aboutsummaryrefslogtreecommitdiffstats
path: root/passes/memory
diff options
context:
space:
mode:
Diffstat (limited to 'passes/memory')
-rw-r--r--passes/memory/Makefile.inc1
-rw-r--r--passes/memory/memory.cc30
-rw-r--r--passes/memory/memory_bram.cc560
-rw-r--r--passes/memory/memory_collect.cc234
-rw-r--r--passes/memory/memory_dff.cc778
-rw-r--r--passes/memory/memory_map.cc252
-rw-r--r--passes/memory/memory_memx.cc75
-rw-r--r--passes/memory/memory_narrow.cc67
-rw-r--r--passes/memory/memory_nordff.cc75
-rw-r--r--passes/memory/memory_share.cc959
-rw-r--r--passes/memory/memory_unpack.cc118
11 files changed, 1419 insertions, 1730 deletions
diff --git a/passes/memory/Makefile.inc b/passes/memory/Makefile.inc
index e468c3a07..5a2c4ecfc 100644
--- a/passes/memory/Makefile.inc
+++ b/passes/memory/Makefile.inc
@@ -8,4 +8,5 @@ OBJS += passes/memory/memory_bram.o
OBJS += passes/memory/memory_map.o
OBJS += passes/memory/memory_memx.o
OBJS += passes/memory/memory_nordff.o
+OBJS += passes/memory/memory_narrow.o
diff --git a/passes/memory/memory.cc b/passes/memory/memory.cc
index 282517992..bac547c1a 100644
--- a/passes/memory/memory.cc
+++ b/passes/memory/memory.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -31,16 +31,19 @@ struct MemoryPass : public Pass {
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
- log(" memory [-nomap] [-nordff] [-memx] [-bram <bram_rules>] [selection]\n");
+ log(" memory [-nomap] [-nordff] [-nowiden] [-nosat] [-memx] [-bram <bram_rules>] [selection]\n");
log("\n");
log("This pass calls all the other memory_* passes in a useful order:\n");
log("\n");
log(" opt_mem\n");
- log(" memory_dff [-nordff] (-memx implies -nordff)\n");
- log(" opt_clean\n");
- log(" memory_share\n");
+ log(" opt_mem_priority\n");
+ log(" opt_mem_feedback\n");
+ log(" memory_dff (skipped if called with -nordff or -memx)\n");
log(" opt_clean\n");
+ log(" memory_share [-nowiden] [-nosat]\n");
+ log(" opt_mem_widen\n");
log(" memory_memx (when called with -memx)\n");
+ log(" opt_clean\n");
log(" memory_collect\n");
log(" memory_bram -rules <bram_rules> (when called with -bram)\n");
log(" memory_map (skipped if called with -nomap)\n");
@@ -55,6 +58,7 @@ struct MemoryPass : public Pass {
bool flag_nordff = false;
bool flag_memx = false;
string memory_bram_opts;
+ string memory_share_opts;
log_header(design, "Executing MEMORY pass.\n");
log_push();
@@ -74,6 +78,14 @@ struct MemoryPass : public Pass {
flag_memx = true;
continue;
}
+ if (args[argidx] == "-nowiden") {
+ memory_share_opts += " -nowiden";
+ continue;
+ }
+ if (args[argidx] == "-nosat") {
+ memory_share_opts += " -nosat";
+ continue;
+ }
if (argidx+1 < args.size() && args[argidx] == "-bram") {
memory_bram_opts += " -rules " + args[++argidx];
continue;
@@ -83,9 +95,13 @@ struct MemoryPass : public Pass {
extra_args(args, argidx, design);
Pass::call(design, "opt_mem");
- Pass::call(design, flag_nordff ? "memory_dff -nordff" : "memory_dff");
+ Pass::call(design, "opt_mem_priority");
+ Pass::call(design, "opt_mem_feedback");
+ if (!flag_nordff)
+ Pass::call(design, "memory_dff");
Pass::call(design, "opt_clean");
- Pass::call(design, "memory_share");
+ Pass::call(design, "memory_share" + memory_share_opts);
+ Pass::call(design, "opt_mem_widen");
if (flag_memx)
Pass::call(design, "memory_memx");
Pass::call(design, "opt_clean");
diff --git a/passes/memory/memory_bram.cc b/passes/memory/memory_bram.cc
index 3cb0728b7..b1f45d5fc 100644
--- a/passes/memory/memory_bram.cc
+++ b/passes/memory/memory_bram.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -18,6 +18,8 @@
*/
#include "kernel/yosys.h"
+#include "kernel/mem.h"
+#include "kernel/ffinit.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@@ -28,9 +30,6 @@ struct rules_t
int group, index, dupidx;
int wrmode, enable, transp, clocks, clkpol;
- SigBit sig_clock;
- SigSpec sig_addr, sig_data, sig_en;
- bool effective_clkpol;
bool make_transp;
bool make_outreg;
int mapped_port;
@@ -91,7 +90,6 @@ struct rules_t
pi.mapped_port = -1;
pi.make_transp = false;
pi.make_outreg = false;
- pi.effective_clkpol = false;
portinfos.push_back(pi);
}
return portinfos;
@@ -400,17 +398,13 @@ struct rules_t
}
};
-bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
+bool replace_memory(Mem &mem, const rules_t &rules, FfInitVals *initvals, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{
- Module *module = cell->module;
+ Module *module = mem.module;
auto portinfos = bram.make_portinfos();
int dup_count = 1;
- pair<SigBit, bool> make_transp_clk;
- bool enable_make_transp = false;
- int make_transp_enbits = 0;
-
dict<int, pair<SigBit, bool>> clock_domains;
dict<int, bool> clock_polarities;
dict<int, bool> read_transp;
@@ -437,124 +431,33 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config();
- int mem_size = cell->getParam(ID::SIZE).as_int();
- int mem_abits = cell->getParam(ID::ABITS).as_int();
- int mem_width = cell->getParam(ID::WIDTH).as_int();
- // int mem_offset = cell->getParam(ID::OFFSET).as_int();
-
- bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef();
- vector<Const> initdata;
-
- if (cell_init) {
- Const initparam = cell->getParam(ID::INIT);
- initdata.reserve(mem_size);
- for (int i=0; i < mem_size; i++)
- initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx));
- }
-
- int wr_ports = cell->getParam(ID::WR_PORTS).as_int();
- auto wr_clken = SigSpec(cell->getParam(ID::WR_CLK_ENABLE));
- auto wr_clkpol = SigSpec(cell->getParam(ID::WR_CLK_POLARITY));
- wr_clken.extend_u0(wr_ports);
- wr_clkpol.extend_u0(wr_ports);
-
- SigSpec wr_en = cell->getPort(ID::WR_EN);
- SigSpec wr_clk = cell->getPort(ID::WR_CLK);
- SigSpec wr_data = cell->getPort(ID::WR_DATA);
- SigSpec wr_addr = cell->getPort(ID::WR_ADDR);
-
- int rd_ports = cell->getParam(ID::RD_PORTS).as_int();
- auto rd_clken = SigSpec(cell->getParam(ID::RD_CLK_ENABLE));
- auto rd_clkpol = SigSpec(cell->getParam(ID::RD_CLK_POLARITY));
- auto rd_transp = SigSpec(cell->getParam(ID::RD_TRANSPARENT));
- rd_clken.extend_u0(rd_ports);
- rd_clkpol.extend_u0(rd_ports);
- rd_transp.extend_u0(rd_ports);
-
- SigSpec rd_en = cell->getPort(ID::RD_EN);
- SigSpec rd_clk = cell->getPort(ID::RD_CLK);
- SigSpec rd_data = cell->getPort(ID::RD_DATA);
- SigSpec rd_addr = cell->getPort(ID::RD_ADDR);
-
- if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
+ std::vector<int> shuffle_map;
+ if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && !mem.wr_ports.empty())
{
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
- // extract unshuffled data/enable bits
-
- std::vector<SigSpec> old_wr_en;
- std::vector<SigSpec> old_wr_data;
- std::vector<SigSpec> old_rd_data;
-
- for (int i = 0; i < wr_ports; i++) {
- old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width));
- old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width));
- }
-
- for (int i = 0; i < rd_ports; i++)
- old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width));
-
// analyze enable structure
std::vector<SigSpec> en_order;
dict<SigSpec, vector<int>> bits_wr_en;
- for (int i = 0; i < mem_width; i++) {
+ for (int i = 0; i < mem.width; i++) {
SigSpec sig;
- for (int j = 0; j < wr_ports; j++)
- sig.append(old_wr_en[j][i]);
+ for (auto &port : mem.wr_ports)
+ sig.append(port.en[i]);
if (bits_wr_en.count(sig) == 0)
en_order.push_back(sig);
bits_wr_en[sig].push_back(i);
}
- // re-create memory ports
-
- std::vector<SigSpec> new_wr_en(GetSize(old_wr_en));
- std::vector<SigSpec> new_wr_data(GetSize(old_wr_data));
- std::vector<SigSpec> new_rd_data(GetSize(old_rd_data));
- std::vector<std::vector<State>> new_initdata;
- std::vector<int> shuffle_map;
-
- if (cell_init)
- new_initdata.resize(mem_size);
-
for (auto &it : en_order)
{
- auto &bits = bits_wr_en.at(it);
- int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size;
- int fillbits = buckets*bucket_size - GetSize(bits);
- SigBit fillbit;
-
- for (int i = 0; i < GetSize(bits); i++) {
- for (int j = 0; j < wr_ports; j++) {
- new_wr_en[j].append(old_wr_en[j][bits[i]]);
- new_wr_data[j].append(old_wr_data[j][bits[i]]);
- fillbit = old_wr_en[j][bits[i]];
- }
- for (int j = 0; j < rd_ports; j++)
- new_rd_data[j].append(old_rd_data[j][bits[i]]);
- if (cell_init) {
- for (int j = 0; j < mem_size; j++)
- new_initdata[j].push_back(initdata[j][bits[i]]);
- }
- shuffle_map.push_back(bits[i]);
- }
+ for (auto bit : bits_wr_en.at(it))
+ shuffle_map.push_back(bit);
- for (int i = 0; i < fillbits; i++) {
- for (int j = 0; j < wr_ports; j++) {
- new_wr_en[j].append(fillbit);
- new_wr_data[j].append(State::S0);
- }
- for (int j = 0; j < rd_ports; j++)
- new_rd_data[j].append(State::Sx);
- if (cell_init) {
- for (int j = 0; j < mem_size; j++)
- new_initdata[j].push_back(State::Sx);
- }
+ while (GetSize(shuffle_map) % bucket_size)
shuffle_map.push_back(-1);
- }
}
log(" Results of bit order shuffling:");
@@ -563,53 +466,38 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log("\n");
// update mem_*, wr_*, and rd_* variables
-
- mem_width = GetSize(new_wr_en.front());
- wr_en = SigSpec(0, wr_ports * mem_width);
- wr_data = SigSpec(0, wr_ports * mem_width);
- rd_data = SigSpec(0, rd_ports * mem_width);
-
- for (int i = 0; i < wr_ports; i++) {
- wr_en.replace(i*mem_width, new_wr_en[i]);
- wr_data.replace(i*mem_width, new_wr_data[i]);
- }
-
- for (int i = 0; i < rd_ports; i++)
- rd_data.replace(i*mem_width, new_rd_data[i]);
-
- if (cell_init) {
- for (int i = 0; i < mem_size; i++)
- initdata[i] = Const(new_initdata[i]);
- }
+ } else {
+ for (int i = 0; i < mem.width; i++)
+ shuffle_map.push_back(i);
}
+ // Align width up to dbits.
+ while (GetSize(shuffle_map) % bram.dbits)
+ shuffle_map.push_back(-1);
+
// assign write ports
pair<SigBit, bool> wr_clkdom;
- for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++)
+ for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < GetSize(mem.wr_ports); cell_port_i++)
{
- bool clken = wr_clken[cell_port_i] == State::S1;
- bool clkpol = wr_clkpol[cell_port_i] == State::S1;
- SigBit clksig = wr_clk[cell_port_i];
+ auto &port = mem.wr_ports[cell_port_i];
- pair<SigBit, bool> clkdom(clksig, clkpol);
- if (!clken)
+ pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
+ if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false);
wr_clkdom = clkdom;
log(" Write port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
- clken ? log_signal(clkdom.first) : "~async~");
+ port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
- make_transp_enbits = pi.enable;
- make_transp_clk = clkdom;
if (pi.wrmode != 1)
skip_bram_wport:
continue;
- if (clken) {
+ if (port.clk_enable) {
if (pi.clocks == 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
@@ -618,7 +506,7 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
- if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
+ if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
@@ -629,33 +517,36 @@ bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram,
}
}
- SigSpec sig_en;
- SigBit last_en_bit = State::S1;
- for (int i = 0; i < mem_width; i++) {
- if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
- last_en_bit = wr_en[i + cell_port_i*mem_width];
- sig_en.append(last_en_bit);
- }
- if (last_en_bit != wr_en[i + cell_port_i*mem_width]) {
- log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
- goto skip_bram_wport;
+ // We need to check enable compatibility of this port, as well as all
+ // ports that have priority over this one (because they will be involved
+ // in emulate_priority logic).
+
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ auto &oport = mem.wr_ports[i];
+ if (i != cell_port_i && !oport.priority_mask[cell_port_i])
+ continue;
+ SigBit last_en_bit = State::S1;
+ for (int j = 0; j < GetSize(shuffle_map); j++) {
+ if (shuffle_map[j] == -1)
+ continue;
+ SigBit en_bit = oport.en[shuffle_map[j]];
+ if (pi.enable && j % (bram.dbits / pi.enable) == 0)
+ last_en_bit = en_bit;
+ if (last_en_bit != en_bit) {
+ log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
+ goto skip_bram_wport;
+ }
}
}
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
pi.mapped_port = cell_port_i;
- if (clken) {
+ if (port.clk_enable) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
- pi.sig_clock = clkdom.first;
- pi.effective_clkpol = clkdom.second;
}
- pi.sig_en = sig_en;
- pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits);
- pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width);
-
bram_port_i++;
goto mapped_wr_port;
}
@@ -678,10 +569,6 @@ grow_read_ports:;
for (auto &pi : portinfos) {
if (pi.wrmode == 0) {
pi.mapped_port = -1;
- pi.sig_clock = SigBit();
- pi.sig_addr = SigSpec();
- pi.sig_data = SigSpec();
- pi.sig_en = SigSpec();
pi.make_outreg = false;
pi.make_transp = false;
}
@@ -710,23 +597,27 @@ grow_read_ports:;
// assign read ports
- for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++)
+ for (int cell_port_i = 0; cell_port_i < GetSize(mem.rd_ports); cell_port_i++)
{
- bool clken = rd_clken[cell_port_i] == State::S1;
- bool clkpol = rd_clkpol[cell_port_i] == State::S1;
- bool transp = rd_transp[cell_port_i] == State::S1;
- SigBit clksig = rd_clk[cell_port_i];
-
- if (wr_ports == 0)
- transp = false;
+ auto &port = mem.rd_ports[cell_port_i];
+ bool transp = false;
+ bool non_transp = false;
+
+ if (port.clk_enable) {
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
+ if (port.transparency_mask[i])
+ transp = true;
+ else if (!port.collision_x_mask[i])
+ non_transp = true;
+ }
- pair<SigBit, bool> clkdom(clksig, clkpol);
- if (!clken)
+ pair<SigBit, bool> clkdom(port.clk, port.clk_polarity);
+ if (!port.clk_enable)
clkdom = pair<SigBit, bool>(State::S1, false);
log(" Read port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
- clken ? log_signal(clkdom.first) : "~async~");
+ port.clk_enable ? log_signal(clkdom.first) : "~async~");
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
{
@@ -736,7 +627,7 @@ grow_read_ports:;
skip_bram_rport:
continue;
- if (clken) {
+ if (port.clk_enable) {
if (pi.clocks == 0) {
if (match.make_outreg) {
pi.make_outreg = true;
@@ -749,25 +640,17 @@ grow_read_ports:;
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
- if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
+ if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != port.clk_polarity) {
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
- if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) {
- log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
+ if (non_transp && read_transp.count(pi.transp) && read_transp.at(pi.transp)) {
+ log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
- skip_bram_rport_clkcheck:
- if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
- if (match.make_transp && wr_ports <= 1) {
+ if (transp && (non_transp || (read_transp.count(pi.transp) && !read_transp.at(pi.transp)))) {
+ if (match.make_transp) {
pi.make_transp = true;
- if (pi.clocks != 0) {
- if (wr_ports == 1 && wr_clkdom != clkdom) {
- log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
- goto skip_bram_rport;
- }
- enable_make_transp = true;
- }
} else {
log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
@@ -780,22 +663,19 @@ grow_read_ports:;
}
}
+ skip_bram_rport_clkcheck:
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
pi.mapped_port = cell_port_i;
- if (clken) {
+ if (pi.clocks) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
- if (!pi.make_transp)
- read_transp[pi.transp] = transp;
- pi.sig_clock = clkdom.first;
- pi.sig_en = rd_en[cell_port_i];
- pi.effective_clkpol = clkdom.second;
+ if (non_transp)
+ read_transp[pi.transp] = false;
+ if (transp && !pi.make_transp)
+ read_transp[pi.transp] = true;
}
- pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits);
- pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width);
-
if (grow_read_ports_cursor < cell_port_i) {
grow_read_ports_cursor = cell_port_i;
try_growing_more_read_ports = true;
@@ -815,17 +695,19 @@ grow_read_ports:;
// update properties and re-check conditions
+ int dcells = GetSize(shuffle_map) / bram.dbits;
+ int acells = (mem.size + (1 << bram.abits) - 1) / (1 << bram.abits);
if (mode <= 1)
{
match_properties["dups"] = dup_count;
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
- int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
+ int cells = dcells * acells;
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
- match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
- match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
- match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
+ match_properties["dcells"] = dcells;
+ match_properties["acells"] = acells;
+ match_properties["cells"] = cells * dup_count;
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
@@ -857,8 +739,8 @@ grow_read_ports:;
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
- auto it = cell->attributes.find(key);
- if (it == cell->attributes.end()) {
+ auto it = mem.attributes.find(key);
+ if (it == mem.attributes.end()) {
if (exists)
continue;
found = true;
@@ -892,6 +774,90 @@ grow_read_ports:;
return true;
}
+ // At this point we are commited to replacing the RAM, and can mutate mem.
+
+ // Apply make_outreg and make_transp where necessary.
+ for (auto &pi : portinfos) {
+ if (pi.mapped_port == -1 || pi.wrmode)
+ continue;
+ auto &port = mem.rd_ports[pi.mapped_port];
+ if (pi.make_outreg) {
+ mem.extract_rdff(pi.mapped_port, initvals);
+ } else if (port.clk_enable) {
+ if (!pi.enable && port.en != State::S1)
+ mem.emulate_rden(pi.mapped_port, initvals);
+ else
+ mem.emulate_reset(pi.mapped_port, true, true, true, initvals);
+ }
+ if (pi.make_transp) {
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
+ if (port.transparency_mask[i])
+ mem.emulate_transparency(i, pi.mapped_port, initvals);
+ }
+ }
+
+ // We don't really support priorities, emulate them.
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
+ for (int j = 0; j < i; j++)
+ mem.emulate_priority(j, i, initvals);
+
+ // Swizzle the init data. Do this before changing mem.width, so that get_init_data works.
+ bool cell_init = !mem.inits.empty();
+ vector<Const> initdata;
+ if (cell_init) {
+ Const initparam = mem.get_init_data();
+ initdata.reserve(mem.size);
+ for (int i = 0; i < mem.size; i++) {
+ std::vector<State> val;
+ for (auto idx : shuffle_map) {
+ if (idx == -1)
+ val.push_back(State::Sx);
+ else
+ val.push_back(initparam[mem.width * i + idx]);
+ }
+ initdata.push_back(Const(val));
+ }
+ }
+
+ // Now the big swizzle.
+ mem.width = GetSize(shuffle_map);
+
+ // Swizzle write ports.
+ for (auto &port : mem.wr_ports) {
+ SigSpec new_en, new_data;
+ SigBit en_bit = State::S1;
+ for (auto idx : shuffle_map) {
+ if (idx == -1) {
+ new_data.append(State::Sx);
+ } else {
+ new_data.append(port.data[idx]);
+ en_bit = port.en[idx];
+ }
+ new_en.append(en_bit);
+ }
+ port.en = new_en;
+ port.data = new_data;
+ }
+
+ // Swizzle read ports.
+ for (auto &port : mem.rd_ports) {
+ SigSpec new_data = module->addWire(NEW_ID, mem.width);
+ Const new_init_value = Const(State::Sx, mem.width);
+ Const new_arst_value = Const(State::Sx, mem.width);
+ Const new_srst_value = Const(State::Sx, mem.width);
+ for (int i = 0; i < mem.width; i++)
+ if (shuffle_map[i] != -1) {
+ module->connect(port.data[shuffle_map[i]], new_data[i]);
+ new_init_value[i] = port.init_value[shuffle_map[i]];
+ new_arst_value[i] = port.arst_value[shuffle_map[i]];
+ new_srst_value[i] = port.srst_value[shuffle_map[i]];
+ }
+ port.data = new_data;
+ port.init_value = new_init_value;
+ port.arst_value = new_arst_value;
+ port.srst_value = new_srst_value;
+ }
+
// prepare variant parameters
dict<IdString, Const> variant_params;
@@ -902,42 +868,28 @@ grow_read_ports:;
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
- for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
+ for (int grid_d = 0; grid_d < dcells; grid_d++)
{
- SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
- vector<SigSpec> mktr_wren;
-
- if (enable_make_transp) {
- mktr_wraddr = module->addWire(NEW_ID, bram.abits);
- mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
- mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
- module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
- for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
- mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
- }
-
- for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
+ for (int grid_a = 0; grid_a < acells; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
- Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
+ Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", mem.memid.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
for (auto &vp : variant_params)
c->setParam(vp.first, vp.second);
if (cell_init) {
- int init_offset = grid_a*(1 << bram.abits);
+ int init_offset = grid_a*(1 << bram.abits) - mem.start_offset;
int init_shift = grid_d*bram.dbits;
int init_size = (1 << bram.abits);
Const initparam(State::Sx, init_size*bram.dbits);
- for (int i = 0; i < init_size; i++) {
- State padding = State::Sx;
+ for (int i = 0; i < init_size; i++)
for (int j = 0; j < bram.dbits; j++)
- if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i]))
+ if (init_offset+i < GetSize(initdata) && init_offset+i >= 0)
initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
else
- initparam[i*bram.dbits+j] = padding;
- }
+ initparam[i*bram.dbits+j] = State::Sx;
c->setParam(ID::INIT, initparam);
}
@@ -949,101 +901,84 @@ grow_read_ports:;
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
const char *pf = prefix.c_str();
- if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
- c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
- if (pi.clkpol > 1 && pi.sig_clock.wire)
- c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
- if (pi.transp > 1 && pi.sig_clock.wire)
- c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
- }
+ if (pi.clocks && clock_domains.count(pi.clocks))
+ c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), clock_domains.at(pi.clocks).first);
+ if (pi.clkpol > 1 && clock_polarities.count(pi.clkpol))
+ c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
+ if (pi.transp > 1 && read_transp.count(pi.transp))
+ c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
SigSpec addr_ok;
- if (GetSize(pi.sig_addr) > bram.abits) {
- SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
+ SigSpec sig_addr;
+ if (pi.mapped_port >= 0) {
+ if (pi.wrmode == 1)
+ sig_addr = mem.wr_ports[pi.mapped_port].addr;
+ else
+ sig_addr = mem.rd_ports[pi.mapped_port].addr;
+ }
+
+ if (GetSize(sig_addr) > bram.abits) {
+ SigSpec extra_addr = sig_addr.extract(bram.abits, GetSize(sig_addr) - bram.abits);
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
}
- if (pi.enable)
- {
- SigSpec sig_en = pi.sig_en;
+ sig_addr.extend_u0(bram.abits);
+ c->setPort(stringf("\\%sADDR", pf), sig_addr);
- if (pi.wrmode == 1) {
- sig_en.extend_u0((grid_d+1) * pi.enable);
- sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
+ if (pi.wrmode == 1) {
+ if (pi.mapped_port == -1)
+ {
+ if (pi.enable)
+ c->setPort(stringf("\\%sEN", pf), Const(State::S0, pi.enable));
+ continue;
}
- if (!addr_ok.empty())
- sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
-
- c->setPort(stringf("\\%sEN", pf), sig_en);
-
- if (pi.wrmode == 1 && enable_make_transp)
- module->connect(mktr_wren[grid_a], sig_en);
- }
+ auto &port = mem.wr_ports[pi.mapped_port];
+ SigSpec sig_data = port.data.extract(grid_d * bram.dbits, bram.dbits);
+ c->setPort(stringf("\\%sDATA", pf), sig_data);
- SigSpec sig_addr = pi.sig_addr;
- sig_addr.extend_u0(bram.abits);
- c->setPort(stringf("\\%sADDR", pf), sig_addr);
+ if (pi.enable)
+ {
+ SigSpec sig_en;
+ int stride = bram.dbits / pi.enable;
+ for (int i = 0; i < pi.enable; i++)
+ sig_en.append(port.en[stride * i + grid_d * bram.dbits]);
- if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
- module->connect(mktr_wraddr, sig_addr);
+ if (!addr_ok.empty())
+ sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
- SigSpec sig_data = pi.sig_data;
- sig_data.extend_u0((grid_d+1) * bram.dbits);
- sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
+ c->setPort(stringf("\\%sEN", pf), sig_en);
- if (pi.wrmode == 1) {
- c->setPort(stringf("\\%sDATA", pf), sig_data);
- if (enable_make_transp && grid_a == 0)
- module->connect(mktr_wrdata, sig_data);
+ }
} else {
- SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
- c->setPort(stringf("\\%sDATA", pf), bram_dout);
- if (pi.make_outreg && pi.make_transp) {
- log(" Moving output register to address for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
- SigSpec sig_addr_q = module->addWire(NEW_ID, bram.abits);
- module->addDff(NEW_ID, pi.sig_clock, sig_addr, sig_addr_q, pi.effective_clkpol);
- c->setPort(stringf("\\%sADDR", pf), sig_addr_q);
- } else if (pi.make_outreg) {
- SigSpec bram_dout_q = module->addWire(NEW_ID, bram.dbits);
- if (!pi.sig_en.empty())
- bram_dout = module->Mux(NEW_ID, bram_dout_q, bram_dout, pi.sig_en);
- module->addDff(NEW_ID, pi.sig_clock, bram_dout, bram_dout_q, pi.effective_clkpol);
- bram_dout = bram_dout_q;
- } else if (pi.make_transp) {
- log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
-
- SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits),
- mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr));
-
- SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits);
- module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second);
-
- for (int i = 0; i < make_transp_enbits; i++) {
- int en_width = bram.dbits / make_transp_enbits;
- SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width);
- SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width);
- bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i]));
- }
+ if (pi.mapped_port == -1)
+ {
+ if (pi.enable)
+ c->setPort(stringf("\\%sEN", pf), State::S0);
+ continue;
}
+ auto &port = mem.rd_ports[pi.mapped_port];
+ SigSpec sig_data = port.data.extract(grid_d * bram.dbits, bram.dbits);
- for (int i = bram.dbits-1; i >= 0; i--)
- if (sig_data[i].wire == nullptr) {
- sig_data.remove(i);
- bram_dout.remove(i);
- }
+ SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
+ c->setPort(stringf("\\%sDATA", pf), bram_dout);
SigSpec addr_ok_q = addr_ok;
- if ((pi.clocks || pi.make_outreg) && !addr_ok.empty()) {
+ if (port.clk_enable && !addr_ok.empty()) {
addr_ok_q = module->addWire(NEW_ID);
- if (!pi.sig_en.empty())
- addr_ok = module->Mux(NEW_ID, addr_ok_q, addr_ok, pi.sig_en);
- module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
+ module->addDffe(NEW_ID, port.clk, port.en, addr_ok, addr_ok_q, port.clk_polarity);
}
dout_cache[sig_data].first.append(addr_ok_q);
dout_cache[sig_data].second.append(bram_dout);
+
+ if (pi.enable) {
+ SigSpec sig_en = port.en;
+ if (!addr_ok.empty())
+ sig_en = module->And(NEW_ID, sig_en, addr_ok);
+ c->setPort(stringf("\\%sEN", pf), sig_en);
+ }
}
}
}
@@ -1063,22 +998,23 @@ grow_read_ports:;
}
}
- module->remove(cell);
+ mem.remove();
return true;
}
-void handle_cell(Cell *cell, const rules_t &rules)
+void handle_memory(Mem &mem, const rules_t &rules, FfInitVals *initvals)
{
- log("Processing %s.%s:\n", log_id(cell->module), log_id(cell));
+ log("Processing %s.%s:\n", log_id(mem.module), log_id(mem.memid));
+ mem.narrow();
- bool cell_init = !SigSpec(cell->getParam(ID::INIT)).is_fully_undef();
+ bool cell_init = !mem.inits.empty();
dict<string, int> match_properties;
- match_properties["words"] = cell->getParam(ID::SIZE).as_int();
- match_properties["abits"] = cell->getParam(ID::ABITS).as_int();
- match_properties["dbits"] = cell->getParam(ID::WIDTH).as_int();
- match_properties["wports"] = cell->getParam(ID::WR_PORTS).as_int();
- match_properties["rports"] = cell->getParam(ID::RD_PORTS).as_int();
+ match_properties["words"] = mem.size;
+ match_properties["abits"] = ceil_log2(mem.size);
+ match_properties["dbits"] = mem.width;
+ match_properties["wports"] = GetSize(mem.wr_ports);
+ match_properties["rports"] = GetSize(mem.rd_ports);
match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
@@ -1181,8 +1117,8 @@ void handle_cell(Cell *cell, const rules_t &rules)
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
- auto it = cell->attributes.find(key);
- if (it == cell->attributes.end()) {
+ auto it = mem.attributes.find(key);
+ if (it == mem.attributes.end()) {
if (exists)
continue;
found = true;
@@ -1219,7 +1155,7 @@ void handle_cell(Cell *cell, const rules_t &rules)
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n");
- if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
+ if (!replace_memory(mem, rules, initvals, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
@@ -1246,12 +1182,12 @@ void handle_cell(Cell *cell, const rules_t &rules)
best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
- if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
+ if (!replace_memory(mem, rules, initvals, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return;
}
- if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
+ if (!replace_memory(mem, rules, initvals, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
@@ -1383,10 +1319,12 @@ struct MemoryBramPass : public Pass {
}
extra_args(args, argidx, design);
- for (auto mod : design->selected_modules())
- for (auto cell : mod->selected_cells())
- if (cell->type == ID($mem))
- handle_cell(cell, rules);
+ for (auto mod : design->selected_modules()) {
+ SigMap sigmap(mod);
+ FfInitVals initvals(&sigmap, mod);
+ for (auto &mem : Mem::get_selected_memories(mod))
+ handle_memory(mem, rules, &initvals);
+ }
}
} MemoryBramPass;
diff --git a/passes/memory/memory_collect.cc b/passes/memory/memory_collect.cc
index 7e82f47dc..bf3bb34f8 100644
--- a/passes/memory/memory_collect.cc
+++ b/passes/memory/memory_collect.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -18,231 +18,11 @@
*/
#include "kernel/yosys.h"
-#include "kernel/sigtools.h"
+#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
-bool memcells_cmp(Cell *a, Cell *b)
-{
- if (a->type == ID($memrd) && b->type == ID($memrd))
- return a->name < b->name;
- if (a->type == ID($memrd) || b->type == ID($memrd))
- return (a->type == ID($memrd)) < (b->type == ID($memrd));
- return a->parameters.at(ID::PRIORITY).as_int() < b->parameters.at(ID::PRIORITY).as_int();
-}
-
-Cell *handle_memory(Module *module, RTLIL::Memory *memory)
-{
- log("Collecting $memrd, $memwr and $meminit for memory `%s' in module `%s':\n",
- memory->name.c_str(), module->name.c_str());
-
- Const init_data(State::Sx, memory->size * memory->width);
- SigMap sigmap(module);
-
- int wr_ports = 0;
- SigSpec sig_wr_clk;
- SigSpec sig_wr_clk_enable;
- SigSpec sig_wr_clk_polarity;
- SigSpec sig_wr_addr;
- SigSpec sig_wr_data;
- SigSpec sig_wr_en;
-
- int rd_ports = 0;
- SigSpec sig_rd_clk;
- SigSpec sig_rd_clk_enable;
- SigSpec sig_rd_clk_polarity;
- SigSpec sig_rd_transparent;
- SigSpec sig_rd_addr;
- SigSpec sig_rd_data;
- SigSpec sig_rd_en;
-
- int addr_bits = 0;
- std::vector<Cell*> memcells;
-
- for (auto cell : module->cells())
- if (cell->type.in(ID($memrd), ID($memwr), ID($meminit)) && memory->name == cell->parameters[ID::MEMID].decode_string()) {
- SigSpec addr = sigmap(cell->getPort(ID::ADDR));
- for (int i = 0; i < GetSize(addr); i++)
- if (addr[i] != State::S0)
- addr_bits = std::max(addr_bits, i+1);
- memcells.push_back(cell);
- }
-
- if (memory->start_offset == 0 && addr_bits < 30 && (1 << addr_bits) < memory->size)
- memory->size = 1 << addr_bits;
-
- if (memory->start_offset >= 0)
- addr_bits = std::min(addr_bits, ceil_log2(memory->size + memory->start_offset));
-
- addr_bits = std::max(addr_bits, 1);
-
- if (memcells.empty()) {
- log(" no cells found. removing memory.\n");
- return nullptr;
- }
-
- std::sort(memcells.begin(), memcells.end(), memcells_cmp);
-
- for (auto cell : memcells)
- {
- log(" %s (%s)\n", log_id(cell), log_id(cell->type));
-
- if (cell->type == ID($meminit))
- {
- SigSpec addr = sigmap(cell->getPort(ID::ADDR));
- SigSpec data = sigmap(cell->getPort(ID::DATA));
-
- if (!addr.is_fully_const())
- log_error("Non-constant address %s in memory initialization %s.\n", log_signal(addr), log_id(cell));
- if (!data.is_fully_const())
- log_error("Non-constant data %s in memory initialization %s.\n", log_signal(data), log_id(cell));
-
- int offset = (addr.as_int() - memory->start_offset) * memory->width;
-
- if (offset < 0 || offset + GetSize(data) > GetSize(init_data))
- log_warning("Address %s in memory initialization %s is out-of-bounds.\n", log_signal(addr), log_id(cell));
-
- for (int i = 0; i < GetSize(data); i++)
- if (0 <= i+offset && i+offset < GetSize(init_data))
- init_data.bits[i+offset] = data[i].data;
-
- continue;
- }
-
- if (cell->type == ID($memwr))
- {
- SigSpec clk = sigmap(cell->getPort(ID::CLK));
- SigSpec clk_enable = SigSpec(cell->parameters[ID::CLK_ENABLE]);
- SigSpec clk_polarity = SigSpec(cell->parameters[ID::CLK_POLARITY]);
- SigSpec addr = sigmap(cell->getPort(ID::ADDR));
- SigSpec data = sigmap(cell->getPort(ID::DATA));
- SigSpec en = sigmap(cell->getPort(ID::EN));
-
- if (!en.is_fully_zero())
- {
- clk.extend_u0(1, false);
- clk_enable.extend_u0(1, false);
- clk_polarity.extend_u0(1, false);
- addr.extend_u0(addr_bits, false);
- data.extend_u0(memory->width, false);
- en.extend_u0(memory->width, false);
-
- sig_wr_clk.append(clk);
- sig_wr_clk_enable.append(clk_enable);
- sig_wr_clk_polarity.append(clk_polarity);
- sig_wr_addr.append(addr);
- sig_wr_data.append(data);
- sig_wr_en.append(en);
-
- wr_ports++;
- }
- continue;
- }
-
- if (cell->type == ID($memrd))
- {
- SigSpec clk = sigmap(cell->getPort(ID::CLK));
- SigSpec clk_enable = SigSpec(cell->parameters[ID::CLK_ENABLE]);
- SigSpec clk_polarity = SigSpec(cell->parameters[ID::CLK_POLARITY]);
- SigSpec transparent = SigSpec(cell->parameters[ID::TRANSPARENT]);
- SigSpec addr = sigmap(cell->getPort(ID::ADDR));
- SigSpec data = sigmap(cell->getPort(ID::DATA));
- SigSpec en = sigmap(cell->getPort(ID::EN));
-
- if (!en.is_fully_zero())
- {
- clk.extend_u0(1, false);
- clk_enable.extend_u0(1, false);
- clk_polarity.extend_u0(1, false);
- transparent.extend_u0(1, false);
- addr.extend_u0(addr_bits, false);
- data.extend_u0(memory->width, false);
-
- sig_rd_clk.append(clk);
- sig_rd_clk_enable.append(clk_enable);
- sig_rd_clk_polarity.append(clk_polarity);
- sig_rd_transparent.append(transparent);
- sig_rd_addr.append(addr);
- sig_rd_data.append(data);
- sig_rd_en.append(en);
-
- rd_ports++;
- }
- continue;
- }
- }
-
- std::stringstream sstr;
- sstr << "$mem$" << memory->name.str() << "$" << (autoidx++);
-
- Cell *mem = module->addCell(sstr.str(), ID($mem));
- mem->parameters[ID::MEMID] = Const(memory->name.str());
- mem->parameters[ID::WIDTH] = Const(memory->width);
- mem->parameters[ID::OFFSET] = Const(memory->start_offset);
- mem->parameters[ID::SIZE] = Const(memory->size);
- mem->parameters[ID::ABITS] = Const(addr_bits);
- mem->parameters[ID::INIT] = init_data;
-
- log_assert(sig_wr_clk.size() == wr_ports);
- log_assert(sig_wr_clk_enable.size() == wr_ports && sig_wr_clk_enable.is_fully_const());
- log_assert(sig_wr_clk_polarity.size() == wr_ports && sig_wr_clk_polarity.is_fully_const());
- log_assert(sig_wr_addr.size() == wr_ports * addr_bits);
- log_assert(sig_wr_data.size() == wr_ports * memory->width);
- log_assert(sig_wr_en.size() == wr_ports * memory->width);
-
- mem->parameters[ID::WR_PORTS] = Const(wr_ports);
- mem->parameters[ID::WR_CLK_ENABLE] = wr_ports ? sig_wr_clk_enable.as_const() : State::S0;
- mem->parameters[ID::WR_CLK_POLARITY] = wr_ports ? sig_wr_clk_polarity.as_const() : State::S0;
-
- mem->setPort(ID::WR_CLK, sig_wr_clk);
- mem->setPort(ID::WR_ADDR, sig_wr_addr);
- mem->setPort(ID::WR_DATA, sig_wr_data);
- mem->setPort(ID::WR_EN, sig_wr_en);
-
- log_assert(sig_rd_clk.size() == rd_ports);
- log_assert(sig_rd_clk_enable.size() == rd_ports && sig_rd_clk_enable.is_fully_const());
- log_assert(sig_rd_clk_polarity.size() == rd_ports && sig_rd_clk_polarity.is_fully_const());
- log_assert(sig_rd_addr.size() == rd_ports * addr_bits);
- log_assert(sig_rd_data.size() == rd_ports * memory->width);
-
- mem->parameters[ID::RD_PORTS] = Const(rd_ports);
- mem->parameters[ID::RD_CLK_ENABLE] = rd_ports ? sig_rd_clk_enable.as_const() : State::S0;
- mem->parameters[ID::RD_CLK_POLARITY] = rd_ports ? sig_rd_clk_polarity.as_const() : State::S0;
- mem->parameters[ID::RD_TRANSPARENT] = rd_ports ? sig_rd_transparent.as_const() : State::S0;
-
- mem->setPort(ID::RD_CLK, sig_rd_clk);
- mem->setPort(ID::RD_ADDR, sig_rd_addr);
- mem->setPort(ID::RD_DATA, sig_rd_data);
- mem->setPort(ID::RD_EN, sig_rd_en);
-
- // Copy attributes from RTLIL memory to $mem
- for (auto attr : memory->attributes)
- mem->attributes[attr.first] = attr.second;
-
- for (auto c : memcells)
- module->remove(c);
-
- return mem;
-}
-
-static void handle_module(Design *design, Module *module)
-{
- std::vector<pair<Cell*, IdString>> finqueue;
-
- for (auto &mem_it : module->memories)
- if (design->selected(module, mem_it.second)) {
- Cell *c = handle_memory(module, mem_it.second);
- finqueue.push_back(pair<Cell*, IdString>(c, mem_it.first));
- }
- for (auto &it : finqueue) {
- delete module->memories.at(it.second);
- module->memories.erase(it.second);
- if (it.first)
- module->rename(it.first, it.second);
- }
-}
-
struct MemoryCollectPass : public Pass {
MemoryCollectPass() : Pass("memory_collect", "creating multi-port memory cells") { }
void help() override
@@ -258,8 +38,14 @@ struct MemoryCollectPass : public Pass {
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing MEMORY_COLLECT pass (generating $mem cells).\n");
extra_args(args, 1, design);
- for (auto module : design->selected_modules())
- handle_module(design, module);
+ for (auto module : design->selected_modules()) {
+ for (auto &mem : Mem::get_selected_memories(module)) {
+ if (!mem.packed) {
+ mem.packed = true;
+ mem.emit();
+ }
+ }
+ }
}
} MemoryCollectPass;
diff --git a/passes/memory/memory_dff.cc b/passes/memory/memory_dff.cc
index 947cf7b35..91209d428 100644
--- a/passes/memory/memory_dff.cc
+++ b/passes/memory/memory_dff.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -17,313 +17,627 @@
*
*/
-#include <algorithm>
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
+#include "kernel/modtools.h"
+#include "kernel/ffinit.h"
+#include "kernel/qcsat.h"
+#include "kernel/mem.h"
+#include "kernel/ff.h"
+#include "kernel/ffmerge.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
-struct MemoryDffWorker
-{
- Module *module;
- SigMap sigmap;
+struct MuxData {
+ int base_idx;
+ int size;
+ bool is_b;
+ SigSpec sig_s;
+ std::vector<SigSpec> sig_other;
+};
- vector<Cell*> dff_cells;
- dict<SigBit, SigBit> invbits;
- dict<SigBit, int> sigbit_users_count;
- dict<SigSpec, Cell*> mux_cells_a, mux_cells_b;
- pool<Cell*> forward_merged_dffs, candidate_dffs;
- pool<SigBit> init_bits;
+struct PortData {
+ bool relevant;
+ std::vector<bool> uncollidable_mask;
+ std::vector<bool> transparency_mask;
+ std::vector<bool> collision_x_mask;
+ bool final_transparency;
+ bool final_collision_x;
+};
- MemoryDffWorker(Module *module) : module(module), sigmap(module)
- {
- for (auto wire : module->wires()) {
- if (wire->attributes.count(ID::init) == 0)
- continue;
- SigSpec sig = sigmap(wire);
- Const initval = wire->attributes.at(ID::init);
- for (int i = 0; i < GetSize(sig) && i < GetSize(initval); i++)
- if (initval[i] == State::S0 || initval[i] == State::S1)
- init_bits.insert(sig[i]);
+// A helper with some caching for transparency-related SAT queries.
+// Bound to a single memory read port in the process of being converted
+// from async to sync..
+struct MemQueryCache
+{
+ QuickConeSat &qcsat;
+ // The memory.
+ Mem &mem;
+ // The port, still async at this point.
+ MemRd &port;
+ // The virtual FF that will end up merged into this port.
+ FfData &ff;
+ // An ezSAT variable that is true when we actually care about the data
+ // read from memory (ie. the FF has enable on and is not in reset).
+ int port_ren;
+ // Some caches.
+ dict<std::pair<int, SigBit>, bool> cache_can_collide_rdwr;
+ dict<std::tuple<int, int, SigBit, SigBit>, bool> cache_can_collide_together;
+ dict<std::tuple<int, SigBit, SigBit, bool>, bool> cache_is_w2rbyp;
+ dict<std::tuple<SigBit, bool>, bool> cache_impossible_with_ren;
+
+ MemQueryCache(QuickConeSat &qcsat, Mem &mem, MemRd &port, FfData &ff) : qcsat(qcsat), mem(mem), port(port), ff(ff) {
+ // port_ren is an upper bound on when we care about the value fetched
+ // from memory this cycle.
+ int ren = ezSAT::CONST_TRUE;
+ if (ff.has_ce) {
+ ren = qcsat.importSigBit(ff.sig_ce);
+ if (!ff.pol_ce)
+ ren = qcsat.ez->NOT(ren);
+ }
+ if (ff.has_srst) {
+ int nrst = qcsat.importSigBit(ff.sig_srst);
+ if (ff.pol_srst)
+ nrst = qcsat.ez->NOT(nrst);
+ ren = qcsat.ez->AND(ren, nrst);
}
+ port_ren = ren;
}
- bool find_sig_before_dff(RTLIL::SigSpec &sig, RTLIL::SigSpec &clk, bool &clk_polarity, bool after = false)
- {
- sigmap.apply(sig);
-
- for (auto &bit : sig)
- {
- if (bit.wire == NULL)
- continue;
-
- if (!after && init_bits.count(sigmap(bit)))
- return false;
-
- for (auto cell : dff_cells)
- {
- if (after && forward_merged_dffs.count(cell))
- continue;
-
- SigSpec this_clk = cell->getPort(ID::CLK);
- bool this_clk_polarity = cell->parameters[ID::CLK_POLARITY].as_bool();
-
- if (invbits.count(this_clk)) {
- this_clk = invbits.at(this_clk);
- this_clk_polarity = !this_clk_polarity;
- }
-
- if (clk != RTLIL::SigSpec(RTLIL::State::Sx)) {
- if (this_clk != clk)
- continue;
- if (this_clk_polarity != clk_polarity)
- continue;
- }
+ // Returns ezSAT variable that is true iff the two addresses are the same.
+ int addr_eq(SigSpec raddr, SigSpec waddr) {
+ int abits = std::max(GetSize(raddr), GetSize(waddr));
+ raddr.extend_u0(abits);
+ waddr.extend_u0(abits);
+ return qcsat.ez->vec_eq(qcsat.importSig(raddr), qcsat.importSig(waddr));
+ }
- RTLIL::SigSpec q_norm = cell->getPort(after ? ID::D : ID::Q);
- sigmap.apply(q_norm);
+ // Returns true if a given write port bit can be active at the same time
+ // as this read port and at the same address.
+ bool can_collide_rdwr(int widx, SigBit wen) {
+ std::pair<int, SigBit> key(widx, wen);
+ auto it = cache_can_collide_rdwr.find(key);
+ if (it != cache_can_collide_rdwr.end())
+ return it->second;
+ auto &wport = mem.wr_ports[widx];
+ int aeq = addr_eq(port.addr, wport.addr);
+ int wen_sat = qcsat.importSigBit(wen);
+ qcsat.prepare();
+ bool res = qcsat.ez->solve(aeq, wen_sat, port_ren);
+ cache_can_collide_rdwr[key] = res;
+ return res;
+ }
- RTLIL::SigSpec d = q_norm.extract(bit, &cell->getPort(after ? ID::Q : ID::D));
- if (d.size() != 1)
- continue;
+ // Returns true if both given write port bits can be active at the same
+ // time as this read port and at the same address (three-way collision).
+ bool can_collide_together(int widx1, int widx2, int bitidx) {
+ auto &wport1 = mem.wr_ports[widx1];
+ auto &wport2 = mem.wr_ports[widx2];
+ SigBit wen1 = wport1.en[bitidx];
+ SigBit wen2 = wport2.en[bitidx];
+ std::tuple<int, int, SigBit, SigBit> key(widx1, widx2, wen1, wen2);
+ auto it = cache_can_collide_together.find(key);
+ if (it != cache_can_collide_together.end())
+ return it->second;
+ int aeq1 = addr_eq(port.addr, wport1.addr);
+ int aeq2 = addr_eq(port.addr, wport2.addr);
+ int wen1_sat = qcsat.importSigBit(wen1);
+ int wen2_sat = qcsat.importSigBit(wen2);
+ qcsat.prepare();
+ bool res = qcsat.ez->solve(wen1_sat, wen2_sat, aeq1, aeq2, port_ren);
+ cache_can_collide_together[key] = res;
+ return res;
+ }
- if (after && init_bits.count(d))
- return false;
+ // Returns true if the given mux selection signal is a valid data-bypass
+ // signal in soft transparency logic for a given write port bit.
+ bool is_w2rbyp(int widx, SigBit wen, SigBit sel, bool neg_sel) {
+ std::tuple<int, SigBit, SigBit, bool> key(widx, wen, sel, neg_sel);
+ auto it = cache_is_w2rbyp.find(key);
+ if (it != cache_is_w2rbyp.end())
+ return it->second;
+ auto &wport = mem.wr_ports[widx];
+ int aeq = addr_eq(port.addr, wport.addr);
+ int wen_sat = qcsat.importSigBit(wen);
+ int sel_expected = qcsat.ez->AND(aeq, wen_sat);
+ int sel_sat = qcsat.importSigBit(sel);
+ if (neg_sel)
+ sel_sat = qcsat.ez->NOT(sel_sat);
+ qcsat.prepare();
+ bool res = !qcsat.ez->solve(port_ren, qcsat.ez->XOR(sel_expected, sel_sat));
+ cache_is_w2rbyp[key] = res;
+ return res;
+ }
- bit = d;
- clk = this_clk;
- clk_polarity = this_clk_polarity;
- candidate_dffs.insert(cell);
- goto replaced_this_bit;
- }
+ // Returns true if the given mux selection signal can never be true
+ // when this port is active.
+ bool impossible_with_ren(SigBit sel, bool neg_sel) {
+ std::tuple<SigBit, bool> key(sel, neg_sel);
+ auto it = cache_impossible_with_ren.find(key);
+ if (it != cache_impossible_with_ren.end())
+ return it->second;
+ int sel_sat = qcsat.importSigBit(sel);
+ if (neg_sel)
+ sel_sat = qcsat.ez->NOT(sel_sat);
+ qcsat.prepare();
+ bool res = !qcsat.ez->solve(port_ren, sel_sat);
+ cache_impossible_with_ren[key] = res;
+ return res;
+ }
+ // Helper for data_eq: walks up a multiplexer when the value of its
+ // sel signal is constant under the assumption that this read port
+ // is active and a given other mux sel signal is true.
+ bool walk_up_mux_cond(SigBit sel, bool neg_sel, SigBit &bit) {
+ auto &drivers = qcsat.modwalker.signal_drivers[qcsat.modwalker.sigmap(bit)];
+ if (GetSize(drivers) != 1)
return false;
- replaced_this_bit:;
+ auto driver = *drivers.begin();
+ if (!driver.cell->type.in(ID($mux), ID($pmux)))
+ return false;
+ log_assert(driver.port == ID::Y);
+ SigSpec sig_s = driver.cell->getPort(ID::S);
+ int sel_sat = qcsat.importSigBit(sel);
+ if (neg_sel)
+ sel_sat = qcsat.ez->NOT(sel_sat);
+ bool all_0 = true;
+ int width = driver.cell->parameters.at(ID::WIDTH).as_int();
+ for (int i = 0; i < GetSize(sig_s); i++) {
+ int sbit = qcsat.importSigBit(sig_s[i]);
+ qcsat.prepare();
+ if (!qcsat.ez->solve(port_ren, sel_sat, qcsat.ez->NOT(sbit))) {
+ bit = driver.cell->getPort(ID::B)[i * width + driver.offset];
+ return true;
+ }
+ if (qcsat.ez->solve(port_ren, sel_sat, sbit))
+ all_0 = false;
}
+ if (all_0) {
+ bit = driver.cell->getPort(ID::A)[driver.offset];
+ return true;
+ }
+ return false;
+ }
- return true;
+ // Returns true if a given data signal is equivalent to another, under
+ // the assumption that this read port is active and a given mux sel signal
+ // is true. Used to match transparency logic data with write port data.
+ // The walk_up_mux_cond part is necessary because write ports in yosys
+ // tend to be connected to things like (wen ? wdata : 'x).
+ bool data_eq(SigBit sel, bool neg_sel, SigBit dbit, SigBit odbit) {
+ if (qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit))
+ return true;
+ while (walk_up_mux_cond(sel, neg_sel, dbit));
+ while (walk_up_mux_cond(sel, neg_sel, odbit));
+ return qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit);
}
+};
- void handle_wr_cell(RTLIL::Cell *cell)
+struct MemoryDffWorker
+{
+ Module *module;
+ ModWalker modwalker;
+ FfInitVals initvals;
+ FfMergeHelper merger;
+
+ MemoryDffWorker(Module *module) : module(module), modwalker(module->design)
{
- log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str());
+ modwalker.setup(module);
+ initvals.set(&modwalker.sigmap, module);
+ merger.set(&initvals, module);
+ }
- RTLIL::SigSpec clk = RTLIL::SigSpec(RTLIL::State::Sx);
- bool clk_polarity = 0;
- candidate_dffs.clear();
+ // Starting from the output of an async read port, as long as the data
+ // signal's only user is a mux data signal, passes through the mux
+ // and remembers information about it. Conceptually works on every
+ // bit separately, but coalesces the result when possible.
+ SigSpec walk_muxes(SigSpec data, std::vector<MuxData> &res) {
+ bool did_something;
+ do {
+ did_something = false;
+ int prev_idx = -1;
+ Cell *prev_cell = nullptr;
+ bool prev_is_b = false;
+ for (int i = 0; i < GetSize(data); i++) {
+ SigBit bit = modwalker.sigmap(data[i]);
+ auto &consumers = modwalker.signal_consumers[bit];
+ if (GetSize(consumers) != 1 || modwalker.signal_outputs.count(bit))
+ continue;
+ auto consumer = *consumers.begin();
+ bool is_b;
+ if (consumer.cell->type == ID($mux)) {
+ if (consumer.port == ID::A) {
+ is_b = false;
+ } else if (consumer.port == ID::B) {
+ is_b = true;
+ } else {
+ continue;
+ }
+ } else if (consumer.cell->type == ID($pmux)) {
+ if (consumer.port == ID::A) {
+ is_b = false;
+ } else {
+ continue;
+ }
+ } else {
+ continue;
+ }
+ SigSpec y = consumer.cell->getPort(ID::Y);
+ int mux_width = GetSize(y);
+ SigBit ybit = y.extract(consumer.offset);
+ if (prev_cell != consumer.cell || prev_idx+1 != i || prev_is_b != is_b) {
+ MuxData md;
+ md.base_idx = i;
+ md.size = 0;
+ md.is_b = is_b;
+ md.sig_s = consumer.cell->getPort(ID::S);
+ md.sig_other.resize(GetSize(md.sig_s));
+ prev_cell = consumer.cell;
+ prev_is_b = is_b;
+ res.push_back(md);
+ }
+ auto &md = res.back();
+ md.size++;
+ for (int j = 0; j < GetSize(md.sig_s); j++) {
+ SigBit obit = consumer.cell->getPort(is_b ? ID::A : ID::B).extract(j * mux_width + consumer.offset);
+ md.sig_other[j].append(obit);
+ }
+ prev_idx = i;
+ data[i] = ybit;
+ did_something = true;
+ }
+ } while (did_something);
+ return data;
+ }
- RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR);
- if (!find_sig_before_dff(sig_addr, clk, clk_polarity)) {
- log("no (compatible) $dff for address input found.\n");
+ // Merges FF and possibly soft transparency logic into an asynchronous
+ // read port, making it into a synchronous one.
+ //
+ // There are three moving parts involved here:
+ //
+ // - the async port, which we start from, whose data port is input to...
+ // - an arbitrary chain of $mux and $pmux cells implementing soft transparency
+ // logic (ie. bypassing write port's data iff the write port is active and
+ // writing to the same address as this read port), which in turn feeds...
+ // - a final FF
+ //
+ // The async port and the mux chain are not allowed to have any users that
+ // are not part of the above.
+ //
+ // The algorithm is:
+ //
+ // 1. Walk through the muxes.
+ // 2. Recognize the final FF.
+ // 3. Knowing the FF's clock and read enable, make a list of write ports
+ // that we'll run transparency analysis on.
+ // 4. For every mux bit, recognize it as one of:
+ // - a transparency bypass mux for some port
+ // - a bypass mux that feeds 'x instead (this will result in collision
+ // don't care behavior being recognized)
+ // - a mux that never selects the other value when read port is active,
+ // and can thus be skipped (this is necessary because this could
+ // be a transparency bypass mux for never-colliding port that other
+ // passes failed to optimize)
+ // - a mux whose other input is 'x, and can thus be skipped
+ // 5. When recognizing transparency bypasses, take care to preserve priority
+ // behavior — when two bypasses are sequential muxes on the chain, they
+ // effectively have priority over one another, and the transform can
+ // only be performed when either a) their corresponding write ports
+ // also have priority, or b) there can never be a three-way collision
+ // between the two write ports and the read port.
+ // 6. Check consistency of per-bit transparency masks, merge them into
+ // per-port transparency masks
+ // 7. If everything went fine in the previous steps, actually perform
+ // the merge.
+ void handle_rd_port(Mem &mem, QuickConeSat &qcsat, int idx)
+ {
+ auto &port = mem.rd_ports[idx];
+ log("Checking read port `%s'[%d] in module `%s': ", mem.memid.c_str(), idx, module->name.c_str());
+
+ std::vector<MuxData> muxdata;
+ SigSpec data = walk_muxes(port.data, muxdata);
+ FfData ff;
+ pool<std::pair<Cell *, int>> bits;
+ if (!merger.find_output_ff(data, ff, bits)) {
+ log("no output FF found.\n");
return;
}
-
- RTLIL::SigSpec sig_data = cell->getPort(ID::DATA);
- if (!find_sig_before_dff(sig_data, clk, clk_polarity)) {
- log("no (compatible) $dff for data input found.\n");
+ if (!ff.has_clk) {
+ log("output latches are not supported.\n");
return;
}
-
- RTLIL::SigSpec sig_en = cell->getPort(ID::EN);
- if (!find_sig_before_dff(sig_en, clk, clk_polarity)) {
- log("no (compatible) $dff for enable input found.\n");
+ if (ff.has_aload) {
+ log("output FF has async load, not supported.\n");
return;
}
-
- if (clk != RTLIL::SigSpec(RTLIL::State::Sx))
- {
- for (auto cell : candidate_dffs)
- forward_merged_dffs.insert(cell);
-
- cell->setPort(ID::CLK, clk);
- cell->setPort(ID::ADDR, sig_addr);
- cell->setPort(ID::DATA, sig_data);
- cell->setPort(ID::EN, sig_en);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
- cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
-
- log("merged $dff to cell.\n");
+ if (ff.has_sr) {
+ // Latches and FFs with SR are not supported.
+ log("output FF has both set and reset, not supported.\n");
return;
}
- log("no (compatible) $dff found.\n");
- }
-
- void disconnect_dff(RTLIL::SigSpec sig)
- {
- sigmap.apply(sig);
- sig.sort_and_unify();
-
- std::stringstream sstr;
- sstr << "$memory_dff_disconnected$" << (autoidx++);
-
- RTLIL::SigSpec new_sig = module->addWire(sstr.str(), sig.size());
-
- for (auto cell : module->cells())
- if (cell->type == ID($dff)) {
- RTLIL::SigSpec new_q = cell->getPort(ID::Q);
- new_q.replace(sig, new_sig);
- cell->setPort(ID::Q, new_q);
+ // Construct cache.
+ MemQueryCache cache(qcsat, mem, port, ff);
+
+ // Prepare information structure about all ports, recognize port bits
+ // that can never collide at all and don't need to be checked.
+ std::vector<PortData> portdata;
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ PortData pd;
+ auto &wport = mem.wr_ports[i];
+ pd.relevant = true;
+ if (!wport.clk_enable)
+ pd.relevant = false;
+ if (wport.clk != ff.sig_clk)
+ pd.relevant = false;
+ if (wport.clk_polarity != ff.pol_clk)
+ pd.relevant = false;
+ // In theory, we *could* support mismatched width
+ // ports here. However, it's not worth it — wide
+ // ports are recognized *after* memory_dff in
+ // a normal flow.
+ if (wport.wide_log2 != port.wide_log2)
+ pd.relevant = false;
+ pd.uncollidable_mask.resize(GetSize(port.data));
+ pd.transparency_mask.resize(GetSize(port.data));
+ pd.collision_x_mask.resize(GetSize(port.data));
+ if (pd.relevant) {
+ // If we got this far, this port is potentially
+ // transparent and/or has undefined collision
+ // behavior. Now, for every bit, check if it can
+ // ever collide.
+ for (int j = 0; j < ff.width; j++) {
+ if (!cache.can_collide_rdwr(i, wport.en[j])) {
+ pd.uncollidable_mask[j] = true;
+ pd.collision_x_mask[j] = true;
+ }
+ }
}
- }
-
- void handle_rd_cell(RTLIL::Cell *cell)
- {
- log("Checking cell `%s' in module `%s': ", cell->name.c_str(), module->name.c_str());
-
- bool clk_polarity = 0;
-
- RTLIL::SigSpec clk_data = RTLIL::SigSpec(RTLIL::State::Sx);
- RTLIL::SigSpec sig_data = cell->getPort(ID::DATA);
-
- for (auto bit : sigmap(sig_data))
- if (sigbit_users_count[bit] > 1)
- goto skip_ff_after_read_merging;
-
- if (mux_cells_a.count(sig_data) || mux_cells_b.count(sig_data))
- {
- RTLIL::SigSpec en;
- std::vector<RTLIL::SigSpec> check_q;
-
- do {
- bool enable_invert = mux_cells_a.count(sig_data) != 0;
- Cell *mux = enable_invert ? mux_cells_a.at(sig_data) : mux_cells_b.at(sig_data);
- check_q.push_back(sigmap(mux->getPort(enable_invert ? ID::B : ID::A)));
- sig_data = sigmap(mux->getPort(ID::Y));
- en.append(enable_invert ? module->LogicNot(NEW_ID, mux->getPort(ID::S)) : mux->getPort(ID::S));
- } while (mux_cells_a.count(sig_data) || mux_cells_b.count(sig_data));
+ portdata.push_back(pd);
+ }
- for (auto bit : sig_data)
- if (sigbit_users_count[bit] > 1)
- goto skip_ff_after_read_merging;
+ // Now inspect the mux chain.
+ for (auto &md : muxdata) {
+ // We only mark transparent bits after processing a complete
+ // mux, so that the transparency priority validation check
+ // below sees transparency information as of previous mux.
+ std::vector<std::pair<PortData&, int>> trans_queue;
+ for (int sel_idx = 0; sel_idx < GetSize(md.sig_s); sel_idx++) {
+ SigBit sbit = md.sig_s[sel_idx];
+ SigSpec &odata = md.sig_other[sel_idx];
+ for (int bitidx = md.base_idx; bitidx < md.base_idx+md.size; bitidx++) {
+ SigBit odbit = odata[bitidx-md.base_idx];
+ bool recognized = false;
+ for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
+ auto &pd = portdata[pi];
+ auto &wport = mem.wr_ports[pi];
+ if (!pd.relevant)
+ continue;
+ if (pd.uncollidable_mask[bitidx])
+ continue;
+ bool match = cache.is_w2rbyp(pi, wport.en[bitidx], sbit, md.is_b);
+ if (!match)
+ continue;
+ // If we got here, we recognized this mux sel
+ // as valid bypass sel for a given port bit.
+ if (odbit == State::Sx) {
+ // 'x, mark collision don't care.
+ pd.collision_x_mask[bitidx] = true;
+ pd.transparency_mask[bitidx] = false;
+ } else if (cache.data_eq(sbit, md.is_b, wport.data[bitidx], odbit)) {
+ // Correct data value, mark transparency,
+ // but only after verifying that priority
+ // is fine.
+ for (int k = 0; k < GetSize(mem.wr_ports); k++) {
+ if (portdata[k].transparency_mask[bitidx]) {
+ if (wport.priority_mask[k])
+ continue;
+ if (!cache.can_collide_together(pi, k, bitidx))
+ continue;
+ log("FF found, but transparency logic priority doesn't match write priority.\n");
+ return;
+ }
+ }
+ recognized = true;
+ trans_queue.push_back({pd, bitidx});
+ break;
+ } else {
+ log("FF found, but with a mux data input that doesn't seem to correspond to transparency logic.\n");
+ return;
+ }
+ }
+ if (!recognized) {
+ // If we haven't positively identified this as
+ // a bypass: it's still skippable if the
+ // data is 'x, or if the sel cannot actually be
+ // active.
+ if (odbit == State::Sx)
+ continue;
+ if (cache.impossible_with_ren(sbit, md.is_b))
+ continue;
+ log("FF found, but with a mux select that doesn't seem to correspond to transparency logic.\n");
+ return;
+ }
+ }
+ }
+ // Done with this mux, now actually apply the transparencies.
+ for (auto it : trans_queue) {
+ it.first.transparency_mask[it.second] = true;
+ it.first.collision_x_mask[it.second] = false;
+ }
+ }
- if (find_sig_before_dff(sig_data, clk_data, clk_polarity, true) && clk_data != RTLIL::SigSpec(RTLIL::State::Sx) &&
- std::all_of(check_q.begin(), check_q.end(), [&](const SigSpec &cq) {return cq == sig_data; }))
- {
- disconnect_dff(sig_data);
- cell->setPort(ID::CLK, clk_data);
- cell->setPort(ID::EN, en.size() > 1 ? module->ReduceAnd(NEW_ID, en) : en);
- cell->setPort(ID::DATA, sig_data);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
- cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
- cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0);
- log("merged data $dff with rd enable to cell.\n");
+ // Final merging and validation of per-bit masks.
+ for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
+ auto &pd = portdata[pi];
+ if (!pd.relevant)
+ continue;
+ bool trans = false;
+ bool non_trans = false;
+ for (int i = 0; i < ff.width; i++) {
+ if (pd.collision_x_mask[i])
+ continue;
+ if (pd.transparency_mask[i])
+ trans = true;
+ else
+ non_trans = true;
+ }
+ if (trans && non_trans) {
+ log("FF found, but soft transparency logic is inconsistent for port %d.\n", pi);
return;
}
+ pd.final_transparency = trans;
+ pd.final_collision_x = !trans && !non_trans;
}
+
+ // OK, it worked.
+ log("merging output FF to cell.\n");
+
+ merger.remove_output_ff(bits);
+ if (ff.has_ce && !ff.pol_ce)
+ ff.sig_ce = module->LogicNot(NEW_ID, ff.sig_ce);
+ if (ff.has_arst && !ff.pol_arst)
+ ff.sig_arst = module->LogicNot(NEW_ID, ff.sig_arst);
+ if (ff.has_srst && !ff.pol_srst)
+ ff.sig_srst = module->LogicNot(NEW_ID, ff.sig_srst);
+ port.clk = ff.sig_clk;
+ port.clk_enable = true;
+ port.clk_polarity = ff.pol_clk;
+ if (ff.has_ce)
+ port.en = ff.sig_ce;
else
- {
- if (find_sig_before_dff(sig_data, clk_data, clk_polarity, true) && clk_data != RTLIL::SigSpec(RTLIL::State::Sx))
- {
- disconnect_dff(sig_data);
- cell->setPort(ID::CLK, clk_data);
- cell->setPort(ID::EN, State::S1);
- cell->setPort(ID::DATA, sig_data);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
- cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
- cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0);
- log("merged data $dff to cell.\n");
- return;
+ port.en = State::S1;
+ if (ff.has_arst) {
+ port.arst = ff.sig_arst;
+ port.arst_value = ff.val_arst;
+ } else {
+ port.arst = State::S0;
+ }
+ if (ff.has_srst) {
+ port.srst = ff.sig_srst;
+ port.srst_value = ff.val_srst;
+ port.ce_over_srst = ff.ce_over_srst;
+ } else {
+ port.srst = State::S0;
+ }
+ port.init_value = ff.val_init;
+ port.data = ff.sig_q;
+ for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
+ auto &pd = portdata[pi];
+ if (!pd.relevant)
+ continue;
+ if (pd.final_collision_x) {
+ log(" Write port %d: don't care on collision.\n", pi);
+ port.collision_x_mask[pi] = true;
+ } else if (pd.final_transparency) {
+ log(" Write port %d: transparent.\n", pi);
+ port.transparency_mask[pi] = true;
+ } else {
+ log(" Write port %d: non-transparent.\n", pi);
}
}
+ mem.emit();
+ }
- skip_ff_after_read_merging:;
- RTLIL::SigSpec clk_addr = RTLIL::SigSpec(RTLIL::State::Sx);
- RTLIL::SigSpec sig_addr = cell->getPort(ID::ADDR);
- if (find_sig_before_dff(sig_addr, clk_addr, clk_polarity) &&
- clk_addr != RTLIL::SigSpec(RTLIL::State::Sx))
- {
- cell->setPort(ID::CLK, clk_addr);
- cell->setPort(ID::EN, State::S1);
- cell->setPort(ID::ADDR, sig_addr);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(1);
- cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity);
- cell->parameters[ID::TRANSPARENT] = RTLIL::Const(1);
- log("merged address $dff to cell.\n");
+ void handle_rd_port_addr(Mem &mem, int idx)
+ {
+ auto &port = mem.rd_ports[idx];
+ log("Checking read port address `%s'[%d] in module `%s': ", mem.memid.c_str(), idx, module->name.c_str());
+
+ FfData ff;
+ pool<std::pair<Cell *, int>> bits;
+ if (!merger.find_input_ff(port.addr, ff, bits)) {
+ log("no address FF found.\n");
return;
}
-
- log("no (compatible) $dff found.\n");
+ if (!ff.has_clk) {
+ log("address latches are not supported.\n");
+ return;
+ }
+ if (ff.has_aload) {
+ log("address FF has async load, not supported.\n");
+ return;
+ }
+ if (ff.has_sr || ff.has_arst) {
+ log("address FF has async set and/or reset, not supported.\n");
+ return;
+ }
+ // Trick part: this transform is invalid if the initial
+ // value of the FF is fully-defined. However, we
+ // cannot simply reject FFs with any defined init bit,
+ // as this is often the result of merging a const bit.
+ if (ff.val_init.is_fully_def()) {
+ log("address FF has fully-defined init value, not supported.\n");
+ return;
+ }
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ auto &wport = mem.wr_ports[i];
+ if (!wport.clk_enable || wport.clk != ff.sig_clk || wport.clk_polarity != ff.pol_clk) {
+ log("address FF clock is not compatible with write clock.\n");
+ return;
+ }
+ }
+ // Now we're commited to merge it.
+ merger.mark_input_ff(bits);
+ // If the address FF has enable and/or sync reset, unmap it.
+ ff.unmap_ce_srst();
+ port.clk = ff.sig_clk;
+ port.en = State::S1;
+ port.addr = ff.sig_d;
+ port.clk_enable = true;
+ port.clk_polarity = ff.pol_clk;
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
+ port.transparency_mask[i] = true;
+ mem.emit();
+ log("merged address FF to cell.\n");
}
- void run(bool flag_wr_only)
+ void run()
{
- for (auto wire : module->wires()) {
- if (wire->port_output)
- for (auto bit : sigmap(wire))
- sigbit_users_count[bit]++;
- }
-
- for (auto cell : module->cells()) {
- if (cell->type == ID($dff))
- dff_cells.push_back(cell);
- if (cell->type == ID($mux)) {
- mux_cells_a[sigmap(cell->getPort(ID::A))] = cell;
- mux_cells_b[sigmap(cell->getPort(ID::B))] = cell;
+ std::vector<Mem> memories = Mem::get_selected_memories(module);
+ for (auto &mem : memories) {
+ QuickConeSat qcsat(modwalker);
+ for (int i = 0; i < GetSize(mem.rd_ports); i++) {
+ if (!mem.rd_ports[i].clk_enable)
+ handle_rd_port(mem, qcsat, i);
}
- if (cell->type.in(ID($not), ID($_NOT_)) || (cell->type == ID($logic_not) && GetSize(cell->getPort(ID::A)) == 1)) {
- SigSpec sig_a = cell->getPort(ID::A);
- SigSpec sig_y = cell->getPort(ID::Y);
- if (cell->type == ID($not))
- sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool());
- if (cell->type == ID($logic_not))
- sig_y.extend_u0(1);
- for (int i = 0; i < GetSize(sig_y); i++)
- invbits[sig_y[i]] = sig_a[i];
+ }
+ for (auto &mem : memories) {
+ for (int i = 0; i < GetSize(mem.rd_ports); i++) {
+ if (!mem.rd_ports[i].clk_enable)
+ handle_rd_port_addr(mem, i);
}
- for (auto &conn : cell->connections())
- if (!cell->known() || cell->input(conn.first))
- for (auto bit : sigmap(conn.second))
- sigbit_users_count[bit]++;
}
-
- for (auto cell : module->selected_cells())
- if (cell->type == ID($memwr) && !cell->parameters[ID::CLK_ENABLE].as_bool())
- handle_wr_cell(cell);
-
- if (!flag_wr_only)
- for (auto cell : module->selected_cells())
- if (cell->type == ID($memrd) && !cell->parameters[ID::CLK_ENABLE].as_bool())
- handle_rd_cell(cell);
}
};
struct MemoryDffPass : public Pass {
- MemoryDffPass() : Pass("memory_dff", "merge input/output DFFs into memories") { }
+ MemoryDffPass() : Pass("memory_dff", "merge input/output DFFs into memory read ports") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_dff [options] [selection]\n");
log("\n");
- log("This pass detects DFFs at memory ports and merges them into the memory port.\n");
+ log("This pass detects DFFs at memory read ports and merges them into the memory port.\n");
log("I.e. it consumes an asynchronous memory port and the flip-flops at its\n");
log("interface and yields a synchronous memory port.\n");
log("\n");
- log(" -nordfff\n");
- log(" do not merge registers on read ports\n");
- log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
- bool flag_wr_only = false;
-
- log_header(design, "Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr).\n");
+ log_header(design, "Executing MEMORY_DFF pass (merging $dff cells to $memrd).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
- if (args[argidx] == "-nordff" || args[argidx] == "-wr_only") {
- flag_wr_only = true;
- continue;
- }
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules()) {
MemoryDffWorker worker(mod);
- worker.run(flag_wr_only);
+ worker.run();
}
}
} MemoryDffPass;
diff --git a/passes/memory/memory_map.cc b/passes/memory/memory_map.cc
index 80dd3957d..ca1ca483d 100644
--- a/passes/memory/memory_map.cc
+++ b/passes/memory/memory_map.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -19,6 +19,7 @@
#include "kernel/register.h"
#include "kernel/log.h"
+#include "kernel/mem.h"
#include <sstream>
#include <set>
#include <stdlib.h>
@@ -33,10 +34,12 @@ struct MemoryMapWorker
RTLIL::Design *design;
RTLIL::Module *module;
+ SigMap sigmap;
+ FfInitVals initvals;
std::map<std::pair<RTLIL::SigSpec, RTLIL::SigSpec>, RTLIL::SigBit> decoder_cache;
- MemoryMapWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module) {}
+ MemoryMapWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module), initvals(&sigmap, module) {}
std::string map_case(std::string value) const
{
@@ -97,35 +100,26 @@ struct MemoryMapWorker
return bit.wire;
}
- void handle_cell(RTLIL::Cell *cell)
+ void handle_memory(Mem &mem)
{
std::set<int> static_ports;
std::map<int, RTLIL::SigSpec> static_cells_map;
- int wr_ports = cell->parameters[ID::WR_PORTS].as_int();
- int rd_ports = cell->parameters[ID::RD_PORTS].as_int();
-
- int mem_size = cell->parameters[ID::SIZE].as_int();
- int mem_width = cell->parameters[ID::WIDTH].as_int();
- int mem_offset = cell->parameters[ID::OFFSET].as_int();
- int mem_abits = cell->parameters[ID::ABITS].as_int();
-
- SigSpec init_data = cell->getParam(ID::INIT);
- init_data.extend_u0(mem_size*mem_width, true);
+ SigSpec init_data = mem.get_init_data();
// delete unused memory cell
- if (wr_ports == 0 && rd_ports == 0) {
- module->remove(cell);
+ if (mem.rd_ports.empty()) {
+ mem.remove();
return;
}
- // check if attributes allow us to infer FFRAM for this cell
+ // check if attributes allow us to infer FFRAM for this memory
for (const auto &attr : attributes) {
- if (cell->attributes.count(attr.first)) {
- const auto &cell_attr = cell->attributes[attr.first];
+ if (mem.attributes.count(attr.first)) {
+ const auto &cell_attr = mem.attributes[attr.first];
if (attr.second.empty()) {
- log("Not mapping memory cell %s in module %s (attribute %s is set).\n",
- cell->name.c_str(), module->name.c_str(), attr.first.c_str());
+ log("Not mapping memory %s in module %s (attribute %s is set).\n",
+ mem.memid.c_str(), module->name.c_str(), attr.first.c_str());
return;
}
@@ -138,11 +132,11 @@ struct MemoryMapWorker
}
if (!found) {
if (cell_attr.flags & RTLIL::CONST_FLAG_STRING) {
- log("Not mapping memory cell %s in module %s (attribute %s is set to \"%s\").\n",
- cell->name.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.decode_string().c_str());
+ log("Not mapping memory %s in module %s (attribute %s is set to \"%s\").\n",
+ mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.decode_string().c_str());
} else {
- log("Not mapping memory cell %s in module %s (attribute %s is set to %d).\n",
- cell->name.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.as_int());
+ log("Not mapping memory %s in module %s (attribute %s is set to %d).\n",
+ mem.memid.c_str(), module->name.c_str(), attr.first.c_str(), cell_attr.as_int());
}
return;
}
@@ -150,161 +144,113 @@ struct MemoryMapWorker
}
// all write ports must share the same clock
- RTLIL::SigSpec clocks = cell->getPort(ID::WR_CLK);
- RTLIL::Const clocks_pol = cell->parameters[ID::WR_CLK_POLARITY];
- RTLIL::Const clocks_en = cell->parameters[ID::WR_CLK_ENABLE];
- clocks_pol.bits.resize(wr_ports);
- clocks_en.bits.resize(wr_ports);
RTLIL::SigSpec refclock;
- RTLIL::State refclock_pol = RTLIL::State::Sx;
- for (int i = 0; i < clocks.size(); i++) {
- RTLIL::SigSpec wr_en = cell->getPort(ID::WR_EN).extract(i * mem_width, mem_width);
- if (wr_en.is_fully_const() && !wr_en.as_bool()) {
+ bool refclock_pol = false;
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ auto &port = mem.wr_ports[i];
+ if (port.en.is_fully_const() && !port.en.as_bool()) {
static_ports.insert(i);
continue;
}
- if (clocks_en.bits[i] != RTLIL::State::S1) {
- RTLIL::SigSpec wr_addr = cell->getPort(ID::WR_ADDR).extract(i*mem_abits, mem_abits);
- RTLIL::SigSpec wr_data = cell->getPort(ID::WR_DATA).extract(i*mem_width, mem_width);
- if (wr_addr.is_fully_const()) {
- // FIXME: Actually we should check for wr_en.is_fully_const() also and
- // create a $adff cell with this ports wr_en input as reset pin when wr_en
- // is not a simple static 1.
- static_cells_map[wr_addr.as_int() - mem_offset] = wr_data;
+ if (!port.clk_enable) {
+ if (port.addr.is_fully_const() && port.en.is_fully_ones()) {
+ for (int sub = 0; sub < (1 << port.wide_log2); sub++)
+ static_cells_map[port.addr.as_int() + sub] = port.data.extract(sub * mem.width, mem.width);
static_ports.insert(i);
continue;
}
- log("Not mapping memory cell %s in module %s (write port %d has no clock).\n",
- cell->name.c_str(), module->name.c_str(), i);
+ log("Not mapping memory %s in module %s (write port %d has no clock).\n",
+ mem.memid.c_str(), module->name.c_str(), i);
return;
}
if (refclock.size() == 0) {
- refclock = clocks.extract(i, 1);
- refclock_pol = clocks_pol.bits[i];
+ refclock = port.clk;
+ refclock_pol = port.clk_polarity;
}
- if (clocks.extract(i, 1) != refclock || clocks_pol.bits[i] != refclock_pol) {
- log("Not mapping memory cell %s in module %s (write clock %d is incompatible with other clocks).\n",
- cell->name.c_str(), module->name.c_str(), i);
+ if (port.clk != refclock || port.clk_polarity != refclock_pol) {
+ log("Not mapping memory %s in module %s (write clock %d is incompatible with other clocks).\n",
+ mem.memid.c_str(), module->name.c_str(), i);
return;
}
}
- log("Mapping memory cell %s in module %s:\n", cell->name.c_str(), module->name.c_str());
+ log("Mapping memory %s in module %s:\n", mem.memid.c_str(), module->name.c_str());
- std::vector<RTLIL::SigSpec> data_reg_in;
- std::vector<RTLIL::SigSpec> data_reg_out;
+ int abits = ceil_log2(mem.size);
+ std::vector<RTLIL::SigSpec> data_reg_in(1 << abits);
+ std::vector<RTLIL::SigSpec> data_reg_out(1 << abits);
int count_static = 0;
- for (int i = 0; i < mem_size; i++)
+ for (int i = 0; i < mem.size; i++)
{
- if (static_cells_map.count(i) > 0)
+ int addr = i + mem.start_offset;
+ int idx = addr & ((1 << abits) - 1);
+ if (static_cells_map.count(addr) > 0)
{
- data_reg_in.push_back(RTLIL::SigSpec(RTLIL::State::Sz, mem_width));
- data_reg_out.push_back(static_cells_map[i]);
+ data_reg_out[idx] = static_cells_map[addr];
count_static++;
}
else
{
- RTLIL::Cell *c = module->addCell(genid(cell->name, "", i), ID($dff));
- c->parameters[ID::WIDTH] = cell->parameters[ID::WIDTH];
- if (clocks_pol.bits.size() > 0) {
- c->parameters[ID::CLK_POLARITY] = RTLIL::Const(clocks_pol.bits[0]);
- c->setPort(ID::CLK, clocks.extract(0, 1));
+ RTLIL::Cell *c = module->addCell(genid(mem.memid, "", addr), ID($dff));
+ c->parameters[ID::WIDTH] = mem.width;
+ if (GetSize(refclock) != 0) {
+ c->parameters[ID::CLK_POLARITY] = RTLIL::Const(refclock_pol);
+ c->setPort(ID::CLK, refclock);
} else {
c->parameters[ID::CLK_POLARITY] = RTLIL::Const(RTLIL::State::S1);
c->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::S0));
}
- RTLIL::Wire *w_in = module->addWire(genid(cell->name, "", i, "$d"), mem_width);
- data_reg_in.push_back(RTLIL::SigSpec(w_in));
- c->setPort(ID::D, data_reg_in.back());
+ RTLIL::Wire *w_in = module->addWire(genid(mem.memid, "", addr, "$d"), mem.width);
+ data_reg_in[idx] = w_in;
+ c->setPort(ID::D, w_in);
- std::string w_out_name = stringf("%s[%d]", cell->parameters[ID::MEMID].decode_string().c_str(), i);
+ std::string w_out_name = stringf("%s[%d]", mem.memid.c_str(), addr);
if (module->wires_.count(w_out_name) > 0)
- w_out_name = genid(cell->name, "", i, "$q");
+ w_out_name = genid(mem.memid, "", addr, "$q");
- RTLIL::Wire *w_out = module->addWire(w_out_name, mem_width);
- SigSpec w_init = init_data.extract(i*mem_width, mem_width);
+ RTLIL::Wire *w_out = module->addWire(w_out_name, mem.width);
+ SigSpec w_init = init_data.extract(i*mem.width, mem.width);
if (!w_init.is_fully_undef())
w_out->attributes[ID::init] = w_init.as_const();
- data_reg_out.push_back(RTLIL::SigSpec(w_out));
- c->setPort(ID::Q, data_reg_out.back());
+ data_reg_out[idx] = w_out;
+ c->setPort(ID::Q, w_out);
}
}
- log(" created %d $dff cells and %d static cells of width %d.\n", mem_size-count_static, count_static, mem_width);
+ log(" created %d $dff cells and %d static cells of width %d.\n", mem.size-count_static, count_static, mem.width);
int count_dff = 0, count_mux = 0, count_wrmux = 0;
- for (int i = 0; i < cell->parameters[ID::RD_PORTS].as_int(); i++)
+ for (int i = 0; i < GetSize(mem.rd_ports); i++)
{
- RTLIL::SigSpec rd_addr = cell->getPort(ID::RD_ADDR).extract(i*mem_abits, mem_abits);
-
- if (mem_offset)
- rd_addr = module->Sub(NEW_ID, rd_addr, SigSpec(mem_offset, GetSize(rd_addr)));
+ auto &port = mem.rd_ports[i];
+ if (mem.extract_rdff(i, &initvals))
+ count_dff++;
+ RTLIL::SigSpec rd_addr = port.addr;
+ rd_addr.extend_u0(abits, false);
std::vector<RTLIL::SigSpec> rd_signals;
- rd_signals.push_back(cell->getPort(ID::RD_DATA).extract(i*mem_width, mem_width));
-
- if (cell->parameters[ID::RD_CLK_ENABLE].bits[i] == RTLIL::State::S1)
- {
- RTLIL::Cell *dff_cell = nullptr;
-
- if (cell->parameters[ID::RD_TRANSPARENT].bits[i] == RTLIL::State::S1)
- {
- dff_cell = module->addCell(genid(cell->name, "$rdreg", i), ID($dff));
- dff_cell->parameters[ID::WIDTH] = RTLIL::Const(mem_abits);
- dff_cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(cell->parameters[ID::RD_CLK_POLARITY].bits[i]);
- dff_cell->setPort(ID::CLK, cell->getPort(ID::RD_CLK).extract(i, 1));
- dff_cell->setPort(ID::D, rd_addr);
- count_dff++;
-
- RTLIL::Wire *w = module->addWire(genid(cell->name, "$rdreg", i, "$q"), mem_abits);
+ rd_signals.push_back(port.data);
- dff_cell->setPort(ID::Q, RTLIL::SigSpec(w));
- rd_addr = RTLIL::SigSpec(w);
- }
- else
- {
- dff_cell = module->addCell(genid(cell->name, "$rdreg", i), ID($dff));
- dff_cell->parameters[ID::WIDTH] = cell->parameters[ID::WIDTH];
- dff_cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(cell->parameters[ID::RD_CLK_POLARITY].bits[i]);
- dff_cell->setPort(ID::CLK, cell->getPort(ID::RD_CLK).extract(i, 1));
- dff_cell->setPort(ID::Q, rd_signals.back());
- count_dff++;
-
- RTLIL::Wire *w = module->addWire(genid(cell->name, "$rdreg", i, "$d"), mem_width);
-
- rd_signals.clear();
- rd_signals.push_back(RTLIL::SigSpec(w));
- dff_cell->setPort(ID::D, rd_signals.back());
- }
-
- SigBit en_bit = cell->getPort(ID::RD_EN).extract(i);
- if (en_bit != State::S1) {
- SigSpec new_d = module->Mux(genid(cell->name, "$rdenmux", i),
- dff_cell->getPort(ID::Q), dff_cell->getPort(ID::D), en_bit);
- dff_cell->setPort(ID::D, new_d);
- }
- }
-
- for (int j = 0; j < mem_abits; j++)
+ for (int j = 0; j < abits - port.wide_log2; j++)
{
std::vector<RTLIL::SigSpec> next_rd_signals;
for (size_t k = 0; k < rd_signals.size(); k++)
{
- RTLIL::Cell *c = module->addCell(genid(cell->name, "$rdmux", i, "", j, "", k), ID($mux));
- c->parameters[ID::WIDTH] = cell->parameters[ID::WIDTH];
+ RTLIL::Cell *c = module->addCell(genid(mem.memid, "$rdmux", i, "", j, "", k), ID($mux));
+ c->parameters[ID::WIDTH] = GetSize(port.data);
c->setPort(ID::Y, rd_signals[k]);
- c->setPort(ID::S, rd_addr.extract(mem_abits-j-1, 1));
+ c->setPort(ID::S, rd_addr.extract(abits-j-1, 1));
count_mux++;
- c->setPort(ID::A, module->addWire(genid(cell->name, "$rdmux", i, "", j, "", k, "$a"), mem_width));
- c->setPort(ID::B, module->addWire(genid(cell->name, "$rdmux", i, "", j, "", k, "$b"), mem_width));
+ c->setPort(ID::A, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$a"), GetSize(port.data)));
+ c->setPort(ID::B, module->addWire(genid(mem.memid, "$rdmux", i, "", j, "", k, "$b"), GetSize(port.data)));
next_rd_signals.push_back(c->getPort(ID::A));
next_rd_signals.push_back(c->getPort(ID::B));
@@ -313,38 +259,38 @@ struct MemoryMapWorker
next_rd_signals.swap(rd_signals);
}
- for (int j = 0; j < mem_size; j++)
- module->connect(RTLIL::SigSig(rd_signals[j], data_reg_out[j]));
+ for (int j = 0; j < (1 << abits); j++)
+ if (data_reg_out[j] != SigSpec())
+ module->connect(RTLIL::SigSig(rd_signals[j >> port.wide_log2].extract((j & ((1 << port.wide_log2) - 1)) * mem.width, mem.width), data_reg_out[j]));
}
log(" read interface: %d $dff and %d $mux cells.\n", count_dff, count_mux);
- for (int i = 0; i < mem_size; i++)
+ for (int i = 0; i < mem.size; i++)
{
- if (static_cells_map.count(i) > 0)
+ int addr = i + mem.start_offset;
+ int idx = addr & ((1 << abits) - 1);
+ if (static_cells_map.count(addr) > 0)
continue;
- RTLIL::SigSpec sig = data_reg_out[i];
+ RTLIL::SigSpec sig = data_reg_out[idx];
- for (int j = 0; j < cell->parameters[ID::WR_PORTS].as_int(); j++)
+ for (int j = 0; j < GetSize(mem.wr_ports); j++)
{
- RTLIL::SigSpec wr_addr = cell->getPort(ID::WR_ADDR).extract(j*mem_abits, mem_abits);
- RTLIL::SigSpec wr_data = cell->getPort(ID::WR_DATA).extract(j*mem_width, mem_width);
- RTLIL::SigSpec wr_en = cell->getPort(ID::WR_EN).extract(j*mem_width, mem_width);
-
- if (mem_offset)
- wr_addr = module->Sub(NEW_ID, wr_addr, SigSpec(mem_offset, GetSize(wr_addr)));
+ auto &port = mem.wr_ports[j];
+ RTLIL::SigSpec wr_addr = port.addr.extract_end(port.wide_log2);
+ RTLIL::Wire *w_seladdr = addr_decode(wr_addr, RTLIL::SigSpec(addr >> port.wide_log2, GetSize(wr_addr)));
- RTLIL::Wire *w_seladdr = addr_decode(wr_addr, RTLIL::SigSpec(i, mem_abits));
+ int sub = addr & ((1 << port.wide_log2) - 1);
int wr_offset = 0;
- while (wr_offset < wr_en.size())
+ while (wr_offset < mem.width)
{
int wr_width = 1;
- RTLIL::SigSpec wr_bit = wr_en.extract(wr_offset, 1);
+ RTLIL::SigSpec wr_bit = port.en.extract(wr_offset + sub * mem.width, 1);
- while (wr_offset + wr_width < wr_en.size()) {
- RTLIL::SigSpec next_wr_bit = wr_en.extract(wr_offset + wr_width, 1);
+ while (wr_offset + wr_width < mem.width) {
+ RTLIL::SigSpec next_wr_bit = port.en.extract(wr_offset + wr_width + sub * mem.width, 1);
if (next_wr_bit != wr_bit)
break;
wr_width++;
@@ -354,7 +300,7 @@ struct MemoryMapWorker
if (wr_bit != State::S1)
{
- RTLIL::Cell *c = module->addCell(genid(cell->name, "$wren", i, "", j, "", wr_offset), ID($and));
+ RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wren", addr, "", j, "", wr_offset), ID($and));
c->parameters[ID::A_SIGNED] = RTLIL::Const(0);
c->parameters[ID::B_SIGNED] = RTLIL::Const(0);
c->parameters[ID::A_WIDTH] = RTLIL::Const(1);
@@ -363,17 +309,17 @@ struct MemoryMapWorker
c->setPort(ID::A, w);
c->setPort(ID::B, wr_bit);
- w = module->addWire(genid(cell->name, "$wren", i, "", j, "", wr_offset, "$y"));
+ w = module->addWire(genid(mem.memid, "$wren", addr, "", j, "", wr_offset, "$y"));
c->setPort(ID::Y, RTLIL::SigSpec(w));
}
- RTLIL::Cell *c = module->addCell(genid(cell->name, "$wrmux", i, "", j, "", wr_offset), ID($mux));
+ RTLIL::Cell *c = module->addCell(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset), ID($mux));
c->parameters[ID::WIDTH] = wr_width;
c->setPort(ID::A, sig.extract(wr_offset, wr_width));
- c->setPort(ID::B, wr_data.extract(wr_offset, wr_width));
+ c->setPort(ID::B, port.data.extract(wr_offset + sub * mem.width, wr_width));
c->setPort(ID::S, RTLIL::SigSpec(w));
- w = module->addWire(genid(cell->name, "$wrmux", i, "", j, "", wr_offset, "$y"), wr_width);
+ w = module->addWire(genid(mem.memid, "$wrmux", addr, "", j, "", wr_offset, "$y"), wr_width);
c->setPort(ID::Y, w);
sig.replace(wr_offset, w);
@@ -382,22 +328,18 @@ struct MemoryMapWorker
}
}
- module->connect(RTLIL::SigSig(data_reg_in[i], sig));
+ module->connect(RTLIL::SigSig(data_reg_in[idx], sig));
}
log(" write interface: %d write mux blocks.\n", count_wrmux);
- module->remove(cell);
+ mem.remove();
}
void run()
{
- std::vector<RTLIL::Cell*> cells;
- for (auto cell : module->selected_cells())
- if (cell->type == ID($mem))
- cells.push_back(cell);
- for (auto cell : cells)
- handle_cell(cell);
+ for (auto &mem : Mem::get_selected_memories(module))
+ handle_memory(mem);
}
};
@@ -430,7 +372,7 @@ struct MemoryMapPass : public Pass {
bool attr_icase = false;
dict<RTLIL::IdString, std::vector<RTLIL::Const>> attributes;
- log_header(design, "Executing MEMORY_MAP pass (converting $mem cells to logic and flip-flops).\n");
+ log_header(design, "Executing MEMORY_MAP pass (converting memories to logic and flip-flops).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
diff --git a/passes/memory/memory_memx.cc b/passes/memory/memory_memx.cc
index 02e00cf30..7edc26caa 100644
--- a/passes/memory/memory_memx.cc
+++ b/passes/memory/memory_memx.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -17,11 +17,8 @@
*
*/
-#include "kernel/register.h"
-#include "kernel/log.h"
-#include <sstream>
-#include <set>
-#include <stdlib.h>
+#include "kernel/yosys.h"
+#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@@ -38,53 +35,45 @@ struct MemoryMemxPass : public Pass {
log("behavior for out-of-bounds memory reads and writes.\n");
log("\n");
}
+
+ SigSpec make_addr_check(Mem &mem, SigSpec addr) {
+ int start_addr = mem.start_offset;
+ int end_addr = mem.start_offset + mem.size;
+
+ addr.extend_u0(32);
+
+ SigSpec res = mem.module->Nex(NEW_ID, mem.module->ReduceXor(NEW_ID, addr), mem.module->ReduceXor(NEW_ID, {addr, State::S1}));
+ if (start_addr != 0)
+ res = mem.module->LogicAnd(NEW_ID, res, mem.module->Ge(NEW_ID, addr, start_addr));
+ res = mem.module->LogicAnd(NEW_ID, res, mem.module->Lt(NEW_ID, addr, end_addr));
+ return res;
+ }
+
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing MEMORY_MEMX pass (converting $mem cells to logic and flip-flops).\n");
extra_args(args, 1, design);
for (auto module : design->selected_modules())
+ for (auto &mem : Mem::get_selected_memories(module))
{
- vector<Cell*> mem_port_cells;
-
- for (auto cell : module->selected_cells())
- if (cell->type.in(ID($memrd), ID($memwr)))
- mem_port_cells.push_back(cell);
-
- for (auto cell : mem_port_cells)
+ for (auto &port : mem.rd_ports)
{
- IdString memid = cell->getParam(ID::MEMID).decode_string();
- RTLIL::Memory *mem = module->memories.at(memid);
+ if (port.clk_enable)
+ log_error("Memory %s.%s has a synchronous read port. Synchronous read ports are not supported by memory_memx!\n",
+ log_id(module), log_id(mem.memid));
- int lowest_addr = mem->start_offset;
- int highest_addr = mem->start_offset + mem->size - 1;
-
- SigSpec addr = cell->getPort(ID::ADDR);
- addr.extend_u0(32);
-
- SigSpec addr_ok = module->Nex(NEW_ID, module->ReduceXor(NEW_ID, addr), module->ReduceXor(NEW_ID, {addr, State::S1}));
- if (lowest_addr != 0)
- addr_ok = module->LogicAnd(NEW_ID, addr_ok, module->Ge(NEW_ID, addr, lowest_addr));
- addr_ok = module->LogicAnd(NEW_ID, addr_ok, module->Le(NEW_ID, addr, highest_addr));
-
- if (cell->type == ID($memrd))
- {
- if (cell->getParam(ID::CLK_ENABLE).as_bool())
- log_error("Cell %s.%s (%s) has an enabled clock. Clocked $memrd cells are not supported by memory_memx!\n",
- log_id(module), log_id(cell), log_id(cell->type));
-
- SigSpec rdata = cell->getPort(ID::DATA);
- Wire *raw_rdata = module->addWire(NEW_ID, GetSize(rdata));
- module->addMux(NEW_ID, SigSpec(State::Sx, GetSize(rdata)), raw_rdata, addr_ok, rdata);
- cell->setPort(ID::DATA, raw_rdata);
- }
+ SigSpec addr_ok = make_addr_check(mem, port.addr);
+ Wire *raw_rdata = module->addWire(NEW_ID, GetSize(port.data));
+ module->addMux(NEW_ID, SigSpec(State::Sx, GetSize(port.data)), raw_rdata, addr_ok, port.data);
+ port.data = raw_rdata;
+ }
- if (cell->type == ID($memwr))
- {
- SigSpec en = cell->getPort(ID::EN);
- en = module->And(NEW_ID, en, addr_ok.repeat(GetSize(en)));
- cell->setPort(ID::EN, en);
- }
+ for (auto &port : mem.wr_ports) {
+ SigSpec addr_ok = make_addr_check(mem, port.addr);
+ port.en = module->And(NEW_ID, port.en, addr_ok.repeat(GetSize(port.en)));
}
+
+ mem.emit();
}
}
} MemoryMemxPass;
diff --git a/passes/memory/memory_narrow.cc b/passes/memory/memory_narrow.cc
new file mode 100644
index 000000000..cf5e43465
--- /dev/null
+++ b/passes/memory/memory_narrow.cc
@@ -0,0 +1,67 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2020 Marcelina Kościelnicka <mwk@0x04.net>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/yosys.h"
+#include "kernel/sigtools.h"
+#include "kernel/mem.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+struct MemoryNarrowPass : public Pass {
+ MemoryNarrowPass() : Pass("memory_narrow", "split up wide memory ports") { }
+ void help() override
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" memory_narrow [options] [selection]\n");
+ log("\n");
+ log("This pass splits up wide memory ports into several narrow ports.\n");
+ log("\n");
+ }
+ void execute(std::vector<std::string> args, RTLIL::Design *design) override
+ {
+ log_header(design, "Executing MEMORY_NARROW pass (splitting up wide memory ports).\n");
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++) {
+ break;
+ }
+ extra_args(args, argidx, design);
+
+ for (auto module : design->selected_modules()) {
+ for (auto &mem : Mem::get_selected_memories(module))
+ {
+ bool wide = false;
+ for (auto &port : mem.rd_ports)
+ if (port.wide_log2)
+ wide = true;
+ for (auto &port : mem.wr_ports)
+ if (port.wide_log2)
+ wide = true;
+ if (wide) {
+ mem.narrow();
+ mem.emit();
+ }
+ }
+ }
+ }
+} MemoryNarrowPass;
+
+PRIVATE_NAMESPACE_END
diff --git a/passes/memory/memory_nordff.cc b/passes/memory/memory_nordff.cc
index 07bbd9fe8..3253c8f60 100644
--- a/passes/memory/memory_nordff.cc
+++ b/passes/memory/memory_nordff.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -19,6 +19,7 @@
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
+#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
@@ -32,12 +33,12 @@ struct MemoryNordffPass : public Pass {
log(" memory_nordff [options] [selection]\n");
log("\n");
log("This pass extracts FFs from memory read ports. This results in a netlist\n");
- log("similar to what one would get from calling memory_dff with -nordff.\n");
+ log("similar to what one would get from not calling memory_dff.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
- log_header(design, "Executing MEMORY_NORDFF pass (extracting $dff cells from $mem).\n");
+ log_header(design, "Executing MEMORY_NORDFF pass (extracting $dff cells from memories).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
@@ -50,70 +51,22 @@ struct MemoryNordffPass : public Pass {
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
- for (auto cell : vector<Cell*>(module->selected_cells()))
{
- if (cell->type != ID($mem))
- continue;
-
- int rd_ports = cell->getParam(ID::RD_PORTS).as_int();
- int abits = cell->getParam(ID::ABITS).as_int();
- int width = cell->getParam(ID::WIDTH).as_int();
-
- SigSpec rd_addr = cell->getPort(ID::RD_ADDR);
- SigSpec rd_data = cell->getPort(ID::RD_DATA);
- SigSpec rd_clk = cell->getPort(ID::RD_CLK);
- SigSpec rd_en = cell->getPort(ID::RD_EN);
- Const rd_clk_enable = cell->getParam(ID::RD_CLK_ENABLE);
- Const rd_clk_polarity = cell->getParam(ID::RD_CLK_POLARITY);
-
- for (int i = 0; i < rd_ports; i++)
+ SigMap sigmap(module);
+ FfInitVals initvals(&sigmap, module);
+ for (auto &mem : Mem::get_selected_memories(module))
{
- bool clk_enable = rd_clk_enable[i] == State::S1;
-
- if (clk_enable)
- {
- bool clk_polarity = cell->getParam(ID::RD_CLK_POLARITY)[i] == State::S1;
- bool transparent = cell->getParam(ID::RD_TRANSPARENT)[i] == State::S1;
-
- SigSpec clk = cell->getPort(ID::RD_CLK)[i] ;
- SigSpec en = cell->getPort(ID::RD_EN)[i];
- Cell *c;
-
- if (transparent)
- {
- SigSpec sig_q = module->addWire(NEW_ID, abits);
- SigSpec sig_d = rd_addr.extract(abits * i, abits);
- rd_addr.replace(abits * i, sig_q);
- if (en != State::S1)
- sig_d = module->Mux(NEW_ID, sig_q, sig_d, en);
- c = module->addDff(NEW_ID, clk, sig_d, sig_q, clk_polarity);
- }
- else
- {
- SigSpec sig_d = module->addWire(NEW_ID, width);
- SigSpec sig_q = rd_data.extract(width * i, width);
- rd_data.replace(width *i, sig_d);
- if (en != State::S1)
- sig_d = module->Mux(NEW_ID, sig_q, sig_d, en);
- c = module->addDff(NEW_ID, clk, sig_d, sig_q, clk_polarity);
+ bool changed = false;
+ for (int i = 0; i < GetSize(mem.rd_ports); i++) {
+ if (mem.rd_ports[i].clk_enable) {
+ mem.extract_rdff(i, &initvals);
+ changed = true;
}
-
- log("Extracted %s FF from read port %d of %s.%s: %s\n", transparent ? "addr" : "data",
- i, log_id(module), log_id(cell), log_id(c));
}
- rd_en[i] = State::S1;
- rd_clk[i] = State::S0;
- rd_clk_enable[i] = State::S0;
- rd_clk_polarity[i] = State::S1;
+ if (changed)
+ mem.emit();
}
-
- cell->setPort(ID::RD_ADDR, rd_addr);
- cell->setPort(ID::RD_DATA, rd_data);
- cell->setPort(ID::RD_CLK, rd_clk);
- cell->setPort(ID::RD_EN, rd_en);
- cell->setParam(ID::RD_CLK_ENABLE, rd_clk_enable);
- cell->setParam(ID::RD_CLK_POLARITY, rd_clk_polarity);
}
}
} MemoryNordffPass;
diff --git a/passes/memory/memory_share.cc b/passes/memory/memory_share.cc
index 7315aeae1..ceea725d8 100644
--- a/passes/memory/memory_share.cc
+++ b/passes/memory/memory_share.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -18,467 +18,260 @@
*/
#include "kernel/yosys.h"
-#include "kernel/satgen.h"
+#include "kernel/qcsat.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
+#include "kernel/mem.h"
+#include "kernel/ffinit.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
-bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b)
-{
- if (a->type == ID($memrd) && b->type == ID($memrd))
- return a->name < b->name;
- if (a->type == ID($memrd) || b->type == ID($memrd))
- return (a->type == ID($memrd)) < (b->type == ID($memrd));
- return a->parameters.at(ID::PRIORITY).as_int() < b->parameters.at(ID::PRIORITY).as_int();
-}
-
struct MemoryShareWorker
{
RTLIL::Design *design;
RTLIL::Module *module;
SigMap sigmap, sigmap_xmux;
ModWalker modwalker;
- CellTypes cone_ct;
-
- std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux;
- std::map<pair<std::set<std::map<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache;
-
-
- // -----------------------------------------------------------------
- // Converting feedbacks to async read ports to proper enable signals
- // -----------------------------------------------------------------
-
- bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig,
- std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions)
- {
- if (async_rd_bits.count(sig)) {
- conditions.insert(state);
- return true;
- }
-
- if (sig_to_mux.count(sig) == 0)
- return false;
-
- RTLIL::Cell *cell = sig_to_mux.at(sig).first;
- int bit_idx = sig_to_mux.at(sig).second;
-
- std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
- std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
- std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
- std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
- log_assert(sig_y.at(bit_idx) == sig);
-
- for (int i = 0; i < int(sig_s.size()); i++)
- if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) {
- if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) {
- RTLIL::SigSpec new_b = cell->getPort(ID::B);
- new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
- cell->setPort(ID::B, new_b);
- }
+ FfInitVals initvals;
+ bool flag_widen;
+ bool flag_sat;
+
+ // --------------------------------------------------
+ // Consolidate read ports that read the same address
+ // (or close enough to be merged to wide ports)
+ // --------------------------------------------------
+
+ // A simple function to detect ports that couldn't possibly collide
+ // because of opposite const address bits (simplistic, but enough
+ // to fix problems with inferring wide ports).
+ bool rdwr_can_collide(Mem &mem, int ridx, int widx) {
+ auto &rport = mem.rd_ports[ridx];
+ auto &wport = mem.wr_ports[widx];
+ for (int i = std::max(rport.wide_log2, wport.wide_log2); i < GetSize(rport.addr) && i < GetSize(wport.addr); i++) {
+ if (rport.addr[i] == State::S1 && wport.addr[i] == State::S0)
+ return false;
+ if (rport.addr[i] == State::S0 && wport.addr[i] == State::S1)
return false;
- }
-
-
- for (int i = 0; i < int(sig_s.size()); i++)
- {
- if (state.count(sig_s[i]) && state.at(sig_s[i]) == false)
- continue;
-
- std::map<RTLIL::SigBit, bool> new_state = state;
- new_state[sig_s[i]] = true;
-
- if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) {
- RTLIL::SigSpec new_b = cell->getPort(ID::B);
- new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx);
- cell->setPort(ID::B, new_b);
- }
- }
-
- std::map<RTLIL::SigBit, bool> new_state = state;
- for (int i = 0; i < int(sig_s.size()); i++)
- new_state[sig_s[i]] = false;
-
- if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) {
- RTLIL::SigSpec new_a = cell->getPort(ID::A);
- new_a.replace(bit_idx, RTLIL::State::Sx);
- cell->setPort(ID::A, new_a);
}
-
- return false;
+ return true;
}
- RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, SigBit olden, int &created_conditions)
- {
- auto key = make_pair(conditions, olden);
-
- if (conditions_logic_cache.count(key))
- return conditions_logic_cache.at(key);
-
- RTLIL::SigSpec terms;
- for (auto &cond : conditions) {
- RTLIL::SigSpec sig1, sig2;
- for (auto &it : cond) {
- sig1.append(it.first);
- sig2.append(it.second ? RTLIL::State::S1 : RTLIL::State::S0);
- }
- terms.append(module->Ne(NEW_ID, sig1, sig2));
- created_conditions++;
+ bool merge_rst_value(Mem &mem, Const &res, int wide_log2, const Const &src1, int sub1, const Const &src2, int sub2) {
+ res = Const(State::Sx, mem.width << wide_log2);
+ for (int i = 0; i < GetSize(src1); i++)
+ res[i + sub1 * mem.width] = src1[i];
+ for (int i = 0; i < GetSize(src2); i++) {
+ if (src2[i] == State::Sx)
+ continue;
+ auto &dst = res[i + sub2 * mem.width];
+ if (dst == src2[i])
+ continue;
+ if (dst != State::Sx)
+ return false;
+ dst = src2[i];
}
-
- if (olden.wire != nullptr || olden != State::S1)
- terms.append(olden);
-
- if (GetSize(terms) == 0)
- terms = State::S1;
-
- if (GetSize(terms) > 1)
- terms = module->ReduceAnd(NEW_ID, terms);
-
- return conditions_logic_cache[key] = terms;
+ return true;
}
- void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports)
+ bool consolidate_rd_by_addr(Mem &mem)
{
- std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits;
- std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map;
- std::set<RTLIL::SigBit> non_feedback_nets;
-
- for (auto wire : module->wires())
- if (wire->port_output) {
- std::vector<RTLIL::SigBit> bits = sigmap(wire);
- non_feedback_nets.insert(bits.begin(), bits.end());
- }
-
- for (auto cell : module->cells())
- {
- bool ignore_data_port = false;
-
- if (cell->type.in(ID($mux), ID($pmux)))
- {
- std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort(ID::A));
- std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort(ID::B));
- std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort(ID::S));
- std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
-
- non_feedback_nets.insert(sig_s.begin(), sig_s.end());
+ if (GetSize(mem.rd_ports) <= 1)
+ return false;
- for (int i = 0; i < int(sig_y.size()); i++) {
- muxtree_upstream_map[sig_y[i]].insert(sig_a[i]);
- for (int j = 0; j < int(sig_s.size()); j++)
- muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]);
- }
+ log("Consolidating read ports of memory %s.%s by address:\n", log_id(module), log_id(mem.memid));
+ bool changed = false;
+ for (int i = 0; i < GetSize(mem.rd_ports); i++)
+ {
+ auto &port1 = mem.rd_ports[i];
+ if (port1.removed)
continue;
- }
-
- if (cell->type.in(ID($memwr), ID($memrd)) &&
- cell->parameters.at(ID::MEMID).decode_string() == memid)
- ignore_data_port = true;
-
- for (auto conn : cell->connections())
+ for (int j = i + 1; j < GetSize(mem.rd_ports); j++)
{
- if (ignore_data_port && conn.first == ID::DATA)
+ auto &port2 = mem.rd_ports[j];
+ if (port2.removed)
continue;
- std::vector<RTLIL::SigBit> bits = sigmap(conn.second);
- non_feedback_nets.insert(bits.begin(), bits.end());
- }
- }
-
- std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets;
- while (!expand_non_feedback_nets.empty())
- {
- std::set<RTLIL::SigBit> new_expand_non_feedback_nets;
-
- for (auto &bit : expand_non_feedback_nets)
- if (muxtree_upstream_map.count(bit))
- for (auto &new_bit : muxtree_upstream_map.at(bit))
- if (!non_feedback_nets.count(new_bit)) {
- non_feedback_nets.insert(new_bit);
- new_expand_non_feedback_nets.insert(new_bit);
- }
-
- expand_non_feedback_nets.swap(new_expand_non_feedback_nets);
- }
-
- for (auto cell : rd_ports)
- {
- if (cell->parameters.at(ID::CLK_ENABLE).as_bool())
- continue;
-
- RTLIL::SigSpec sig_addr = sigmap(cell->getPort(ID::ADDR));
- std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort(ID::DATA));
-
- for (int i = 0; i < int(sig_data.size()); i++)
- if (non_feedback_nets.count(sig_data[i]))
- goto not_pure_feedback_port;
-
- async_rd_bits[sig_addr].resize(max(async_rd_bits.size(), sig_data.size()));
- for (int i = 0; i < int(sig_data.size()); i++)
- async_rd_bits[sig_addr][i].insert(sig_data[i]);
-
- not_pure_feedback_port:;
- }
-
- if (async_rd_bits.empty())
- return;
-
- log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid));
-
- for (auto cell : wr_ports)
- {
- RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort(ID::ADDR));
- if (!async_rd_bits.count(sig_addr))
- continue;
-
- log(" Analyzing write port %s.\n", log_id(cell));
-
- std::vector<RTLIL::SigBit> cell_data = cell->getPort(ID::DATA);
- std::vector<RTLIL::SigBit> cell_en = cell->getPort(ID::EN);
-
- int created_conditions = 0;
- for (int i = 0; i < int(cell_data.size()); i++)
- if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0))
+ if (port1.clk_enable != port2.clk_enable)
+ continue;
+ if (port1.clk_enable) {
+ if (port1.clk != port2.clk)
+ continue;
+ if (port1.clk_polarity != port2.clk_polarity)
+ continue;
+ }
+ if (port1.en != port2.en)
+ continue;
+ if (port1.arst != port2.arst)
+ continue;
+ if (port1.srst != port2.srst)
+ continue;
+ if (port1.ce_over_srst != port2.ce_over_srst)
+ continue;
+ // If the width of the ports doesn't match, they can still be
+ // merged by widening the narrow one. Check if the conditions
+ // hold for that.
+ int wide_log2 = std::max(port1.wide_log2, port2.wide_log2);
+ SigSpec addr1 = sigmap_xmux(port1.addr);
+ SigSpec addr2 = sigmap_xmux(port2.addr);
+ if (GetSize(addr1) <= wide_log2)
+ continue;
+ if (GetSize(addr2) <= wide_log2)
+ continue;
+ if (!addr1.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (!addr2.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (addr1.extract_end(wide_log2) != addr2.extract_end(wide_log2)) {
+ // Incompatible addresses after widening. Last chance — widen both
+ // ports by one more bit to merge them.
+ if (!flag_widen)
+ continue;
+ wide_log2++;
+ if (addr1.extract_end(wide_log2) != addr2.extract_end(wide_log2))
+ continue;
+ if (!addr1.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (!addr2.extract(0, wide_log2).is_fully_const())
+ continue;
+ }
+ // Combine init/reset values.
+ SigSpec sub1_c = port1.addr.extract(0, wide_log2);
+ log_assert(sub1_c.is_fully_const());
+ int sub1 = sub1_c.as_int();
+ SigSpec sub2_c = port2.addr.extract(0, wide_log2);
+ log_assert(sub2_c.is_fully_const());
+ int sub2 = sub2_c.as_int();
+ Const init_value, arst_value, srst_value;
+ if (!merge_rst_value(mem, init_value, wide_log2, port1.init_value, sub1, port2.init_value, sub2))
+ continue;
+ if (!merge_rst_value(mem, arst_value, wide_log2, port1.arst_value, sub1, port2.arst_value, sub2))
+ continue;
+ if (!merge_rst_value(mem, srst_value, wide_log2, port1.srst_value, sub1, port2.srst_value, sub2))
+ continue;
+ // At this point we are committed to the merge.
{
- std::map<RTLIL::SigBit, bool> state;
- std::set<std::map<RTLIL::SigBit, bool>> conditions;
-
- find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions);
- cell_en[i] = conditions_to_logic(conditions, cell_en[i], created_conditions);
+ log(" Merging ports %d, %d (address %s).\n", i, j, log_signal(port1.addr));
+ port1.addr = addr1;
+ port2.addr = addr2;
+ mem.prepare_rd_merge(i, j, &initvals);
+ mem.widen_prep(wide_log2);
+ SigSpec new_data = module->addWire(NEW_ID, mem.width << wide_log2);
+ module->connect(port1.data, new_data.extract(sub1 * mem.width, mem.width << port1.wide_log2));
+ module->connect(port2.data, new_data.extract(sub2 * mem.width, mem.width << port2.wide_log2));
+ for (int k = 0; k < wide_log2; k++)
+ port1.addr[k] = State::S0;
+ port1.init_value = init_value;
+ port1.arst_value = arst_value;
+ port1.srst_value = srst_value;
+ port1.wide_log2 = wide_log2;
+ port1.data = new_data;
+ port2.removed = true;
+ changed = true;
}
-
- if (created_conditions) {
- log(" Added enable logic for %d different cases.\n", created_conditions);
- cell->setPort(ID::EN, cell_en);
}
}
+
+ if (changed)
+ mem.emit();
+
+ return changed;
}
// ------------------------------------------------------
// Consolidate write ports that write to the same address
+ // (or close enough to be merged to wide ports)
// ------------------------------------------------------
- RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
+ bool consolidate_wr_by_addr(Mem &mem)
{
- // this is the naive version of the function that does not care about grouping the EN bits.
-
- RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits);
- RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask);
- RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits);
- return result;
- }
-
- RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits)
- {
- // this version of the function preserves the bit grouping in the EN bits.
-
- std::vector<RTLIL::SigBit> v_bits = bits;
- std::vector<RTLIL::SigBit> v_mask_bits = mask_bits;
-
- std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups;
- RTLIL::SigSpec grouped_bits, grouped_mask_bits;
-
- for (int i = 0; i < bits.size(); i++) {
- std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
- if (groups.count(key) == 0) {
- groups[key].first = grouped_bits.size();
- grouped_bits.append(v_bits[i]);
- grouped_mask_bits.append(v_mask_bits[i]);
- }
- groups[key].second.push_back(i);
- }
-
- std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits);
- RTLIL::SigSpec result;
-
- for (int i = 0; i < bits.size(); i++) {
- std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]);
- result.append(grouped_result.at(groups.at(key).first));
- }
-
- return result;
- }
-
- void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data)
- {
- std::vector<RTLIL::SigBit> v_old_en = merged_en;
- std::vector<RTLIL::SigBit> v_next_en = next_en;
-
- // The new merged_en signal is just the old merged_en signal and next_en OR'ed together.
- // But of course we need to preserve the bit grouping..
-
- std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups;
- std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en;
- RTLIL::SigSpec new_merged_en;
-
- for (int i = 0; i < int(v_old_en.size()); i++) {
- std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
- if (groups.count(key) == 0) {
- groups[key] = grouped_old_en.size();
- grouped_old_en.push_back(key.first);
- grouped_next_en.push_back(key.second);
- }
- }
-
- std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en);
-
- for (int i = 0; i < int(v_old_en.size()); i++) {
- std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]);
- new_merged_en.append(grouped_new_en.at(groups.at(key)));
- }
-
- // Create the new merged_data signal.
-
- RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size());
-
- RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data);
- RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data));
-
- RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data);
- RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data));
-
- new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set);
- new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset));
-
- new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set);
- new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset));
-
- // Update merged_* signals
-
- merged_en = new_merged_en;
- merged_data = new_merged_data;
- }
-
- void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
- {
- if (wr_ports.size() <= 1)
- return;
-
- log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid));
-
- std::map<RTLIL::SigSpec, int> last_port_by_addr;
- std::vector<std::vector<bool>> active_bits_on_port;
+ if (GetSize(mem.wr_ports) <= 1)
+ return false;
- bool cache_clk_enable = false;
- bool cache_clk_polarity = false;
- RTLIL::SigSpec cache_clk;
+ log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(mem.memid));
- for (int i = 0; i < int(wr_ports.size()); i++)
+ bool changed = false;
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
- RTLIL::Cell *cell = wr_ports.at(i);
- RTLIL::SigSpec addr = sigmap_xmux(cell->getPort(ID::ADDR));
-
- if (cell->parameters.at(ID::CLK_ENABLE).as_bool() != cache_clk_enable ||
- (cache_clk_enable && (sigmap(cell->getPort(ID::CLK)) != cache_clk ||
- cell->parameters.at(ID::CLK_POLARITY).as_bool() != cache_clk_polarity)))
- {
- cache_clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
- cache_clk_polarity = cell->parameters.at(ID::CLK_POLARITY).as_bool();
- cache_clk = sigmap(cell->getPort(ID::CLK));
- last_port_by_addr.clear();
-
- if (cache_clk_enable)
- log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk));
- else
- log(" New clock domain: unclocked\n");
- }
-
- log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr));
-
- log(" Active bits: ");
- std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort(ID::EN));
- active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
- for (int k = int(en_bits.size())-1; k >= 0; k--) {
- active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0;
- log("%c", active_bits_on_port[i][k] ? '1' : '0');
- }
- log("\n");
-
- if (last_port_by_addr.count(addr))
+ auto &port1 = mem.wr_ports[i];
+ if (port1.removed)
+ continue;
+ if (!port1.clk_enable)
+ continue;
+ for (int j = i + 1; j < GetSize(mem.wr_ports); j++)
{
- int last_i = last_port_by_addr.at(addr);
- log(" Merging port %d into this one.\n", last_i);
-
- bool found_overlapping_bits = false;
- for (int k = 0; k < int(en_bits.size()); k++) {
- if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k])
- found_overlapping_bits = true;
- active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k];
- }
-
- // Force this ports addr input to addr directly (skip don't care muxes)
-
- cell->setPort(ID::ADDR, addr);
-
- // If any of the ports between `last_i' and `i' write to the same address, this
- // will have priority over whatever `last_i` wrote. So we need to revisit those
- // ports and mask the EN bits accordingly.
-
- RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort(ID::EN));
-
- for (int j = last_i+1; j < i; j++)
- {
- if (wr_ports[j] == NULL)
+ auto &port2 = mem.wr_ports[j];
+ if (port2.removed)
+ continue;
+ if (!port2.clk_enable)
+ continue;
+ if (port1.clk != port2.clk)
+ continue;
+ if (port1.clk_polarity != port2.clk_polarity)
+ continue;
+ // If the width of the ports doesn't match, they can still be
+ // merged by widening the narrow one. Check if the conditions
+ // hold for that.
+ int wide_log2 = std::max(port1.wide_log2, port2.wide_log2);
+ SigSpec addr1 = sigmap_xmux(port1.addr);
+ SigSpec addr2 = sigmap_xmux(port2.addr);
+ if (GetSize(addr1) <= wide_log2)
+ continue;
+ if (GetSize(addr2) <= wide_log2)
+ continue;
+ if (!addr1.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (!addr2.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (addr1.extract_end(wide_log2) != addr2.extract_end(wide_log2)) {
+ // Incompatible addresses after widening. Last chance — widen both
+ // ports by one more bit to merge them.
+ if (!flag_widen)
+ continue;
+ wide_log2++;
+ if (addr1.extract_end(wide_log2) != addr2.extract_end(wide_log2))
+ continue;
+ if (!addr1.extract(0, wide_log2).is_fully_const())
+ continue;
+ if (!addr2.extract(0, wide_log2).is_fully_const())
continue;
-
- for (int k = 0; k < int(en_bits.size()); k++)
- if (active_bits_on_port[i][k] && active_bits_on_port[j][k])
- goto found_overlapping_bits_i_j;
-
- if (0) {
- found_overlapping_bits_i_j:
- log(" Creating collosion-detect logic for port %d.\n", j);
- RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID);
- module->addEq(NEW_ID, addr, wr_ports[j]->getPort(ID::ADDR), is_same_addr);
- merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort(ID::EN)));
- }
}
-
- // Then we need to merge the (masked) EN and the DATA signals.
-
- RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort(ID::DATA);
- if (found_overlapping_bits) {
- log(" Creating logic for merging DATA and EN ports.\n");
- merge_en_data(merged_en, merged_data, sigmap(cell->getPort(ID::EN)), sigmap(cell->getPort(ID::DATA)));
- } else {
- RTLIL::SigSpec cell_en = sigmap(cell->getPort(ID::EN));
- RTLIL::SigSpec cell_data = sigmap(cell->getPort(ID::DATA));
- for (int k = 0; k < int(en_bits.size()); k++)
- if (!active_bits_on_port[last_i][k]) {
- merged_en.replace(k, cell_en.extract(k, 1));
- merged_data.replace(k, cell_data.extract(k, 1));
- }
+ log(" Merging ports %d, %d (address %s).\n", i, j, log_signal(addr1));
+ port1.addr = addr1;
+ port2.addr = addr2;
+ mem.prepare_wr_merge(i, j, &initvals);
+ mem.widen_wr_port(i, wide_log2);
+ mem.widen_wr_port(j, wide_log2);
+ int pos = 0;
+ while (pos < GetSize(port1.data)) {
+ int epos = pos;
+ while (epos < GetSize(port1.data) && port1.en[epos] == port1.en[pos] && port2.en[epos] == port2.en[pos])
+ epos++;
+ int width = epos - pos;
+ SigBit new_en;
+ if (port2.en[pos] == State::S0) {
+ new_en = port1.en[pos];
+ } else if (port1.en[pos] == State::S0) {
+ port1.data.replace(pos, port2.data.extract(pos, width));
+ new_en = port2.en[pos];
+ } else {
+ port1.data.replace(pos, module->Mux(NEW_ID, port1.data.extract(pos, width), port2.data.extract(pos, width), port2.en[pos]));
+ new_en = module->Or(NEW_ID, port1.en[pos], port2.en[pos]);
+ }
+ for (int k = pos; k < epos; k++)
+ port1.en[k] = new_en;
+ pos = epos;
}
-
- // Connect the new EN and DATA signals and remove the old write port.
-
- cell->setPort(ID::EN, merged_en);
- cell->setPort(ID::DATA, merged_data);
-
- module->remove(wr_ports[last_i]);
- wr_ports[last_i] = NULL;
-
- log(" Active bits: ");
- std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort(ID::EN));
- active_bits_on_port.push_back(std::vector<bool>(en_bits.size()));
- for (int k = int(en_bits.size())-1; k >= 0; k--)
- log("%c", active_bits_on_port[i][k] ? '1' : '0');
- log("\n");
+ changed = true;
+ port2.removed = true;
}
-
- last_port_by_addr[addr] = i;
}
- // Clean up `wr_ports': remove all NULL entries
-
- std::vector<RTLIL::Cell*> wr_ports_with_nulls;
- wr_ports_with_nulls.swap(wr_ports);
+ if (changed)
+ mem.emit();
- for (auto cell : wr_ports_with_nulls)
- if (cell != NULL)
- wr_ports.push_back(cell);
+ return changed;
}
@@ -486,178 +279,174 @@ struct MemoryShareWorker
// Consolidate write ports using sat-based resource sharing
// --------------------------------------------------------
- void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports)
+ void consolidate_wr_using_sat(Mem &mem)
{
- if (wr_ports.size() <= 1)
+ if (GetSize(mem.wr_ports) <= 1)
return;
- ezSatPtr ez;
- SatGen satgen(ez.get(), &modwalker.sigmap);
+ // Get a list of ports that have any chance of being mergeable.
- // find list of considered ports and port pairs
+ pool<int> eligible_ports;
- std::set<int> considered_ports;
- std::set<int> considered_port_pairs;
-
- for (int i = 0; i < int(wr_ports.size()); i++) {
- std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort(ID::EN));
+ for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+ auto &port = mem.wr_ports[i];
+ std::vector<RTLIL::SigBit> bits = modwalker.sigmap(port.en);
for (auto bit : bits)
if (bit == RTLIL::State::S1)
goto port_is_always_active;
- if (modwalker.has_drivers(bits))
- considered_ports.insert(i);
+ eligible_ports.insert(i);
port_is_always_active:;
}
- log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid));
+ if (eligible_ports.size() <= 1)
+ return;
+
+ log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(mem.memid));
- bool cache_clk_enable = false;
- bool cache_clk_polarity = false;
- RTLIL::SigSpec cache_clk;
+ // Group eligible ports by clock domain and width.
- for (int i = 0; i < int(wr_ports.size()); i++)
+ pool<int> checked_ports;
+ std::vector<std::vector<int>> groups;
+ for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
- RTLIL::Cell *cell = wr_ports.at(i);
+ auto &port1 = mem.wr_ports[i];
+ if (!eligible_ports.count(i))
+ continue;
+ if (checked_ports.count(i))
+ continue;
- if (cell->parameters.at(ID::CLK_ENABLE).as_bool() != cache_clk_enable ||
- (cache_clk_enable && (sigmap(cell->getPort(ID::CLK)) != cache_clk ||
- cell->parameters.at(ID::CLK_POLARITY).as_bool() != cache_clk_polarity)))
+ std::vector<int> group;
+ group.push_back(i);
+
+ for (int j = i + 1; j < GetSize(mem.wr_ports); j++)
{
- cache_clk_enable = cell->parameters.at(ID::CLK_ENABLE).as_bool();
- cache_clk_polarity = cell->parameters.at(ID::CLK_POLARITY).as_bool();
- cache_clk = sigmap(cell->getPort(ID::CLK));
+ auto &port2 = mem.wr_ports[j];
+ if (!eligible_ports.count(j))
+ continue;
+ if (checked_ports.count(j))
+ continue;
+ if (port1.clk_enable != port2.clk_enable)
+ continue;
+ if (port1.clk_enable) {
+ if (port1.clk != port2.clk)
+ continue;
+ if (port1.clk_polarity != port2.clk_polarity)
+ continue;
+ }
+ if (port1.wide_log2 != port2.wide_log2)
+ continue;
+ group.push_back(j);
}
- else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i))
- considered_port_pairs.insert(i);
-
- if (cache_clk_enable)
- log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell),
- cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk),
- considered_ports.count(i) ? "considered" : "not considered");
- else
- log(" Port %d (%s) unclocked: %s\n", i, log_id(cell),
- considered_ports.count(i) ? "considered" : "not considered");
- }
- if (considered_port_pairs.size() < 1) {
- log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n");
- return;
- }
-
- // create SAT representation of common input cone of all considered EN signals
+ for (auto j : group)
+ checked_ports.insert(j);
- pool<Wire*> one_hot_wires;
- std::set<RTLIL::Cell*> sat_cells;
- std::set<RTLIL::SigBit> bits_queue;
- std::map<int, int> port_to_sat_variable;
+ if (group.size() <= 1)
+ continue;
- for (int i = 0; i < int(wr_ports.size()); i++)
- if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1))
- {
- RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort(ID::EN));
- port_to_sat_variable[i] = ez->expression(ez->OpOr, satgen.importSigSpec(sig));
+ groups.push_back(group);
+ }
- std::vector<RTLIL::SigBit> bits = sig;
- bits_queue.insert(bits.begin(), bits.end());
+ bool changed = false;
+ for (auto &group : groups) {
+ auto &some_port = mem.wr_ports[group[0]];
+ string ports;
+ for (auto idx : group) {
+ if (idx != group[0])
+ ports += ", ";
+ ports += std::to_string(idx);
+ }
+ if (!some_port.clk_enable) {
+ log(" Checking unclocked group, width %d: ports %s.\n", mem.width << some_port.wide_log2, ports.c_str());
+ } else {
+ log(" Checking group clocked with %sedge %s, width %d: ports %s.\n", some_port.clk_polarity ? "pos" : "neg", log_signal(some_port.clk), mem.width << some_port.wide_log2, ports.c_str());
}
- while (!bits_queue.empty())
- {
- for (auto bit : bits_queue)
- if (bit.wire && bit.wire->get_bool_attribute(ID::onehot))
- one_hot_wires.insert(bit.wire);
-
- pool<ModWalker::PortBit> portbits;
- modwalker.get_drivers(portbits, bits_queue);
- bits_queue.clear();
-
- for (auto &pbit : portbits)
- if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) {
- pool<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell];
- bits_queue.insert(cell_inputs.begin(), cell_inputs.end());
- sat_cells.insert(pbit.cell);
- }
- }
+ // Okay, time to actually run the SAT solver.
- for (auto wire : one_hot_wires) {
- log(" Adding one-hot constraint for wire %s.\n", log_id(wire));
- vector<int> ez_wire_bits = satgen.importSigSpec(wire);
- for (int i : ez_wire_bits)
- for (int j : ez_wire_bits)
- if (i != j) ez->assume(ez->NOT(i), j);
- }
+ QuickConeSat qcsat(modwalker);
- log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size()));
+ // create SAT representation of common input cone of all considered EN signals
- for (auto cell : sat_cells)
- satgen.importCell(cell);
+ dict<int, int> port_to_sat_variable;
- log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez->numCnfVariables(), ez->numCnfClauses());
+ for (auto idx : group)
+ port_to_sat_variable[idx] = qcsat.ez->expression(qcsat.ez->OpOr, qcsat.importSig(mem.wr_ports[idx].en));
- // merge subsequent ports if possible
+ qcsat.prepare();
- for (int i = 0; i < int(wr_ports.size()); i++)
- {
- if (!considered_port_pairs.count(i))
- continue;
+ log(" Common input cone for all EN signals: %d cells.\n", GetSize(qcsat.imported_cells));
- if (ez->solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) {
- log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i);
- continue;
- }
+ log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", qcsat.ez->numCnfVariables(), qcsat.ez->numCnfClauses());
+
+ // now try merging the ports.
+
+ for (int ii = 0; ii < GetSize(group); ii++) {
+ int idx1 = group[ii];
+ auto &port1 = mem.wr_ports[idx1];
+ if (port1.removed)
+ continue;
+ for (int jj = ii + 1; jj < GetSize(group); jj++) {
+ int idx2 = group[jj];
+ auto &port2 = mem.wr_ports[idx2];
+ if (port2.removed)
+ continue;
- log(" Merging port %d into port %d.\n", i-1, i);
- port_to_sat_variable.at(i) = ez->OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i));
+ if (qcsat.ez->solve(port_to_sat_variable.at(idx1), port_to_sat_variable.at(idx2))) {
+ log(" According to SAT solver sharing of port %d with port %d is not possible.\n", idx1, idx2);
+ continue;
+ }
- RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort(ID::ADDR);
- RTLIL::SigSpec last_data = wr_ports[i-1]->getPort(ID::DATA);
- std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort(ID::EN));
+ log(" Merging port %d into port %d.\n", idx2, idx1);
+ mem.prepare_wr_merge(idx1, idx2, &initvals);
+ port_to_sat_variable.at(idx1) = qcsat.ez->OR(port_to_sat_variable.at(idx1), port_to_sat_variable.at(idx2));
- RTLIL::SigSpec this_addr = wr_ports[i]->getPort(ID::ADDR);
- RTLIL::SigSpec this_data = wr_ports[i]->getPort(ID::DATA);
- std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort(ID::EN));
+ RTLIL::SigSpec last_addr = port1.addr;
+ RTLIL::SigSpec last_data = port1.data;
+ std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(port1.en);
- RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en);
+ RTLIL::SigSpec this_addr = port2.addr;
+ RTLIL::SigSpec this_data = port2.data;
+ std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(port2.en);
- if (GetSize(last_addr) < GetSize(this_addr))
- last_addr.extend_u0(GetSize(this_addr));
- else
- this_addr.extend_u0(GetSize(last_addr));
+ RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en);
- wr_ports[i]->setParam(ID::ABITS, GetSize(this_addr));
- wr_ports[i]->setPort(ID::ADDR, module->Mux(NEW_ID, last_addr, this_addr, this_en_active));
- wr_ports[i]->setPort(ID::DATA, module->Mux(NEW_ID, last_data, this_data, this_en_active));
+ if (GetSize(last_addr) < GetSize(this_addr))
+ last_addr.extend_u0(GetSize(this_addr));
+ else
+ this_addr.extend_u0(GetSize(last_addr));
- std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en;
- RTLIL::SigSpec grouped_last_en, grouped_this_en, en;
- RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0);
+ SigSpec new_addr = module->Mux(NEW_ID, last_addr.extract_end(port1.wide_log2), this_addr.extract_end(port1.wide_log2), this_en_active);
- for (int j = 0; j < int(this_en.size()); j++) {
- std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]);
- if (!groups_en.count(key)) {
- grouped_last_en.append(last_en[j]);
- grouped_this_en.append(this_en[j]);
- groups_en[key] = grouped_en->width;
- grouped_en->width++;
- }
- en.append(RTLIL::SigSpec(grouped_en, groups_en[key]));
- }
+ port1.addr = SigSpec({new_addr, port1.addr.extract(0, port1.wide_log2)});
+ port1.data = module->Mux(NEW_ID, last_data, this_data, this_en_active);
- module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en);
- wr_ports[i]->setPort(ID::EN, en);
+ std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en;
+ RTLIL::SigSpec grouped_last_en, grouped_this_en, en;
+ RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0);
- module->remove(wr_ports[i-1]);
- wr_ports[i-1] = NULL;
- }
+ for (int j = 0; j < int(this_en.size()); j++) {
+ std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]);
+ if (!groups_en.count(key)) {
+ grouped_last_en.append(last_en[j]);
+ grouped_this_en.append(this_en[j]);
+ groups_en[key] = grouped_en->width;
+ grouped_en->width++;
+ }
+ en.append(RTLIL::SigSpec(grouped_en, groups_en[key]));
+ }
- // Clean up `wr_ports': remove all NULL entries
+ module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en);
+ port1.en = en;
- std::vector<RTLIL::Cell*> wr_ports_with_nulls;
- wr_ports_with_nulls.swap(wr_ports);
+ port2.removed = true;
+ changed = true;
+ }
+ }
+ }
- for (auto cell : wr_ports_with_nulls)
- if (cell != NULL)
- wr_ports.push_back(cell);
+ if (changed)
+ mem.emit();
}
@@ -665,26 +454,19 @@ struct MemoryShareWorker
// Setup and run
// -------------
- MemoryShareWorker(RTLIL::Design *design) : design(design), modwalker(design) {}
+ MemoryShareWorker(RTLIL::Design *design, bool flag_widen, bool flag_sat) : design(design), modwalker(design), flag_widen(flag_widen), flag_sat(flag_sat) {}
void operator()(RTLIL::Module* module)
{
- std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex;
+ std::vector<Mem> memories = Mem::get_selected_memories(module);
this->module = module;
sigmap.set(module);
- sig_to_mux.clear();
- conditions_logic_cache.clear();
+ initvals.set(&sigmap, module);
sigmap_xmux = sigmap;
for (auto cell : module->cells())
{
- if (cell->type == ID($memrd))
- memindex[cell->parameters.at(ID::MEMID).decode_string()].first.push_back(cell);
-
- if (cell->type == ID($memwr))
- memindex[cell->parameters.at(ID::MEMID).decode_string()].second.push_back(cell);
-
if (cell->type == ID($mux))
{
RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
@@ -695,40 +477,20 @@ struct MemoryShareWorker
else if (sig_b.is_fully_undef())
sigmap_xmux.add(cell->getPort(ID::Y), sig_a);
}
-
- if (cell->type.in(ID($mux), ID($pmux)))
- {
- std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort(ID::Y));
- for (int i = 0; i < int(sig_y.size()); i++)
- sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i);
- }
}
- for (auto &it : memindex) {
- std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp);
- std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp);
- translate_rd_feedback_to_en(it.first, it.second.first, it.second.second);
- consolidate_wr_by_addr(it.first, it.second.second);
+ for (auto &mem : memories) {
+ while (consolidate_rd_by_addr(mem));
+ while (consolidate_wr_by_addr(mem));
}
- cone_ct.setup_internals();
- cone_ct.cell_types.erase(ID($mul));
- cone_ct.cell_types.erase(ID($mod));
- cone_ct.cell_types.erase(ID($div));
- cone_ct.cell_types.erase(ID($modfloor));
- cone_ct.cell_types.erase(ID($divfloor));
- cone_ct.cell_types.erase(ID($pow));
- cone_ct.cell_types.erase(ID($shl));
- cone_ct.cell_types.erase(ID($shr));
- cone_ct.cell_types.erase(ID($sshl));
- cone_ct.cell_types.erase(ID($sshr));
- cone_ct.cell_types.erase(ID($shift));
- cone_ct.cell_types.erase(ID($shiftx));
-
- modwalker.setup(module, &cone_ct);
-
- for (auto &it : memindex)
- consolidate_wr_using_sat(it.first, it.second.second);
+ if (!flag_sat)
+ return;
+
+ modwalker.setup(module);
+
+ for (auto &mem : memories)
+ consolidate_wr_using_sat(mem);
}
};
@@ -738,22 +500,22 @@ struct MemorySharePass : public Pass {
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
- log(" memory_share [selection]\n");
+ log(" memory_share [-nosat] [-nowiden] [selection]\n");
log("\n");
log("This pass merges share-able memory ports into single memory ports.\n");
log("\n");
log("The following methods are used to consolidate the number of memory ports:\n");
log("\n");
- log(" - When write ports are connected to async read ports accessing the same\n");
- log(" address, then this feedback path is converted to a write port with\n");
- log(" byte/part enable signals.\n");
- log("\n");
log(" - When multiple write ports access the same address then this is converted\n");
log(" to a single write port with a more complex data and/or enable logic path.\n");
log("\n");
+ log(" - When multiple read or write ports access adjacent aligned addresses, they are\n");
+ log(" merged to a single wide read or write port. This transformation can be\n");
+ log(" disabled with the \"-nowiden\" option.\n");
+ log("\n");
log(" - When multiple write ports are never accessed at the same time (a SAT\n");
log(" solver is used to determine this), then the ports are merged into a single\n");
- log(" write port.\n");
+ log(" write port. This transformation can be disabled with the \"-nosat\" option.\n");
log("\n");
log("Note that in addition to the algorithms implemented in this pass, the $memrd\n");
log("and $memwr cells are also subject to generic resource sharing passes (and other\n");
@@ -761,9 +523,26 @@ struct MemorySharePass : public Pass {
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
+ bool flag_widen = true;
+ bool flag_sat = true;
log_header(design, "Executing MEMORY_SHARE pass (consolidating $memrd/$memwr cells).\n");
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++)
+ {
+ if (args[argidx] == "-nosat")
+ {
+ flag_sat = false;
+ continue;
+ }
+ if (args[argidx] == "-nowiden")
+ {
+ flag_widen = false;
+ continue;
+ }
+ break;
+ }
extra_args(args, 1, design);
- MemoryShareWorker msw(design);
+ MemoryShareWorker msw(design, flag_widen, flag_sat);
for (auto module : design->selected_modules())
msw(module);
diff --git a/passes/memory/memory_unpack.cc b/passes/memory/memory_unpack.cc
index d04d4ba7a..422d6fe15 100644
--- a/passes/memory/memory_unpack.cc
+++ b/passes/memory/memory_unpack.cc
@@ -1,7 +1,7 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@@ -17,114 +17,12 @@
*
*/
-#include "kernel/register.h"
-#include "kernel/log.h"
-#include <sstream>
-#include <algorithm>
-#include <stdlib.h>
+#include "kernel/yosys.h"
+#include "kernel/mem.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
-void handle_memory(RTLIL::Module *module, RTLIL::Cell *memory)
-{
- log("Creating $memrd and $memwr for memory `%s' in module `%s':\n",
- memory->name.c_str(), module->name.c_str());
-
- RTLIL::IdString mem_name = RTLIL::escape_id(memory->parameters.at(ID::MEMID).decode_string());
-
- while (module->memories.count(mem_name) != 0)
- mem_name = mem_name.str() + stringf("_%d", autoidx++);
-
- RTLIL::Memory *mem = new RTLIL::Memory;
- mem->name = mem_name;
- mem->width = memory->parameters.at(ID::WIDTH).as_int();
- mem->start_offset = memory->parameters.at(ID::OFFSET).as_int();
- mem->size = memory->parameters.at(ID::SIZE).as_int();
- module->memories[mem_name] = mem;
-
- int abits = memory->parameters.at(ID::ABITS).as_int();
- int num_rd_ports = memory->parameters.at(ID::RD_PORTS).as_int();
- int num_wr_ports = memory->parameters.at(ID::WR_PORTS).as_int();
-
- for (int i = 0; i < num_rd_ports; i++)
- {
- RTLIL::Cell *cell = module->addCell(NEW_ID, ID($memrd));
- cell->parameters[ID::MEMID] = mem_name.str();
- cell->parameters[ID::ABITS] = memory->parameters.at(ID::ABITS);
- cell->parameters[ID::WIDTH] = memory->parameters.at(ID::WIDTH);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::SigSpec(memory->parameters.at(ID::RD_CLK_ENABLE)).extract(i, 1).as_const();
- cell->parameters[ID::CLK_POLARITY] = RTLIL::SigSpec(memory->parameters.at(ID::RD_CLK_POLARITY)).extract(i, 1).as_const();
- cell->parameters[ID::TRANSPARENT] = RTLIL::SigSpec(memory->parameters.at(ID::RD_TRANSPARENT)).extract(i, 1).as_const();
- cell->setPort(ID::CLK, memory->getPort(ID::RD_CLK).extract(i, 1));
- cell->setPort(ID::EN, memory->getPort(ID::RD_EN).extract(i, 1));
- cell->setPort(ID::ADDR, memory->getPort(ID::RD_ADDR).extract(i*abits, abits));
- cell->setPort(ID::DATA, memory->getPort(ID::RD_DATA).extract(i*mem->width, mem->width));
- }
-
- for (int i = 0; i < num_wr_ports; i++)
- {
- RTLIL::Cell *cell = module->addCell(NEW_ID, ID($memwr));
- cell->parameters[ID::MEMID] = mem_name.str();
- cell->parameters[ID::ABITS] = memory->parameters.at(ID::ABITS);
- cell->parameters[ID::WIDTH] = memory->parameters.at(ID::WIDTH);
- cell->parameters[ID::CLK_ENABLE] = RTLIL::SigSpec(memory->parameters.at(ID::WR_CLK_ENABLE)).extract(i, 1).as_const();
- cell->parameters[ID::CLK_POLARITY] = RTLIL::SigSpec(memory->parameters.at(ID::WR_CLK_POLARITY)).extract(i, 1).as_const();
- cell->parameters[ID::PRIORITY] = i;
- cell->setPort(ID::CLK, memory->getPort(ID::WR_CLK).extract(i, 1));
- cell->setPort(ID::EN, memory->getPort(ID::WR_EN).extract(i*mem->width, mem->width));
- cell->setPort(ID::ADDR, memory->getPort(ID::WR_ADDR).extract(i*abits, abits));
- cell->setPort(ID::DATA, memory->getPort(ID::WR_DATA).extract(i*mem->width, mem->width));
- }
-
- Const initval = memory->parameters.at(ID::INIT);
- RTLIL::Cell *last_init_cell = nullptr;
- SigSpec last_init_data;
- int last_init_addr=0;
-
- for (int i = 0; i < GetSize(initval) && i/mem->width < (1 << abits); i += mem->width) {
- Const val = initval.extract(i, mem->width, State::Sx);
- for (auto bit : val.bits)
- if (bit != State::Sx)
- goto found_non_undef_initval;
- continue;
- found_non_undef_initval:
- if (last_init_cell && last_init_addr+1 == i/mem->width) {
- last_init_cell->parameters[ID::WORDS] = last_init_cell->parameters[ID::WORDS].as_int() + 1;
- last_init_data.append(val);
- last_init_addr++;
- } else {
- if (last_init_cell)
- last_init_cell->setPort(ID::DATA, last_init_data);
- RTLIL::Cell *cell = module->addCell(NEW_ID, ID($meminit));
- cell->parameters[ID::MEMID] = mem_name.str();
- cell->parameters[ID::ABITS] = memory->parameters.at(ID::ABITS);
- cell->parameters[ID::WIDTH] = memory->parameters.at(ID::WIDTH);
- cell->parameters[ID::WORDS] = 1;
- cell->parameters[ID::PRIORITY] = i/mem->width;
- cell->setPort(ID::ADDR, SigSpec(i/mem->width, abits));
- last_init_cell = cell;
- last_init_addr = i/mem->width;
- last_init_data = val;
- }
- }
-
- if (last_init_cell)
- last_init_cell->setPort(ID::DATA, last_init_data);
-
- module->remove(memory);
-}
-
-void handle_module(RTLIL::Design *design, RTLIL::Module *module)
-{
- std::vector<RTLIL::IdString> memcells;
- for (auto cell : module->cells())
- if (cell->type == ID($mem) && design->selected(module, cell))
- memcells.push_back(cell->name);
- for (auto &it : memcells)
- handle_memory(module, module->cell(it));
-}
-
struct MemoryUnpackPass : public Pass {
MemoryUnpackPass() : Pass("memory_unpack", "unpack multi-port memory cells") { }
void help() override
@@ -140,8 +38,14 @@ struct MemoryUnpackPass : public Pass {
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
log_header(design, "Executing MEMORY_UNPACK pass (generating $memrd/$memwr cells form $mem cells).\n");
extra_args(args, 1, design);
- for (auto module : design->selected_modules())
- handle_module(design, module);
+ for (auto module : design->selected_modules()) {
+ for (auto &mem : Mem::get_selected_memories(module)) {
+ if (mem.packed) {
+ mem.packed = false;
+ mem.emit();
+ }
+ }
+ }
}
} MemoryUnpackPass;