diff options
Diffstat (limited to 'passes/sat/qbfsat.cc')
-rw-r--r-- | passes/sat/qbfsat.cc | 312 |
1 files changed, 210 insertions, 102 deletions
diff --git a/passes/sat/qbfsat.cc b/passes/sat/qbfsat.cc index 4686e985b..136259558 100644 --- a/passes/sat/qbfsat.cc +++ b/passes/sat/qbfsat.cc @@ -24,17 +24,26 @@ #include "kernel/rtlil.h" #include "kernel/register.h" #include <algorithm> +#include <numeric> USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN +static inline unsigned int difference(unsigned int a, unsigned int b) { + if (a < b) + return b - a; + else + return a - b; +} + struct QbfSolutionType { std::vector<std::string> stdout_lines; - dict<std::string, std::string> hole_to_value; + dict<pool<std::string>, std::string> hole_to_value; + double solver_time; bool sat; bool unknown; //true if neither 'sat' nor 'unsat' - QbfSolutionType() : sat(false), unknown(true) {} + QbfSolutionType() : solver_time(0.0), sat(false), unknown(true) {} }; struct QbfSolveOptions { @@ -42,6 +51,7 @@ struct QbfSolveOptions { bool nooptimize, nobisection; bool sat, unsat, show_smtbmc; enum Solver{Z3, Yices, CVC4} solver; + enum OptimizationLevel{O0, O1, O2} oflag; int timeout; std::string specialize_soln_file; std::string write_soln_soln_file; @@ -50,7 +60,7 @@ struct QbfSolveOptions { QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false), nocleanup(false), dump_final_smt2(false), assume_outputs(false), assume_neg(false), nooptimize(false), nobisection(false), sat(false), unsat(false), show_smtbmc(false), - solver(Yices), timeout(0), argidx(0) {}; + solver(Yices), oflag(O0), timeout(0), argidx(0) {}; }; std::string get_solver_name(const QbfSolveOptions &opt) { @@ -91,7 +101,9 @@ void recover_solution(QbfSolutionType &sol) { log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex)); log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex)); #endif - sol.hole_to_value[loc] = val; + auto locs = split_tokens(loc, "|"); + pool<std::string> loc_pool(locs.begin(), locs.end()); + sol.hole_to_value[loc_pool] = val; } else if (YS_REGEX_NS::regex_search(x, sat_regex)) { sat_regex_found = true; @@ -134,18 +146,43 @@ void recover_solution(QbfSolutionType &sol) { #endif } -dict<std::string, std::string> get_hole_loc_name_map(RTLIL::Module *module, const QbfSolutionType &sol) { - dict<std::string, std::string> hole_loc_to_name; +dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> get_hole_loc_idx_sigbit_map(RTLIL::Module *module, const QbfSolutionType &sol) { + dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit; + pool<RTLIL::SigBit> anyconst_sigbits; + dict<RTLIL::SigBit, RTLIL::SigBit> anyconst_sigbit_to_wire_sigbit; + for (auto cell : module->cells()) { - std::string cell_src = cell->get_src_attribute(); + pool<std::string> cell_src = cell->get_strpool_attribute(ID::src); auto pos = sol.hole_to_value.find(cell_src); if (pos != sol.hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) { - log_assert(hole_loc_to_name.find(pos->first) == hole_loc_to_name.end()); - hole_loc_to_name[pos->first] = cell->getPort(ID::Y).as_wire()->name.str(); + RTLIL::SigSpec port_y = cell->getPort(ID::Y); + for (int i = GetSize(port_y) - 1; i >= 0; --i) { + hole_loc_idx_to_sigbit[std::make_pair(pos->first, i)] = port_y[i]; + anyconst_sigbits.insert(port_y[i]); + } } } - return hole_loc_to_name; + for (auto &conn : module->connections()) { + auto lhs = conn.first; + auto rhs = conn.second; + for (auto i = 0; i < GetSize(rhs); ++i) { + if (anyconst_sigbits[rhs[i]]) { + auto pos = anyconst_sigbit_to_wire_sigbit.find(rhs[i]); + if (pos != anyconst_sigbit_to_wire_sigbit.end()) + log_cmd_error("conflicting names for hole $anyconst sigbit %s\n", log_signal(rhs[i])); + anyconst_sigbit_to_wire_sigbit[rhs[i]] = lhs[i]; + } + } + } + + for (auto &it : hole_loc_idx_to_sigbit) { + auto pos = anyconst_sigbit_to_wire_sigbit.find(it.second); + if (pos != anyconst_sigbit_to_wire_sigbit.end()) + it.second = pos->second; + } + + return hole_loc_idx_to_sigbit; } pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) { @@ -187,113 +224,145 @@ void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std if (!fout) log_cmd_error("could not open solution file for writing.\n"); - dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol); - for(auto &x : sol.hole_to_value) - fout << hole_loc_to_name[x.first] << "=" << x.second << std::endl; + //There is a question here: How exactly shall we identify holes? + //There are at least two reasonable options: + //1. By the source location of the $anyconst cells + //2. By the name(s) of the wire(s) connected to each SigBit of the $anyconst cell->getPort(ID::Y) SigSpec. + // + //Option 1 has the benefit of being very precise. There is very limited potential for confusion, as long + //as the source attribute has been set. However, if the source attribute is not set, this won't work. + //More importantly, we want to have the ability to port hole assignments to other modules with compatible + //hole names and widths. Obviously in those cases source locations of the $anyconst cells will not match. + // + //Option 2 has the benefits previously described, but wire names can be changed automatically by + //optimization or techmapping passes, especially when (ex/im)porting from BLIF for optimization with ABC. + // + //The approach taken here is to allow both options. We write the assignment information for each bit of + //the solution on a separate line. Each line is of one of two forms: + // + //location bit name = value + //location bit name [offset] = value + // + //where '[', ']', and '=' are literal symbols, "location" is the $anyconst cell source location attribute, + //"bit" is the index of the $anyconst cell, "name" is the `wire->name` field of the SigBit corresponding + //to the current bit of the $anyconst cell->getPort(ID::Y), "offset" is the `offset` field of that same + //SigBit, and "value", which is either '0' or '1', represents the assignment for that bit. + dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol); + for (auto &x : sol.hole_to_value) { + std::string src_as_str = std::accumulate(x.first.begin(), x.first.end(), std::string(), [](const std::string &a, const std::string &b){return a + "|" + b;}); + for (auto i = 0; i < GetSize(x.second); ++i) + fout << src_as_str.c_str() << " " << i << " " << log_signal(hole_loc_idx_to_sigbit[std::make_pair(x.first, i)]) << " = " << x.second[GetSize(x.second) - 1 - i] << std::endl; + } } void specialize_from_file(RTLIL::Module *module, const std::string &file) { - YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.*)=([01]+)$"); - YS_REGEX_MATCH_TYPE m; - pool<RTLIL::Cell *> anyconsts_to_remove; - dict<std::string, std::string> hole_name_to_value; + YS_REGEX_TYPE hole_bit_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) \\[([0-9]+)] = ([01])$"); + YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) = ([01])$"); //if no index specified + YS_REGEX_MATCH_TYPE bit_m, m; + //(hole_loc, hole_bit, hole_name, hole_offset) -> (value, found) + dict<pool<std::string>, RTLIL::Cell*> anyconst_loc_to_cell; + dict<RTLIL::SigBit, RTLIL::State> hole_assignments; + + for (auto cell : module->cells()) + if (cell->type == "$anyconst") + anyconst_loc_to_cell[cell->get_strpool_attribute(ID::src)] = cell; + std::ifstream fin(file.c_str()); if (!fin) log_cmd_error("could not read solution file.\n"); std::string buf; while (std::getline(fin, buf)) { - log_assert(YS_REGEX_NS::regex_search(buf, m, hole_assn_regex)); - std::string hole_name = m[1].str(); - std::string hole_value = m[2].str(); - hole_name_to_value[hole_name] = hole_value; + bool bit_assn = true; + if (!YS_REGEX_NS::regex_search(buf, bit_m, hole_bit_assn_regex)) { + bit_assn = false; + if (!YS_REGEX_NS::regex_search(buf, m, hole_assn_regex)) + log_cmd_error("solution file is not formatted correctly: \"%s\"\n", buf.c_str()); + } + + std::string hole_loc = bit_assn? bit_m[1].str() : m[1].str(); + unsigned int hole_bit = bit_assn? atoi(bit_m[2].str().c_str()) : atoi(m[2].str().c_str()); + std::string hole_name = bit_assn? bit_m[3].str() : m[3].str(); + unsigned int hole_offset = bit_assn? atoi(bit_m[4].str().c_str()) : 0; + RTLIL::State hole_value = bit_assn? (atoi(bit_m[5].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0) + : (atoi(m[4].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0); + + //We have two options to identify holes. First, try to match wire names. If we can't find a matching wire, + //then try to find a cell with a matching location. + RTLIL::SigBit hole_sigbit; + if (module->wire(hole_name) != nullptr) { + RTLIL::Wire *hole_wire = module->wire(hole_name); + hole_sigbit = RTLIL::SigSpec(hole_wire)[hole_offset]; + } else { + auto locs = split_tokens(hole_loc, "|"); + pool<std::string> hole_loc_pool(locs.begin(), locs.end()); + auto hole_cell_it = anyconst_loc_to_cell.find(hole_loc_pool); + if (hole_cell_it == anyconst_loc_to_cell.end()) + log_cmd_error("cannot find matching wire name or $anyconst cell location for hole spec \"%s\"\n", buf.c_str()); + + RTLIL::Cell *hole_cell = hole_cell_it->second; + hole_sigbit = hole_cell->getPort(ID::Y)[hole_bit]; + } + hole_assignments[hole_sigbit] = hole_value; } - for (auto cell : module->cells()) - if (cell->type == "$anyconst") { - auto anyconst_port_y = cell->getPort(ID::Y).as_wire(); - if (anyconst_port_y == nullptr) - continue; - if (hole_name_to_value.find(anyconst_port_y->name.str()) != hole_name_to_value.end()) - anyconsts_to_remove.insert(cell); - } - for (auto cell : anyconsts_to_remove) - module->remove(cell); + for (auto &it : anyconst_loc_to_cell) + module->remove(it.second); - for (auto &it : hole_name_to_value) { - std::string hole_name = it.first; - std::string hole_value = it.second; - RTLIL::Wire *wire = module->wire(hole_name); -#ifndef NDEBUG - log_assert(wire != nullptr); - log_assert(wire->width > 0 && GetSize(hole_value) == wire->width); -#endif - - log("Specializing %s from file with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str()); - std::vector<RTLIL::SigBit> value_bv; - value_bv.reserve(wire->width); - for (char c : hole_value) - value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0); - std::reverse(value_bv.begin(), value_bv.end()); - module->connect(wire, value_bv); + for (auto &it : hole_assignments) { + RTLIL::SigSpec lhs(it.first); + RTLIL::SigSpec rhs(it.second); + log("Specializing %s from file with %s = %d.\n", module->name.c_str(), log_signal(it.first), it.second == RTLIL::State::S1? 1 : 0); + module->connect(lhs, rhs); } } void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) { - dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol); + dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol); pool<RTLIL::Cell *> anyconsts_to_remove; for (auto cell : module->cells()) if (cell->type == "$anyconst") - if (hole_loc_to_name.find(cell->get_src_attribute()) != hole_loc_to_name.end()) + if (hole_loc_idx_to_sigbit.find(std::make_pair(cell->get_strpool_attribute(ID::src), 0)) != hole_loc_idx_to_sigbit.end()) anyconsts_to_remove.insert(cell); for (auto cell : anyconsts_to_remove) module->remove(cell); for (auto &it : sol.hole_to_value) { - std::string hole_loc = it.first; + pool<std::string> hole_loc = it.first; std::string hole_value = it.second; -#ifndef NDEBUG - auto pos = hole_loc_to_name.find(hole_loc); - log_assert(pos != hole_loc_to_name.end()); -#endif - - std::string hole_name = hole_loc_to_name[hole_loc]; - RTLIL::Wire *wire = module->wire(hole_name); -#ifndef NDEBUG - log_assert(wire != nullptr); - log_assert(wire->width > 0 && GetSize(hole_value) == wire->width); -#endif - - if (!quiet) - log("Specializing %s with %s = %d'b%s.\n", module->name.c_str(), hole_name.c_str(), wire->width, hole_value.c_str()); - std::vector<RTLIL::SigBit> value_bv; - value_bv.reserve(wire->width); - for (char c : hole_value) - value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0); - std::reverse(value_bv.begin(), value_bv.end()); - module->connect(wire, value_bv); + for (unsigned int i = 0; i < hole_value.size(); ++i) { + int bit_idx = GetSize(hole_value) - 1 - i; + auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i)); + log_assert(it != hole_loc_idx_to_sigbit.end()); + + RTLIL::SigBit hole_sigbit = it->second; + log_assert(hole_sigbit.wire != nullptr); + log_assert(hole_value[bit_idx] == '0' || hole_value[bit_idx] == '1'); + RTLIL::SigSpec lhs(hole_sigbit.wire, hole_sigbit.offset, 1); + RTLIL::State hole_bit_val = hole_value[bit_idx] == '1'? RTLIL::State::S1 : RTLIL::State::S0; + if (!quiet) + log("Specializing %s with %s = %d.\n", module->name.c_str(), log_signal(hole_sigbit), hole_bit_val == RTLIL::State::S0? 0 : 1) +; + module->connect(lhs, hole_bit_val); + } } } void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) { log("Satisfiable model:\n"); - dict<std::string, std::string> hole_loc_to_name = get_hole_loc_name_map(module, sol); + dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol); for (auto &it : sol.hole_to_value) { - std::string hole_loc = it.first; + pool<std::string> hole_loc = it.first; std::string hole_value = it.second; -#ifndef NDEBUG - auto pos = hole_loc_to_name.find(hole_loc); - log_assert(pos != hole_loc_to_name.end()); -#endif + for (unsigned int i = 0; i < hole_value.size(); ++i) { + int bit_idx = GetSize(hole_value) - 1 - i; + auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i)); + log_assert(it != hole_loc_idx_to_sigbit.end()); - std::string hole_name = hole_loc_to_name[hole_loc]; - log("\t%s = %lu'b%s\n", hole_name.c_str(), hole_value.size(), hole_value.c_str()); - std::vector<RTLIL::SigBit> value_bv; - value_bv.reserve(hole_value.size()); - for (char c : hole_value) - value_bv.emplace_back(c == '1'? RTLIL::S1 : RTLIL::S0); - std::reverse(value_bv.begin(), value_bv.end()); + RTLIL::SigBit hole_sigbit = it->second; + log("\t%s = 1'b%c\n", log_signal(hole_sigbit), hole_value[bit_idx]); + } } } @@ -376,7 +445,11 @@ QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt, }; log_header(mod->design, "Solving QBF-SAT problem.\n"); if (!quiet) log("Launching \"%s\".\n", smtbmc_cmd.c_str()); + int64_t begin = PerformanceTimer::query(); run_command(smtbmc_cmd, process_line); + int64_t end = PerformanceTimer::query(); + ret.solver_time = (end - begin) / 1e9f; + if (!quiet) log("Solver finished in %.3f seconds.\n", ret.solver_time); recover_solution(ret); return ret; @@ -388,8 +461,7 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { RTLIL::Module *module = mod; RTLIL::Design *design = module->design; std::string module_name = module->name.str(); - RTLIL::Wire *wire_to_optimize = nullptr; - RTLIL::IdString wire_to_optimize_name; + RTLIL::IdString wire_to_optimize_name = ""; bool maximize = false; log_assert(module->design != nullptr); @@ -402,19 +474,30 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { assume_miter_outputs(module, opt); //Find the wire to be optimized, if any: - for (auto wire : module->wires()) - if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize")) - wire_to_optimize = wire; - if (wire_to_optimize != nullptr) { - wire_to_optimize_name = wire_to_optimize->name; - maximize = wire_to_optimize->get_bool_attribute("\\maximize"); + for (auto wire : module->wires()) { + if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize")) { + wire_to_optimize_name = wire->name; + maximize = wire->get_bool_attribute("\\maximize"); + if (opt.nooptimize) { + if (maximize) + wire->set_bool_attribute("\\maximize", false); + else + wire->set_bool_attribute("\\minimize", false); + } + } } - if (opt.nobisection || opt.nooptimize) { - if (wire_to_optimize != nullptr && opt.nooptimize) { - wire_to_optimize->set_bool_attribute("\\maximize", false); - wire_to_optimize->set_bool_attribute("\\minimize", false); - } + //If -O1 or -O2 was specified, use ABC to simplify the problem: + if (opt.oflag == opt.OptimizationLevel::O1) + Pass::call(module->design, "abc -g AND,NAND,OR,NOR,XOR,XNOR,MUX,NMUX -script +print_stats;strash;print_stats;drwsat;print_stats;fraig;print_stats;refactor,-N,10,-lz;print_stats;&get,-n;&dch,-pem;&nf;&put " + mod->name.str()); + else if (opt.oflag == opt.OptimizationLevel::O2) + Pass::call(module->design, "abc -g AND,NAND,OR,NOR,XOR,XNOR,MUX,NMUX -script +print_stats;strash;print_stats;drwsat;print_stats;dch,-S,1000000,-C,100000,-p;print_stats;fraig;print_stats;refactor,-N,15,-lz;print_stats;dc2,-pbl;print_stats;drwsat;print_stats;&get,-n;&dch,-pem;&nf;&put " + mod->name.str()); + if (opt.oflag != opt.OptimizationLevel::O0) { + Pass::call(module->design, "techmap"); + Pass::call(module->design, "opt"); + } + + if (opt.nobisection || opt.nooptimize || wire_to_optimize_name == "") { ret = call_qbf_solver(module, opt, tempdir_name, false, 0); } else { //Do the iterated bisection method: @@ -423,11 +506,12 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { unsigned int failure = 0; unsigned int cur_thresh = 0; - log_assert(wire_to_optimize != nullptr); - log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), log_signal(wire_to_optimize)); + log_assert(wire_to_optimize_name != ""); + log_assert(module->wire(wire_to_optimize_name) != nullptr); + log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), wire_to_optimize_name.c_str()); //If maximizing, grow until we get a failure. Then bisect success and failure. - while (failure == 0 || success - failure > 1) { + while (failure == 0 || difference(success, failure) > 1) { Pass::call(design, "design -push-copy"); log_header(design, "Preparing QBF-SAT problem.\n"); @@ -465,8 +549,9 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { //sometimes this happens if we get an 'unknown' or timeout if (!maximize && success < failure) break; - else if (maximize && success > failure) + else if (maximize && failure != 0 && success > failure) break; + } else { //Treat 'unknown' as UNSAT failure = cur_thresh; @@ -479,8 +564,12 @@ QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { } iter_num++; - cur_thresh = (maximize && failure == 0)? 2 * success //growth - : (success + failure) / 2; //bisection + if (maximize && failure == 0 && success == 0) + cur_thresh = 2; + else if (maximize && failure == 0) + cur_thresh = 2 * success; //growth + else //if (!maximize || failure != 0) + cur_thresh = (success + failure) / 2; //bisection } if (success != 0 || failure != 0) { log("Wire %s is %s at %d.\n", wire_to_optimize_name.c_str(), (maximize? "maximized" : "minimized"), success); @@ -552,6 +641,22 @@ QbfSolveOptions parse_args(const std::vector<std::string> &args) { } continue; } + else if (args[opt.argidx].substr(0, 2) == "-O" && args[opt.argidx].size() == 3) { + switch (args[opt.argidx][2]) { + case '0': + opt.oflag = opt.OptimizationLevel::O0; + break; + case '1': + opt.oflag = opt.OptimizationLevel::O1; + break; + case '2': + opt.oflag = opt.OptimizationLevel::O2; + break; + default: + log_cmd_error("unknown argument %s\n", args[opt.argidx].c_str()); + } + continue; + } else if (args[opt.argidx] == "-sat") { opt.sat = true; continue; @@ -666,6 +771,9 @@ struct QbfSatPass : public Pass { log(" -timeout <value>\n"); log(" Set the per-iteration timeout in seconds.\n"); log("\n"); + log(" -O0, -O1, -O2\n"); + log(" Control the use of ABC to simplify the QBF-SAT problem before solving.\n"); + log("\n"); log(" -sat\n"); log(" Generate an error if the solver does not return \"sat\".\n"); log("\n"); |