {\tt Makefile}. - -\bigskip - -This Application Note is based on GIT Rev. {\tt 082550f} from -2015-04-04 of Yosys~\cite{yosys}. - -\section{Quick Start} - -We assume that the Verilog design is synthesizable and we also assume -that the design does not have multi-dimensional memories. As BTOR -implicitly initializes registers to zero value and memories stay -uninitialized, we assume that the Verilog design does -not contain initial blocks. For more details about the BTOR format, -please refer to~\cite{btor}. - -We provide a shell script {\tt verilog2btor.sh} which can be used to -convert a Verilog design to BTOR. The script can be found in the -{\tt backends/btor} directory. The following example shows its usage: - -\begin{figure}[H] -\begin{lstlisting}[language=sh,numbers=none] -verilog2btor.sh fsm.v fsm.btor test -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Using verilog2btor script} -\end{figure} - -The script {\tt verilog2btor.sh} takes three parameters. In the above -example, the first parameter {\tt fsm.v} is the input design, the second -parameter {\tt fsm.btor} is the file name of BTOR output, and the third -parameter {\tt test} is the name of top module in the design. - -To specify the properties (that need to be checked), we have two -options: -\begin{itemize} -\item We can use the Verilog {\tt assert} statement in the procedural block - or module body of the Verilog design, as shown in - Listing~\ref{specifying_property_assert}. This is the preferred option. -\item We can use a single-bit output wire, whose name starts with - {\tt safety}. The value of this output wire needs to be driven low - when the property is met, i.e. the solver will try to find a model - that makes the safety pin go high. This is demonstrated in - Listing~\ref{specifying_property_output}. -\end{itemize} - -\begin{figure}[H] -\begin{lstlisting}[language=Verilog,numbers=none] -module test(input clk, input rst, output y); - - reg [2:0] state; - - always @(posedge clk) begin - if (rst || state == 3) begin - state <= 0; - end else begin - assert(state < 3); - state <= state + 1; - end - end - - assign y = state[2]; - - assert property (y !== 1'b1); - -endmodule -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Specifying property in Verilog design with {\tt assert}} -\label{specifying_property_assert} -\end{figure} - -\begin{figure}[H] -\begin{lstlisting}[language=Verilog,numbers=none] -module test(input clk, input rst, - output y, output safety1); - - reg [2:0] state; - - always @(posedge clk) begin - if (rst || state == 3) - state <= 0; - else - state <= state + 1; - end - - assign y = state[2]; - - assign safety1 = !(y !== 1'b1); - -endmodule -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Specifying property in Verilog design with output wire} -\label{specifying_property_output} -\end{figure} - -We can run Boolector~\cite{boolector}~$1.4.1$\footnote{ -Newer version of Boolector do not support sequential models. -Boolector 1.4.1 can be built with picosat-951. Newer versions -of picosat have an incompatible API.} on the generated BTOR -file: - -\begin{figure}[H] -\begin{lstlisting}[language=sh,numbers=none] -$ boolector fsm.btor -unsat -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Running boolector on BTOR file} -\end{figure} - -We can also use nuXmv~\cite{nuxmv}, but on BTOR designs it does not -support memories yet. With the next release of nuXmv, we will be also -able to verify designs with memories. - -\section{Detailed Flow} - -Yosys is able to synthesize Verilog designs up to the gate level. -We are interested in keeping registers and memories when synthesizing -the design. For this purpose, we describe a customized Yosys synthesis -flow, that is also provided by the {\tt verilog2btor.sh} script. -Listing~\ref{btor_script_memory} shows the Yosys commands that are -executed by {\tt verilog2btor.sh}. - -\begin{figure}[H] -\begin{lstlisting}[language=sh] -read_verilog -sv $1; -hierarchy -top $3; hierarchy -libdir $DIR; -hierarchy -check; -proc; opt; -opt_expr -mux_undef; opt; -rename -hide;;; -splice; opt; -memory_dff -wr_only; memory_collect;; -flatten;; -memory_unpack; -splitnets -driver; -setundef -zero -undriven; -opt;;; -write_btor $2; -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Synthesis Flow for BTOR with memories} -\label{btor_script_memory} -\end{figure} - -Here is short description of what is happening in the script line by -line: - -\begin{enumerate} -\item Reading the input file. -\item Setting the top module in the hierarchy and trying to read - automatically the files which are given as {\tt include} in the file - read in first line. -\item Checking the design hierarchy. -\item Converting processes to multiplexers (muxs) and flip-flops. -\item Removing undef signals from muxs. -\item Hiding all signal names that are not used as module ports. -\item Explicit type conversion, by introducing slice and concat cells - in the circuit. -\item Converting write memories to synchronous memories, and - collecting the memories to multi-port memories. -\item Flattening the design to get only one module. -\item Separating read and write memories. -\item Splitting the signals that are partially assigned -\item Setting undef to zero value. -\item Final optimization pass. -\item Writing BTOR file. -\end{enumerate} - -For detailed description of the commands mentioned above, please refer -to the Yosys documentation, or run {\tt yosys -h \it command\_name}. - -The script presented earlier can be easily modified to have a BTOR -file that does not contain memories. This is done by removing the line -number~8 and 10, and introduces a new command {\tt memory} at line -number~8. Listing~\ref{btor_script_without_memory} shows the -modified Yosys script file: - -\begin{figure}[H] -\begin{lstlisting}[language=sh,numbers=none] -read_verilog -sv $1; -hierarchy -top $3; hierarchy -libdir $DIR; -hierarchy -check; -proc; opt; -opt_expr -mux_undef; opt; -rename -hide;;; -splice; opt; -memory;; -flatten;; -splitnets -driver; -setundef -zero -undriven; -opt;;; -write_btor $2; -\end{lstlisting} - \renewcommand{\figurename}{Listing} -\caption{Synthesis Flow for BTOR without memories} -\label{btor_script_without_memory} -\end{figure} - -\section{Example} - -Here is an example Verilog design that we want to convert to BTOR: - -\begin{figure}[H] -\begin{lstlisting}[language=Verilog,numbers=none] -module array(input clk); - - reg [7:0] counter; - reg [7:0] mem [7:0]; - - always @(posedge clk) begin - counter <= counter + 8'd1; - mem[counter] <= counter; - end - - assert property (!(counter > 8'd0) || - mem[counter - 8'd1] == counter - 8'd1); - -endmodule -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Example - Verilog Design} -\label{example_verilog} -\end{figure} - -The generated BTOR file that contain memories, using the script shown -in Listing~\ref{btor_script_memory}: -\begin{figure}[H] -\begin{lstlisting}[numbers=none] -1 var 1 clk -2 array 8 3 -3 var 8 $auto$rename.cc:150:execute$20 -4 const 8 00000001 -5 sub 8 3 4 -6 slice 3 5 2 0 -7 read 8 2 6 -8 slice 3 3 2 0 -9 add 8 3 4 -10 const 8 00000000 -11 ugt 1 3 10 -12 not 1 11 -13 const 8 11111111 -14 slice 1 13 0 0 -15 one 1 -16 eq 1 1 15 -17 and 1 16 14 -18 write 8 3 2 8 3 -19 acond 8 3 17 18 2 -20 anext 8 3 2 19 -21 eq 1 7 5 -22 or 1 12 21 -23 const 1 1 -24 one 1 -25 eq 1 23 24 -26 cond 1 25 22 24 -27 root 1 -26 -28 cond 8 1 9 3 -29 next 8 3 28 -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Example - Converted BTOR with memory} -\label{example_btor} -\end{figure} - -And the BTOR file obtained by the script shown in -Listing~\ref{btor_script_without_memory}, which expands the memory -into individual elements: -\begin{figure}[H] -\begin{lstlisting}[numbers=none,escapechar=@] -1 var 1 clk -2 var 8 mem[0] -3 var 8 $auto$rename.cc:150:execute$20 -4 slice 3 3 2 0 -5 slice 1 4 0 0 -6 not 1 5 -7 slice 1 4 1 1 -8 not 1 7 -9 slice 1 4 2 2 -10 not 1 9 -11 and 1 8 10 -12 and 1 6 11 -13 cond 8 12 3 2 -14 cond 8 1 13 2 -15 next 8 2 14 -16 const 8 00000001 -17 add 8 3 16 -18 const 8 00000000 -19 ugt 1 3 18 -20 not 1 19 -21 var 8 mem[2] -22 and 1 7 10 -23 and 1 6 22 -24 cond 8 23 3 21 -25 cond 8 1 24 21 -26 next 8 21 25 -27 sub 8 3 16 - -@\vbox to 0pt{\vss\vdots\vskip3pt}@ -54 cond 1 53 50 52 -55 root 1 -54 - -@\vbox to 0pt{\vss\vdots\vskip3pt}@ -77 cond 8 76 3 44 -78 cond 8 1 77 44 -79 next 8 44 78 -\end{lstlisting} -\renewcommand{\figurename}{Listing} -\caption{Example - Converted BTOR without memory} -\label{example_btor} -\end{figure} - -\section{Limitations} - -BTOR does not support initialization of memories and registers, i.e. they are -implicitly initialized to value zero, so the initial block for -memories need to be removed when converting to BTOR. It should -also be kept in consideration that BTOR does not support the {\tt x} or {\tt z} -values of Verilog. - -Another thing to bear in mind is that Yosys will convert multi-dimensional -memories to one-dimensional memories and address decoders. Therefore -out-of-bounds memory accesses can yield unexpected results. - -\section{Conclusion} - -Using the described flow, we can use Yosys to generate word-level -verification benchmarks with or without memories from Verilog designs. - -\begin{thebibliography}{9} - -\bibitem{yosys} -Claire Xenia Wolf. The Yosys Open SYnthesis Suite. \\ -\url{https://yosyshq.net/yosys/} - -\bibitem{boolector} -Robert Brummayer and Armin Biere, Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays\\ -\url{http://fmv.jku.at/boolector/} - -\bibitem{btor} -Robert Brummayer and Armin Biere and Florian Lonsing, BTOR: -Bit-Precise Modelling of Word-Level Problems for Model Checking\\ -\url{http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf} - -\bibitem{nuxmv} -Roberto Cavada and Alessandro Cimatti and Michele Dorigatti and -Alberto Griggio and Alessandro Mariotti and Andrea Micheli and Sergio -Mover and Marco Roveri and Stefano Tonetta, The nuXmv Symbolic Model -Checker\\ -\url{https://es-static.fbk.eu/tools/nuxmv/index.php} - -\end{thebibliography} - - -\end{document} |