diff options
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r-- | techlibs/xilinx/abc9_map.v | 786 |
1 files changed, 0 insertions, 786 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v deleted file mode 100644 index 81f8a1d42..000000000 --- a/techlibs/xilinx/abc9_map.v +++ /dev/null @@ -1,786 +0,0 @@ -/* - * yosys -- Yosys Open SYnthesis Suite - * - * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> - * 2019 Eddie Hung <eddie@fpgeh.com> - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - */ - -// The following techmapping rules are intended to be run (with -max_iter 1) -// before invoking the `abc9` pass in order to transform the design into -// a format that it understands. - -`ifdef DFF_MODE -// For example, (complex) flip-flops are expected to be described as an -// combinatorial box (containing all control logic such as clock enable -// or synchronous resets) followed by a basic D-Q flop. -// Yosys will automatically analyse the simulation model (described in -// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in -// order to extract the combinatorial control logic left behind. -// Specifically, a simulation model similar to the one below: -// -// ++===================================++ -// || Sim model || -// || /\/\/\/\ || -// D -->>-----< > +------+ || -// R -->>-----< Comb. > |$_DFF_| || -// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q -// || +--< > +------+ | || -// || | \/\/\/\/ | || -// || | | || -// || +----------------------------+ || -// || || -// ++===================================++ -// -// is transformed into: -// -// ++==================++ -// || Comb box || -// || || -// || /\/\/\/\ || -// D -->>-----< > || -// R -->>-----< Comb. > || +-----------+ -// CE -->>-----< logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q -// abc9_ff.Q +-->>-----< > || +-----------+ | -// | || \/\/\/\/ || | -// | || || | -// | ++==================++ | -// | | -// +-----------------------------------------------+ -// -// The purpose of the following FD* rules are to wrap the flop with: -// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9 -// the connectivity of its basic D-Q flop -// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to -// capture asynchronous behaviour -// (c) a special abc9_ff.clock wire to capture its clock domain and polarity -// (indicated to `abc9' so that it only performs sequential synthesis -// (with reachability analysis) correctly on one domain at a time) -// (d) an (* abc9_init *) attribute on the $__ABC9_FF_ cell capturing its -// initial state -// NOTE: in order to perform sequential synthesis, `abc9' requires that -// the initial value of all flops be zero -// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback -// into the (combinatorial) FD* cell to facilitate clock-enable behaviour - -module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_R_INVERTED = 1'b0; - wire QQ, $Q; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDSE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_S_INVERTED(IS_R_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) - ); - end - else begin - assign Q = QQ; - FDRE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_R_INVERTED(IS_R_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .R(R) - ); - end - endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; -endmodule -module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R); - parameter [0:0] INIT = 1'b0; - wire QQ, $Q; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDSE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) - ); - end - else begin - assign Q = QQ; - FDRE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .R(R) - ); - end - endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; -endmodule - -module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S); - parameter [0:0] INIT = 1'b1; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_S_INVERTED = 1'b0; - wire QQ, $Q; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDRE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_R_INVERTED(IS_S_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) - ); - end - else begin - assign Q = QQ; - FDSE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_S_INVERTED(IS_S_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .S(S) - ); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; -endmodule -module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S); - parameter [0:0] INIT = 1'b1; - wire QQ, $Q; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDRE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) - ); - end - else begin - assign Q = QQ; - FDSE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .S(S) - ); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ; -endmodule - -module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR); - parameter [0:0] INIT = 1'b0; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_CLR_INVERTED = 1'b0; - wire QQ, $Q, $QQ; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDPE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_PRE_INVERTED(IS_CLR_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC1 below - ); - // Since this is an async flop, async behaviour is dealt with here - $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); - end - else begin - assign Q = QQ; - FDCE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_CLR_INVERTED(IS_CLR_INVERTED) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC0 below - ); - // Since this is an async flop, async behaviour is dealt with here - $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; -endmodule -module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR); - parameter [0:0] INIT = 1'b0; - wire QQ, $Q, $QQ; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDPE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC1 below - ); - $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ)); - end - else begin - assign Q = QQ; - FDCE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC0 below - ); - $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ)); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; -endmodule - -module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE); - parameter [0:0] INIT = 1'b1; - parameter [0:0] IS_C_INVERTED = 1'b0; - parameter [0:0] IS_D_INVERTED = 1'b0; - parameter [0:0] IS_PRE_INVERTED = 1'b0; - wire QQ, $Q, $QQ; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDCE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_CLR_INVERTED(IS_PRE_INVERTED), - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC0 below - ); - $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); - end - else begin - assign Q = QQ; - FDPE #( - .INIT(1'b0), - .IS_C_INVERTED(IS_C_INVERTED), - .IS_D_INVERTED(IS_D_INVERTED), - .IS_PRE_INVERTED(IS_PRE_INVERTED), - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC1 below - ); - $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; -endmodule -module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE); - parameter [0:0] INIT = 1'b1; - wire QQ, $Q, $QQ; - generate if (INIT == 1'b1) begin - assign Q = ~QQ; - FDCE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC0 below - ); - $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ)); - end - else begin - assign Q = QQ; - FDPE_1 #( - .INIT(1'b0) - ) _TECHMAP_REPLACE_ ( - .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) - // ^^^ Note that async - // control is not directly - // supported by abc9 but its - // behaviour is captured by - // $__ABC9_ASYNC1 below - ); - $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ)); - end endgenerate - (* abc9_init = 1'b0 *) - $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ)); - - // Special signals - wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */}; - wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ; -endmodule -`endif - -// Attach a (combinatorial) black-box onto the output -// of thes LUTRAM primitives to capture their -// asynchronous read behaviour -module RAM32X1D ( - output DPO, SPO, - (* techmap_autopurge *) input D, - (* techmap_autopurge *) input WCLK, - (* techmap_autopurge *) input WE, - (* techmap_autopurge *) input A0, A1, A2, A3, A4, - (* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 -); - parameter INIT = 32'h0; - parameter IS_WCLK_INVERTED = 1'b0; - wire $DPO, $SPO; - RAM32X1D #( - .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .DPO($DPO), .SPO($SPO), - .D(D), .WCLK(WCLK), .WE(WE), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), - .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4) - ); - $__ABC9_RAM6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO)); - $__ABC9_RAM6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); -endmodule - -module RAM64X1D ( - output DPO, SPO, - (* techmap_autopurge *) input D, - (* techmap_autopurge *) input WCLK, - (* techmap_autopurge *) input WE, - (* techmap_autopurge *) input A0, A1, A2, A3, A4, A5, - (* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 -); - parameter INIT = 64'h0; - parameter IS_WCLK_INVERTED = 1'b0; - wire $DPO, $SPO; - RAM64X1D #( - .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .DPO($DPO), .SPO($SPO), - .D(D), .WCLK(WCLK), .WE(WE), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5), - .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5) - ); - $__ABC9_RAM6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO)); - $__ABC9_RAM6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); -endmodule - -module RAM128X1D ( - output DPO, SPO, - (* techmap_autopurge *) input D, - (* techmap_autopurge *) input WCLK, - (* techmap_autopurge *) input WE, - (* techmap_autopurge *) input [6:0] A, DPRA -); - parameter INIT = 128'h0; - parameter IS_WCLK_INVERTED = 1'b0; - wire $DPO, $SPO; - RAM128X1D #( - .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .DPO($DPO), .SPO($SPO), - .D(D), .WCLK(WCLK), .WE(WE), - .A(A), - .DPRA(DPRA) - ); - $__ABC9_RAM7 spo (.A($SPO), .S(A), .Y(SPO)); - $__ABC9_RAM7 dpo (.A($DPO), .S(DPRA), .Y(DPO)); -endmodule - -module RAM32M ( - output [1:0] DOA, - output [1:0] DOB, - output [1:0] DOC, - output [1:0] DOD, - (* techmap_autopurge *) input [4:0] ADDRA, - (* techmap_autopurge *) input [4:0] ADDRB, - (* techmap_autopurge *) input [4:0] ADDRC, - (* techmap_autopurge *) input [4:0] ADDRD, - (* techmap_autopurge *) input [1:0] DIA, - (* techmap_autopurge *) input [1:0] DIB, - (* techmap_autopurge *) input [1:0] DIC, - (* techmap_autopurge *) input [1:0] DID, - (* techmap_autopurge *) input WCLK, - (* techmap_autopurge *) input WE -); - parameter [63:0] INIT_A = 64'h0000000000000000; - parameter [63:0] INIT_B = 64'h0000000000000000; - parameter [63:0] INIT_C = 64'h0000000000000000; - parameter [63:0] INIT_D = 64'h0000000000000000; - parameter [0:0] IS_WCLK_INVERTED = 1'b0; - wire [1:0] $DOA, $DOB, $DOC, $DOD; - RAM32M #( - .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), - .IS_WCLK_INVERTED(IS_WCLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), - .WCLK(WCLK), .WE(WE), - .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), - .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) - ); - $__ABC9_RAM6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0])); - $__ABC9_RAM6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1])); - $__ABC9_RAM6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0])); - $__ABC9_RAM6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1])); - $__ABC9_RAM6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0])); - $__ABC9_RAM6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1])); - $__ABC9_RAM6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0])); - $__ABC9_RAM6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1])); -endmodule - -module RAM64M ( - output DOA, - output DOB, - output DOC, - output DOD, - (* techmap_autopurge *) input [5:0] ADDRA, - (* techmap_autopurge *) input [5:0] ADDRB, - (* techmap_autopurge *) input [5:0] ADDRC, - (* techmap_autopurge *) input [5:0] ADDRD, - (* techmap_autopurge *) input DIA, - (* techmap_autopurge *) input DIB, - (* techmap_autopurge *) input DIC, - (* techmap_autopurge *) input DID, - (* techmap_autopurge *) input WCLK, - (* techmap_autopurge *) input WE -); - parameter [63:0] INIT_A = 64'h0000000000000000; - parameter [63:0] INIT_B = 64'h0000000000000000; - parameter [63:0] INIT_C = 64'h0000000000000000; - parameter [63:0] INIT_D = 64'h0000000000000000; - parameter [0:0] IS_WCLK_INVERTED = 1'b0; - wire $DOA, $DOB, $DOC, $DOD; - RAM64M #( - .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), - .IS_WCLK_INVERTED(IS_WCLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), - .WCLK(WCLK), .WE(WE), - .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), - .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) - ); - $__ABC9_RAM6 doa (.A($DOA), .S(ADDRA), .Y(DOA)); - $__ABC9_RAM6 dob (.A($DOB), .S(ADDRB), .Y(DOB)); - $__ABC9_RAM6 doc (.A($DOC), .S(ADDRC), .Y(DOC)); - $__ABC9_RAM6 dod (.A($DOD), .S(ADDRD), .Y(DOD)); -endmodule - -module SRL16 ( - output Q, - (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D -); - parameter [15:0] INIT = 16'h0000; - wire $Q; - SRL16 #( - .INIT(INIT), - ) _TECHMAP_REPLACE_ ( - .Q($Q), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D) - ); - $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); -endmodule - -module SRL16E ( - output Q, - (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D -); - parameter [15:0] INIT = 16'h0000; - parameter [0:0] IS_CLK_INVERTED = 1'b0; - wire $Q; - SRL16E #( - .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .Q($Q), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D) - ); - $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); -endmodule - -module SRLC16 ( - output Q, Q15, - (* techmap_autopurge *) input A0, A1, A2, A3, CLK, D -); - parameter [15:0] INIT = 16'h0000; - wire $Q; - SRLC16 #( - .INIT(INIT), - ) _TECHMAP_REPLACE_ ( - .Q($Q), .Q(Q15), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CLK(CLK), .D(D) - ); - $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); -endmodule - -module SRLC16E ( - output Q, Q15, - (* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D -); - parameter [15:0] INIT = 16'h0000; - parameter [0:0] IS_CLK_INVERTED = 1'b0; - wire $Q; - SRLC16E #( - .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .Q($Q), .Q(Q15), - .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D) - ); - $__ABC9_RAM6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); -endmodule - -module SRLC32E ( - output Q, - output Q31, - (* techmap_autopurge *) input [4:0] A, - (* techmap_autopurge *) input CE, CLK, D -); - parameter [31:0] INIT = 32'h00000000; - parameter [0:0] IS_CLK_INVERTED = 1'b0; - wire $Q; - SRLC32E #( - .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) - ) _TECHMAP_REPLACE_ ( - .Q($Q), .Q31(Q31), - .A(A), .CE(CE), .CLK(CLK), .D(D) - ); - $__ABC9_RAM6 q (.A($Q), .S({1'b1, A}), .Y(Q)); -endmodule - -module DSP48E1 ( - (* techmap_autopurge *) output [29:0] ACOUT, - (* techmap_autopurge *) output [17:0] BCOUT, - (* techmap_autopurge *) output reg CARRYCASCOUT, - (* techmap_autopurge *) output reg [3:0] CARRYOUT, - (* techmap_autopurge *) output reg MULTSIGNOUT, - (* techmap_autopurge *) output OVERFLOW, - (* techmap_autopurge *) output reg signed [47:0] P, - (* techmap_autopurge *) output PATTERNBDETECT, - (* techmap_autopurge *) output PATTERNDETECT, - (* techmap_autopurge *) output [47:0] PCOUT, - (* techmap_autopurge *) output UNDERFLOW, - (* techmap_autopurge *) input signed [29:0] A, - (* techmap_autopurge *) input [29:0] ACIN, - (* techmap_autopurge *) input [3:0] ALUMODE, - (* techmap_autopurge *) input signed [17:0] B, - (* techmap_autopurge *) input [17:0] BCIN, - (* techmap_autopurge *) input [47:0] C, - (* techmap_autopurge *) input CARRYCASCIN, - (* techmap_autopurge *) input CARRYIN, - (* techmap_autopurge *) input [2:0] CARRYINSEL, - (* techmap_autopurge *) input CEA1, - (* techmap_autopurge *) input CEA2, - (* techmap_autopurge *) input CEAD, - (* techmap_autopurge *) input CEALUMODE, - (* techmap_autopurge *) input CEB1, - (* techmap_autopurge *) input CEB2, - (* techmap_autopurge *) input CEC, - (* techmap_autopurge *) input CECARRYIN, - (* techmap_autopurge *) input CECTRL, - (* techmap_autopurge *) input CED, - (* techmap_autopurge *) input CEINMODE, - (* techmap_autopurge *) input CEM, - (* techmap_autopurge *) input CEP, - (* techmap_autopurge *) input CLK, - (* techmap_autopurge *) input [24:0] D, - (* techmap_autopurge *) input [4:0] INMODE, - (* techmap_autopurge *) input MULTSIGNIN, - (* techmap_autopurge *) input [6:0] OPMODE, - (* techmap_autopurge *) input [47:0] PCIN, - (* techmap_autopurge *) input RSTA, - (* techmap_autopurge *) input RSTALLCARRYIN, - (* techmap_autopurge *) input RSTALUMODE, - (* techmap_autopurge *) input RSTB, - (* techmap_autopurge *) input RSTC, - (* techmap_autopurge *) input RSTCTRL, - (* techmap_autopurge *) input RSTD, - (* techmap_autopurge *) input RSTINMODE, - (* techmap_autopurge *) input RSTM, - (* techmap_autopurge *) input RSTP -); - parameter integer ACASCREG = 1; - parameter integer ADREG = 1; - parameter integer ALUMODEREG = 1; - parameter integer AREG = 1; - parameter AUTORESET_PATDET = "NO_RESET"; - parameter A_INPUT = "DIRECT"; - parameter integer BCASCREG = 1; - parameter integer BREG = 1; - parameter B_INPUT = "DIRECT"; - parameter integer CARRYINREG = 1; - parameter integer CARRYINSELREG = 1; - parameter integer CREG = 1; - parameter integer DREG = 1; - parameter integer INMODEREG = 1; - parameter integer MREG = 1; - parameter integer OPMODEREG = 1; - parameter integer PREG = 1; - parameter SEL_MASK = "MASK"; - parameter SEL_PATTERN = "PATTERN"; - parameter USE_DPORT = "FALSE"; - parameter USE_MULT = "MULTIPLY"; - parameter USE_PATTERN_DETECT = "NO_PATDET"; - parameter USE_SIMD = "ONE48"; - parameter [47:0] MASK = 48'h3FFFFFFFFFFF; - parameter [47:0] PATTERN = 48'h000000000000; - parameter [3:0] IS_ALUMODE_INVERTED = 4'b0; - parameter [0:0] IS_CARRYIN_INVERTED = 1'b0; - parameter [0:0] IS_CLK_INVERTED = 1'b0; - parameter [4:0] IS_INMODE_INVERTED = 5'b0; - parameter [6:0] IS_OPMODE_INVERTED = 7'b0; - - wire [47:0] $P, $PCOUT; - - DSP48E1 #( - .ACASCREG(ACASCREG), - .ADREG(ADREG), - .ALUMODEREG(ALUMODEREG), - .AREG(AREG), - .AUTORESET_PATDET(AUTORESET_PATDET), - .A_INPUT(A_INPUT), - .BCASCREG(BCASCREG), - .BREG(BREG), - .B_INPUT(B_INPUT), - .CARRYINREG(CARRYINREG), - .CARRYINSELREG(CARRYINSELREG), - .CREG(CREG), - .DREG(DREG), - .INMODEREG(INMODEREG), - .MREG(MREG), - .OPMODEREG(OPMODEREG), - .PREG(PREG), - .SEL_MASK(SEL_MASK), - .SEL_PATTERN(SEL_PATTERN), - .USE_DPORT(USE_DPORT), - .USE_MULT(USE_MULT), - .USE_PATTERN_DETECT(USE_PATTERN_DETECT), - .USE_SIMD(USE_SIMD), - .MASK(MASK), - .PATTERN(PATTERN), - .IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED), - .IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED), - .IS_CLK_INVERTED(IS_CLK_INVERTED), - .IS_INMODE_INVERTED(IS_INMODE_INVERTED), - .IS_OPMODE_INVERTED(IS_OPMODE_INVERTED) - ) _TECHMAP_REPLACE_ ( - .ACOUT(ACOUT), - .BCOUT(BCOUT), - .CARRYCASCOUT(CARRYCASCOUT), - .CARRYOUT(CARRYOUT), - .MULTSIGNOUT(MULTSIGNOUT), - .OVERFLOW(OVERFLOW), - .P($P), - .PATTERNBDETECT(PATTERNBDETECT), - .PATTERNDETECT(PATTERNDETECT), - .PCOUT($PCOUT), - .UNDERFLOW(UNDERFLOW), - .A(A), - .ACIN(ACIN), - .ALUMODE(ALUMODE), - .B(B), - .BCIN(BCIN), - .C(C), - .CARRYCASCIN(CARRYCASCIN), - .CARRYIN(CARRYIN), - .CARRYINSEL(CARRYINSEL), - .CEA1(CEA1), - .CEA2(CEA2), - .CEAD(CEAD), - .CEALUMODE(CEALUMODE), - .CEB1(CEB1), - .CEB2(CEB2), - .CEC(CEC), - .CECARRYIN(CECARRYIN), - .CECTRL(CECTRL), - .CED(CED), - .CEINMODE(CEINMODE), - .CEM(CEM), - .CEP(CEP), - .CLK(CLK), - .D(D), - .INMODE(INMODE), - .MULTSIGNIN(MULTSIGNIN), - .OPMODE(OPMODE), - .PCIN(PCIN), - .RSTA(RSTA), - .RSTALLCARRYIN(RSTALLCARRYIN), - .RSTALUMODE(RSTALUMODE), - .RSTB(RSTB), - .RSTC(RSTC), - .RSTCTRL(RSTCTRL), - .RSTD(RSTD), - .RSTINMODE(RSTINMODE), - .RSTM(RSTM), - .RSTP(RSTP) - ); - $__ABC9_DSP48E1 #( - .ADREG(ADREG), - .AREG(AREG), - .BREG(BREG), - .CREG(CREG), - .DREG(DREG), - .MREG(MREG), - .PREG(PREG), - .USE_DPORT(USE_DPORT), - .USE_MULT(USE_MULT) - ) dsp_comb ( - .$A(A), .$B(B), .$C(C), .$D(D), .$P($P), .$PCIN(PCIN), .$PCOUT($PCOUT), .P(P), .PCOUT(PCOUT)); -endmodule |