aboutsummaryrefslogtreecommitdiffstats
path: root/passes/techmap/abc9_ops.cc
diff options
context:
space:
mode:
Diffstat (limited to 'passes/techmap/abc9_ops.cc')
-rw-r--r--passes/techmap/abc9_ops.cc825
1 files changed, 825 insertions, 0 deletions
diff --git a/passes/techmap/abc9_ops.cc b/passes/techmap/abc9_ops.cc
new file mode 100644
index 000000000..9ad29a8f6
--- /dev/null
+++ b/passes/techmap/abc9_ops.cc
@@ -0,0 +1,825 @@
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ * 2019 Eddie Hung <eddie@fpgeh.com>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "kernel/register.h"
+#include "kernel/sigtools.h"
+#include "kernel/utils.h"
+#include "kernel/celltypes.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+int map_autoidx;
+
+inline std::string remap_name(RTLIL::IdString abc9_name)
+{
+ return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
+}
+
+void mark_scc(RTLIL::Module *module)
+{
+ // For every unique SCC found, (arbitrarily) find the first
+ // cell in the component, and convert all wires driven by
+ // its output ports into a new PO, and drive its previous
+ // sinks with a new PI
+ pool<RTLIL::Const> ids_seen;
+ for (auto cell : module->cells()) {
+ auto it = cell->attributes.find(ID(abc9_scc_id));
+ if (it == cell->attributes.end())
+ continue;
+ auto id = it->second;
+ auto r = ids_seen.insert(id);
+ cell->attributes.erase(it);
+ if (!r.second)
+ continue;
+ for (auto &c : cell->connections_) {
+ if (c.second.is_fully_const()) continue;
+ if (cell->output(c.first)) {
+ SigBit b = c.second.as_bit();
+ Wire *w = b.wire;
+ w->set_bool_attribute(ID::keep);
+ w->attributes[ID(abc9_scc_id)] = id.as_int();
+ }
+ }
+ }
+
+ module->fixup_ports();
+}
+
+void prep_dff(RTLIL::Module *module)
+{
+ auto design = module->design;
+ log_assert(design);
+
+ SigMap assign_map(module);
+
+ typedef SigSpec clkdomain_t;
+ dict<clkdomain_t, int> clk_to_mergeability;
+
+ for (auto cell : module->cells()) {
+ if (cell->type != "$__ABC9_FF_")
+ continue;
+
+ Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
+ if (abc9_clock_wire == NULL)
+ log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
+ SigSpec abc9_clock = assign_map(abc9_clock_wire);
+
+ clkdomain_t key(abc9_clock);
+
+ auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
+ auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
+ log_assert(r2.second);
+
+ Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str()));
+ if (abc9_init_wire == NULL)
+ log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
+ log_assert(GetSize(abc9_init_wire) == 1);
+ SigSpec abc9_init = assign_map(abc9_init_wire);
+ if (!abc9_init.is_fully_const())
+ log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
+ if (abc9_init == State::S1)
+ log_error("'%s.init' in module '%s' has value 1'b1 which is not supported by 'abc9 -dff'.\n", cell->name.c_str(), log_id(module));
+ r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
+ log_assert(r2.second);
+ }
+
+ RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
+ if (holes_module) {
+ SigMap sigmap(holes_module);
+
+ dict<SigSpec, SigSpec> replace;
+ for (auto cell : holes_module->cells().to_vector()) {
+ if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
+ "$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_"))
+ continue;
+ SigBit D = cell->getPort("\\D");
+ SigBit Q = cell->getPort("\\Q");
+ // Emulate async control embedded inside $_DFF_* cell with mux in front of D
+ if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_"))
+ D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R"));
+ else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_"))
+ D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R"));
+ else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_"))
+ D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R"));
+ else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_"))
+ D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R"));
+ // Remove the $_DFF_* cell from what needs to be a combinatorial box
+ holes_module->remove(cell);
+ Wire *port;
+ if (GetSize(Q.wire) == 1)
+ port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
+ else
+ port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
+ log_assert(port);
+ // Prepare to replace "assign <port> = $_DFF_*.Q;" with "assign <port> = $_DFF_*.D;"
+ // in order to extract just the combinatorial control logic that feeds the box
+ // (i.e. clock enable, synchronous reset, etc.)
+ replace.insert(std::make_pair(Q,D));
+ // Since `flatten` above would have created wires named "<cell>.Q",
+ // extract the pre-techmap cell name
+ auto pos = Q.wire->name.str().rfind(".");
+ log_assert(pos != std::string::npos);
+ IdString driver = Q.wire->name.substr(0, pos);
+ // And drive the signal that was previously driven by "DFF.Q" (typically
+ // used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
+ // wire (which itself is driven an by input port) we inserted above
+ Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
+ log_assert(currQ);
+ holes_module->connect(Q, currQ);
+ }
+
+ for (auto &conn : holes_module->connections_)
+ conn.second = replace.at(sigmap(conn.second), conn.second);
+ }
+}
+
+void prep_xaiger(RTLIL::Module *module, bool dff)
+{
+ auto design = module->design;
+ log_assert(design);
+
+ SigMap sigmap(module);
+
+ dict<SigBit, pool<IdString>> bit_drivers, bit_users;
+ TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
+ dict<IdString, std::vector<IdString>> box_ports;
+
+ for (auto cell : module->cells()) {
+ if (cell->type == "$__ABC9_FF_")
+ continue;
+ if (cell->has_keep_attr())
+ continue;
+
+ auto inst_module = module->design->module(cell->type);
+ bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id");
+ bool abc9_flop = false;
+ if (abc9_box) {
+ abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
+ if (abc9_flop && !dff)
+ continue;
+
+ auto r = box_ports.insert(cell->type);
+ if (r.second) {
+ // Make carry in the last PI, and carry out the last PO
+ // since ABC requires it this way
+ IdString carry_in, carry_out;
+ for (const auto &port_name : inst_module->ports) {
+ auto w = inst_module->wire(port_name);
+ log_assert(w);
+ if (w->get_bool_attribute("\\abc9_carry")) {
+ if (w->port_input) {
+ if (carry_in != IdString())
+ log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(inst_module));
+ carry_in = port_name;
+ }
+ if (w->port_output) {
+ if (carry_out != IdString())
+ log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(inst_module));
+ carry_out = port_name;
+ }
+ }
+ else
+ r.first->second.push_back(port_name);
+ }
+
+ if (carry_in != IdString() && carry_out == IdString())
+ log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(inst_module));
+ if (carry_in == IdString() && carry_out != IdString())
+ log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(inst_module));
+ if (carry_in != IdString()) {
+ r.first->second.push_back(carry_in);
+ r.first->second.push_back(carry_out);
+ }
+ }
+ }
+ else if (!yosys_celltypes.cell_known(cell->type))
+ continue;
+
+ // TODO: Speed up toposort -- we care about box ordering only
+ for (auto conn : cell->connections()) {
+ if (cell->input(conn.first))
+ for (auto bit : sigmap(conn.second))
+ bit_users[bit].insert(cell->name);
+
+ if (cell->output(conn.first) && !abc9_flop)
+ for (auto bit : sigmap(conn.second))
+ bit_drivers[bit].insert(cell->name);
+ }
+ toposort.node(cell->name);
+ }
+
+ if (box_ports.empty())
+ return;
+
+ for (auto &it : bit_users)
+ if (bit_drivers.count(it.first))
+ for (auto driver_cell : bit_drivers.at(it.first))
+ for (auto user_cell : it.second)
+ toposort.edge(driver_cell, user_cell);
+
+ if (ys_debug(1))
+ toposort.analyze_loops = true;
+
+ bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
+
+ if (ys_debug(1)) {
+ unsigned i = 0;
+ for (auto &it : toposort.loops) {
+ log(" loop %d\n", i++);
+ for (auto cell_name : it) {
+ auto cell = module->cell(cell_name);
+ log_assert(cell);
+ log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
+ }
+ }
+ }
+
+ log_assert(no_loops);
+
+ RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
+ log_assert(holes_module);
+ holes_module->set_bool_attribute("\\abc9_holes");
+
+ dict<IdString, Cell*> cell_cache;
+
+ int port_id = 1, box_count = 0;
+ for (auto cell_name : toposort.sorted) {
+ RTLIL::Cell *cell = module->cell(cell_name);
+ log_assert(cell);
+
+ RTLIL::Module* box_module = design->module(cell->type);
+ if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
+ continue;
+
+ cell->attributes["\\abc9_box_seq"] = box_count++;
+
+ IdString derived_name = box_module->derive(design, cell->parameters);
+ box_module = design->module(derived_name);
+
+ auto r = cell_cache.insert(derived_name);
+ auto &holes_cell = r.first->second;
+ if (r.second) {
+ if (box_module->has_processes())
+ Pass::call_on_module(design, box_module, "proc");
+
+ if (box_module->get_bool_attribute("\\whitebox")) {
+ holes_cell = holes_module->addCell(cell->name, derived_name);
+
+ int box_inputs = 0;
+ for (auto port_name : box_ports.at(cell->type)) {
+ RTLIL::Wire *w = box_module->wire(port_name);
+ log_assert(w);
+ log_assert(!w->port_input || !w->port_output);
+ auto &conn = holes_cell->connections_[port_name];
+ if (w->port_input) {
+ for (int i = 0; i < GetSize(w); i++) {
+ box_inputs++;
+ RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
+ if (!holes_wire) {
+ holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
+ holes_wire->port_input = true;
+ holes_wire->port_id = port_id++;
+ holes_module->ports.push_back(holes_wire->name);
+ }
+ conn.append(holes_wire);
+ }
+ }
+ else if (w->port_output)
+ conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w));
+ }
+
+ // For flops only, create an extra 1-bit input that drives a new wire
+ // called "<cell>.abc9_ff.Q" that is used below
+ if (box_module->get_bool_attribute("\\abc9_flop")) {
+ box_inputs++;
+ Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
+ if (!holes_wire) {
+ holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
+ holes_wire->port_input = true;
+ holes_wire->port_id = port_id++;
+ holes_module->ports.push_back(holes_wire->name);
+ }
+ Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
+ holes_module->connect(Q, holes_wire);
+ }
+ }
+ else // box_module is a blackbox
+ log_assert(holes_cell == nullptr);
+ }
+
+ for (auto port_name : box_ports.at(cell->type)) {
+ RTLIL::Wire *w = box_module->wire(port_name);
+ log_assert(w);
+ if (!w->port_output)
+ continue;
+ Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w));
+ holes_wire->port_output = true;
+ holes_wire->port_id = port_id++;
+ holes_module->ports.push_back(holes_wire->name);
+ if (holes_cell) // whitebox
+ holes_module->connect(holes_wire, holes_cell->getPort(port_name));
+ else // blackbox
+ holes_module->connect(holes_wire, Const(State::S0, GetSize(w)));
+ }
+ }
+}
+
+void reintegrate(RTLIL::Module *module)
+{
+ auto design = module->design;
+ log_assert(design);
+
+ map_autoidx = autoidx++;
+
+ RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
+ if (mapped_mod == NULL)
+ log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
+
+ for (auto w : mapped_mod->wires())
+ module->addWire(remap_name(w->name), GetSize(w));
+
+ dict<IdString,std::vector<IdString>> box_ports;
+
+ for (auto m : design->modules()) {
+ if (!m->attributes.count(ID(abc9_box_id)))
+ continue;
+
+ auto r = box_ports.insert(m->name);
+ if (r.second) {
+ // Make carry in the last PI, and carry out the last PO
+ // since ABC requires it this way
+ IdString carry_in, carry_out;
+ for (const auto &port_name : m->ports) {
+ auto w = m->wire(port_name);
+ log_assert(w);
+ if (w->get_bool_attribute("\\abc9_carry")) {
+ if (w->port_input) {
+ if (carry_in != IdString())
+ log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
+ carry_in = port_name;
+ }
+ if (w->port_output) {
+ if (carry_out != IdString())
+ log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m));
+ carry_out = port_name;
+ }
+ }
+ else
+ r.first->second.push_back(port_name);
+ }
+
+ if (carry_in != IdString() && carry_out == IdString())
+ log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
+ if (carry_in == IdString() && carry_out != IdString())
+ log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
+ if (carry_in != IdString()) {
+ r.first->second.push_back(carry_in);
+ r.first->second.push_back(carry_out);
+ }
+ }
+ }
+
+ std::vector<Cell*> boxes;
+ for (auto cell : module->cells().to_vector()) {
+ if (cell->has_keep_attr())
+ continue;
+ if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
+ module->remove(cell);
+ else if (cell->attributes.erase("\\abc9_box_seq"))
+ boxes.emplace_back(cell);
+ }
+
+ dict<SigBit, pool<IdString>> bit_drivers, bit_users;
+ TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
+ dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
+ dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
+
+ std::map<IdString, int> cell_stats;
+ for (auto mapped_cell : mapped_mod->cells())
+ {
+ // TODO: Speed up toposort -- we care about NOT ordering only
+ toposort.node(mapped_cell->name);
+
+ if (mapped_cell->type == ID($_NOT_)) {
+ RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
+ RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
+ bit_users[a_bit].insert(mapped_cell->name);
+ // Ignore inouts for topo ordering
+ if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output))
+ bit_drivers[y_bit].insert(mapped_cell->name);
+
+ if (!a_bit.wire) {
+ mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
+ RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
+ log_assert(wire);
+ module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
+ }
+ else {
+ RTLIL::Cell* driver_lut = nullptr;
+ // ABC can return NOT gates that drive POs
+ if (!a_bit.wire->port_input) {
+ // If it's not a NOT gate that that comes from a PI directly,
+ // find the driver LUT and clone that to guarantee that we won't
+ // increase the max logic depth
+ // (TODO: Optimise by not cloning unless will increase depth)
+ RTLIL::IdString driver_name;
+ if (GetSize(a_bit.wire) == 1)
+ driver_name = stringf("$lut%s", a_bit.wire->name.c_str());
+ else
+ driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset);
+ driver_lut = mapped_mod->cell(driver_name);
+ }
+
+ if (!driver_lut) {
+ // If a driver couldn't be found (could be from PI or box CI)
+ // then implement using a LUT
+ RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())),
+ RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
+ RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
+ RTLIL::Const::from_string("01"));
+ bit2sinks[cell->getPort(ID::A)].push_back(cell);
+ cell_stats[ID($lut)]++;
+ }
+ else
+ not2drivers[mapped_cell] = driver_lut;
+ }
+ continue;
+ }
+
+ if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
+ // Convert buffer into direct connection
+ if (mapped_cell->type == ID($lut) &&
+ GetSize(mapped_cell->getPort(ID::A)) == 1 &&
+ mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
+ SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
+ SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
+ module->connect(my_y, my_a);
+ log_abort();
+ continue;
+ }
+ RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
+ cell->parameters = mapped_cell->parameters;
+ cell->attributes = mapped_cell->attributes;
+
+ for (auto &mapped_conn : mapped_cell->connections()) {
+ RTLIL::SigSpec newsig;
+ for (auto c : mapped_conn.second.chunks()) {
+ if (c.width == 0)
+ continue;
+ //log_assert(c.width == 1);
+ if (c.wire)
+ c.wire = module->wires_.at(remap_name(c.wire->name));
+ newsig.append(c);
+ }
+ cell->setPort(mapped_conn.first, newsig);
+
+ if (cell->input(mapped_conn.first)) {
+ for (auto i : newsig)
+ bit2sinks[i].push_back(cell);
+ for (auto i : mapped_conn.second)
+ bit_users[i].insert(mapped_cell->name);
+ }
+ if (cell->output(mapped_conn.first))
+ for (auto i : mapped_conn.second)
+ // Ignore inouts for topo ordering
+ if (i.wire && !(i.wire->port_input && i.wire->port_output))
+ bit_drivers[i].insert(mapped_cell->name);
+ }
+ }
+ else {
+ RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
+ log_assert(existing_cell);
+
+ RTLIL::Module* box_module = design->module(existing_cell->type);
+ auto it = box_module->attributes.find(ID(abc9_box_id));
+ log_assert(it != box_module->attributes.end());
+ log_assert(mapped_cell->type == stringf("$__boxid%d", it->second.as_int()));
+ mapped_cell->type = existing_cell->type;
+
+ RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
+ cell->parameters = existing_cell->parameters;
+ cell->attributes = existing_cell->attributes;
+ module->swap_names(cell, existing_cell);
+
+ auto jt = mapped_cell->connections_.find("\\i");
+ log_assert(jt != mapped_cell->connections_.end());
+ SigSpec inputs = std::move(jt->second);
+ mapped_cell->connections_.erase(jt);
+ jt = mapped_cell->connections_.find("\\o");
+ log_assert(jt != mapped_cell->connections_.end());
+ SigSpec outputs = std::move(jt->second);
+ mapped_cell->connections_.erase(jt);
+
+ auto abc9_flop = box_module->attributes.count("\\abc9_flop");
+ if (!abc9_flop) {
+ for (const auto &i : inputs)
+ bit_users[i].insert(mapped_cell->name);
+ for (const auto &i : outputs)
+ // Ignore inouts for topo ordering
+ if (i.wire && !(i.wire->port_input && i.wire->port_output))
+ bit_drivers[i].insert(mapped_cell->name);
+ }
+
+ int input_count = 0, output_count = 0;
+ for (const auto &port_name : box_ports.at(cell->type)) {
+ RTLIL::Wire *w = box_module->wire(port_name);
+ log_assert(w);
+
+ SigSpec sig;
+ if (w->port_input) {
+ sig = inputs.extract(input_count, GetSize(w));
+ input_count += GetSize(w);
+ }
+ if (w->port_output) {
+ sig = outputs.extract(output_count, GetSize(w));
+ output_count += GetSize(w);
+ }
+
+ SigSpec newsig;
+ for (auto c : sig.chunks()) {
+ if (c.width == 0)
+ continue;
+ //log_assert(c.width == 1);
+ if (c.wire)
+ c.wire = module->wires_.at(remap_name(c.wire->name));
+ newsig.append(c);
+ }
+ cell->setPort(port_name, newsig);
+
+ if (w->port_input && !abc9_flop)
+ for (const auto &i : newsig)
+ bit2sinks[i].push_back(cell);
+ }
+ }
+
+ cell_stats[mapped_cell->type]++;
+ }
+
+ for (auto cell : boxes)
+ module->remove(cell);
+
+ // Copy connections (and rename) from mapped_mod to module
+ for (auto conn : mapped_mod->connections()) {
+ if (!conn.first.is_fully_const()) {
+ auto chunks = conn.first.chunks();
+ for (auto &c : chunks)
+ c.wire = module->wires_.at(remap_name(c.wire->name));
+ conn.first = std::move(chunks);
+ }
+ if (!conn.second.is_fully_const()) {
+ auto chunks = conn.second.chunks();
+ for (auto &c : chunks)
+ if (c.wire)
+ c.wire = module->wires_.at(remap_name(c.wire->name));
+ conn.second = std::move(chunks);
+ }
+ module->connect(conn);
+ }
+
+ for (auto &it : cell_stats)
+ log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
+ int in_wires = 0, out_wires = 0;
+
+ // Stitch in mapped_mod's inputs/outputs into module
+ for (auto port : mapped_mod->ports) {
+ RTLIL::Wire *mapped_wire = mapped_mod->wire(port);
+ RTLIL::Wire *wire = module->wire(port);
+ log_assert(wire);
+ if (wire->attributes.erase(ID(abc9_scc_id))) {
+ auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep);
+ log_assert(r);
+ }
+ RTLIL::Wire *remap_wire = module->wire(remap_name(port));
+ RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
+ log_assert(GetSize(signal) >= GetSize(remap_wire));
+
+ RTLIL::SigSig conn;
+ if (mapped_wire->port_output) {
+ conn.first = signal;
+ conn.second = remap_wire;
+ out_wires++;
+ module->connect(conn);
+ }
+ else if (mapped_wire->port_input) {
+ conn.first = remap_wire;
+ conn.second = signal;
+ in_wires++;
+ module->connect(conn);
+ }
+ }
+
+ // ABC9 will return $_NOT_ gates in its mapping (since they are
+ // treated as being "free"), in particular driving primary
+ // outputs (real primary outputs, or cells treated as blackboxes)
+ // or driving box inputs.
+ // Instead of just mapping those $_NOT_ gates into 2-input $lut-s
+ // at an area and delay cost, see if it is possible to push
+ // this $_NOT_ into the driving LUT, or into all sink LUTs.
+ // When this is not possible, (i.e. this signal drives two primary
+ // outputs, only one of which is complemented) and when the driver
+ // is a LUT, then clone the LUT so that it can be inverted without
+ // increasing depth/delay.
+ for (auto &it : bit_users)
+ if (bit_drivers.count(it.first))
+ for (auto driver_cell : bit_drivers.at(it.first))
+ for (auto user_cell : it.second)
+ toposort.edge(driver_cell, user_cell);
+ bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
+ log_assert(no_loops);
+
+ for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
+ RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
+ log_assert(not_cell);
+ if (not_cell->type != ID($_NOT_))
+ continue;
+ auto it = not2drivers.find(not_cell);
+ if (it == not2drivers.end())
+ continue;
+ RTLIL::Cell *driver_lut = it->second;
+ RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
+ RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
+ RTLIL::Const driver_mask;
+
+ a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
+ y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
+
+ auto jt = bit2sinks.find(a_bit);
+ if (jt == bit2sinks.end())
+ goto clone_lut;
+
+ for (auto sink_cell : jt->second)
+ if (sink_cell->type != ID($lut))
+ goto clone_lut;
+
+ // Push downstream LUTs past inverter
+ for (auto sink_cell : jt->second) {
+ SigSpec A = sink_cell->getPort(ID::A);
+ RTLIL::Const mask = sink_cell->getParam(ID(LUT));
+ int index = 0;
+ for (; index < GetSize(A); index++)
+ if (A[index] == a_bit)
+ break;
+ log_assert(index < GetSize(A));
+ int i = 0;
+ while (i < GetSize(mask)) {
+ for (int j = 0; j < (1 << index); j++)
+ std::swap(mask[i+j], mask[i+j+(1 << index)]);
+ i += 1 << (index+1);
+ }
+ A[index] = y_bit;
+ sink_cell->setPort(ID::A, A);
+ sink_cell->setParam(ID(LUT), mask);
+ }
+
+ // Since we have rewritten all sinks (which we know
+ // to be only LUTs) to be after the inverter, we can
+ // go ahead and clone the LUT with the expectation
+ // that the original driving LUT will become dangling
+ // and get cleaned away
+clone_lut:
+ driver_mask = driver_lut->getParam(ID(LUT));
+ for (auto &b : driver_mask.bits) {
+ if (b == RTLIL::State::S0) b = RTLIL::State::S1;
+ else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
+ }
+ auto cell = module->addLut(NEW_ID,
+ driver_lut->getPort(ID::A),
+ y_bit,
+ driver_mask);
+ for (auto &bit : cell->connections_.at(ID::A)) {
+ bit.wire = module->wires_.at(remap_name(bit.wire->name));
+ bit2sinks[bit].push_back(cell);
+ }
+ }
+
+ //log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
+ log("ABC RESULTS: input signals: %8d\n", in_wires);
+ log("ABC RESULTS: output signals: %8d\n", out_wires);
+
+ design->remove(mapped_mod);
+}
+
+struct Abc9OpsPass : public Pass {
+ Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
+ void help() YS_OVERRIDE
+ {
+ // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+ log("\n");
+ log(" abc9_ops [options] [selection]\n");
+ log("\n");
+ log("This pass contains a set of supporting operations for use during ABC technology\n");
+ log("mapping, and is expected to be called in conjunction with other operations from\n");
+ log("the `abc9' script pass. Only fully-selected modules are supported.\n");
+ log("\n");
+ log(" -mark_scc\n");
+ log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n");
+ log(" (tagged with an (* abc9_scc_id = <int> *) attribute), temporarily mark all\n");
+ log(" wires driven by this cell's outputs with a (* keep *) attribute in order\n");
+ log(" to break the SCC. this temporary attribute will be removed on -reintegrate.\n");
+ log("\n");
+ log(" -prep_xaiger\n");
+ log(" prepare the design for XAIGER output. this includes computing the\n");
+ log(" topological ordering of ABC9 boxes, as well as preparing the\n");
+ log(" '<module-name>$holes' module that contains the logic behaviour of ABC9\n");
+ log(" whiteboxes.\n");
+ log("\n");
+ log(" -dff\n");
+ log(" consider flop cells (those instantiating modules marked with (* abc9_flop *)\n");
+ log(" during -prep_xaiger.\n");
+ log("\n");
+ log(" -prep_dff\n");
+ log(" compute the clock domain and initial value of each flop in the design.\n");
+ log(" process the '$holes' module to support clock-enable functionality.\n");
+ log("\n");
+ log(" -reintegrate\n");
+ log(" for each selected module, re-intergrate the module '<module-name>$abc9'\n");
+ log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n");
+ log(" inputs and outputs.\n");
+ log("\n");
+ }
+ void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
+ {
+ log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
+
+ bool mark_scc_mode = false;
+ bool prep_dff_mode = false;
+ bool prep_xaiger_mode = false;
+ bool reintegrate_mode = false;
+ bool dff_mode = false;
+
+ size_t argidx;
+ for (argidx = 1; argidx < args.size(); argidx++) {
+ std::string arg = args[argidx];
+ if (arg == "-mark_scc") {
+ mark_scc_mode = true;
+ continue;
+ }
+ if (arg == "-prep_dff") {
+ prep_dff_mode = true;
+ continue;
+ }
+ if (arg == "-prep_xaiger") {
+ prep_xaiger_mode = true;
+ continue;
+ }
+ if (arg == "-reintegrate") {
+ reintegrate_mode = true;
+ continue;
+ }
+ if (arg == "-dff") {
+ dff_mode = true;
+ continue;
+ }
+ break;
+ }
+ extra_args(args, argidx, design);
+
+ if (!(mark_scc_mode || prep_dff_mode || reintegrate_mode))
+ log_cmd_error("At least one of -mark_scc, -prep_{xaiger,dff}, -reintegrate must be specified.\n");
+
+ if (dff_mode && !prep_xaiger_mode)
+ log_cmd_error("'-dff' option is only relevant for -prep_xaiger.\n");
+
+ for (auto mod : design->selected_modules()) {
+ if (mod->get_bool_attribute("\\abc9_holes"))
+ continue;
+
+ if (mod->processes.size() > 0) {
+ log("Skipping module %s as it contains processes.\n", log_id(mod));
+ continue;
+ }
+
+ if (!design->selected_whole_module(mod))
+ log_error("Can't handle partially selected module %s!\n", log_id(mod));
+
+ if (mark_scc_mode)
+ mark_scc(mod);
+ if (prep_dff_mode)
+ prep_dff(mod);
+ if (prep_xaiger_mode)
+ prep_xaiger(mod, dff_mode);
+ if (reintegrate_mode)
+ reintegrate(mod);
+ }
+ }
+} Abc9OpsPass;
+
+PRIVATE_NAMESPACE_END