aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/abc9_map.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r--techlibs/xilinx/abc9_map.v360
1 files changed, 359 insertions, 1 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v
index 7b9427b2f..d2d7d9114 100644
--- a/techlibs/xilinx/abc9_map.v
+++ b/techlibs/xilinx/abc9_map.v
@@ -18,7 +18,365 @@
*
*/
-// ============================================================================
+// The following techmapping rules are intended to be run (with -max_iter 1)
+// before invoking the `abc9` pass in order to transform the design into
+// a format that it understands.
+//
+// For example, (complex) flip-flops are expected to be described as an
+// combinatorial box (containing all control logic such as clock enable
+// or synchronous resets) followed by a basic D-Q flop.
+// Yosys will automatically analyse the simulation model (described in
+// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
+// order to extract the combinatorial control logic left behind.
+// Specifically, a simulation model similar to the one below:
+//
+// ++===================================++
+// || Sim model ||
+// || /\/\/\/\ ||
+// D -->>-----< > +------+ ||
+// R -->>-----< Comb. > |$_DFF_| ||
+// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
+// || +--< > +------+ | ||
+// || | \/\/\/\/ | ||
+// || | | ||
+// || +----------------------------+ ||
+// || ||
+// ++===================================++
+//
+// is transformed into:
+//
+// ++==================++
+// || Comb box ||
+// || ||
+// || /\/\/\/\ ||
+// D -->>-----< > || +------+
+// R -->>-----< Comb. > || |$__ABC|
+// CE -->>-----< logic >--->>-- $nextQ --| _FF_ |--+-->> Q
+// $abc9_currQ +-->>-----< > || +------+ |
+// | || \/\/\/\/ || |
+// | || || |
+// | ++==================++ |
+// | |
+// +----------------------------------------------+
+//
+// The purpose of the following FD* rules are to wrap the flop with:
+// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
+// the connectivity of its basic D-Q flop
+// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
+// capture asynchronous behaviour
+// (c) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock
+// domain and polarity (used when partitioning the module so that `abc9' only
+// performs sequential synthesis (with reachability analysis) correctly on
+// one domain at a time) and also used to infer the optional delay target
+// from the (* abc9_clock_period = %d *) attribute attached to any wire
+// within
+// (d) a special _TECHMAP_REPLACE_.$abc9_init wire to encode the flop's initial
+// state
+// (e) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
+// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
+//
+// In order to perform sequential synthesis, `abc9' also requires that
+// the initial value of all flops be zero.
+
+module FDRE (output Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_R_INVERTED = 1'b0;
+ wire QQ, $nextQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDSE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .S(R)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDRE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_R_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
+ );
+ end
+ endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+endmodule
+module FDRE_1 (output Q, input C, CE, D, R);
+ parameter [0:0] INIT = 1'b0;
+ wire QQ, $nextQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDSE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .S(R)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDRE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
+ );
+ end
+ endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+endmodule
+
+module FDCE (output Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ wire QQ, $nextQ, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDPE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .PRE(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ // Since this is an async flop, async behaviour is dealt with here
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDCE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_CLR_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ // Since this is an async flop, async behaviour is dealt with here
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+endmodule
+module FDCE_1 (output Q, input C, CE, D, CLR);
+ parameter [0:0] INIT = 1'b0;
+ wire QQ, $nextQ, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDPE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .PRE(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDCE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+endmodule
+
+module FDPE (output Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ wire QQ, $nextQ, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDCE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_CLR_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .CLR(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDPE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_PRE_INVERTED(IS_PRE_INVERTED),
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+endmodule
+module FDPE_1 (output Q, input C, CE, D, PRE);
+ parameter [0:0] INIT = 1'b1;
+ wire QQ, $nextQ, $abc9_currQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDCE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .CLR(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC0 below
+ );
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
+ end
+ else begin
+ assign Q = QQ;
+ FDPE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
+ // ^^^ Note that async
+ // control is not directly
+ // supported by abc9 but its
+ // behaviour is captured by
+ // $__ABC9_ASYNC1 below
+ );
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
+endmodule
+
+module FDSE (output Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b1;
+ parameter [0:0] IS_C_INVERTED = 1'b0;
+ parameter [0:0] IS_D_INVERTED = 1'b0;
+ parameter [0:0] IS_S_INVERTED = 1'b0;
+ wire QQ, $nextQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDRE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_R_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .R(S)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDSE #(
+ .INIT(1'b0),
+ .IS_C_INVERTED(IS_C_INVERTED),
+ .IS_D_INVERTED(IS_D_INVERTED),
+ .IS_S_INVERTED(IS_S_INVERTED)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
+ );
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+endmodule
+module FDSE_1 (output Q, input C, CE, D, S);
+ parameter [0:0] INIT = 1'b1;
+ wire QQ, $nextQ;
+ generate if (INIT == 1'b1) begin
+ assign Q = ~QQ;
+ FDRE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(~D), .Q($nextQ), .C(C), .CE(CE), .R(S)
+ );
+ end
+ else begin
+ assign Q = QQ;
+ FDSE_1 #(
+ .INIT(1'b0)
+ ) _TECHMAP_REPLACE_ (
+ .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
+ );
+ end endgenerate
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q(QQ));
+
+ // Special signals
+ wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0;
+ wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ;
+endmodule
module RAM32X1D (
output DPO, SPO,