diff options
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r-- | techlibs/xilinx/abc9_map.v | 562 |
1 files changed, 502 insertions, 60 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v index 7b9427b2f..2cabe57d7 100644 --- a/techlibs/xilinx/abc9_map.v +++ b/techlibs/xilinx/abc9_map.v @@ -18,7 +18,449 @@ * */ -// ============================================================================ +// The following techmapping rules are intended to be run (with -max_iter 1) +// before invoking the `abc9` pass in order to transform the design into +// a format that it understands. +// +// For example, (complex) flip-flops are expected to be described as an +// combinatorial box (containing all control logic such as clock enable +// or synchronous resets) followed by a basic D-Q flop. +// Yosys will automatically analyse the simulation model (described in +// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in +// order to extract the combinatorial control logic left behind. +// Specifically, a simulation model similar to the one below: +// +// ++===================================++ +// || Sim model || +// || /\/\/\/\ || +// D -->>-----< > +------+ || +// R -->>-----< Comb. > |$_DFF_| || +// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q +// || +--< > +------+ | || +// || | \/\/\/\/ | || +// || | | || +// || +----------------------------+ || +// || || +// ++===================================++ +// +// is transformed into: +// +// ++==================++ +// || Comb box || +// || || +// || /\/\/\/\ || +// D -->>-----< > || +// R -->>-----< Comb. > || +----------+ +// CE -->>-----< logic >--->>-- $Q --|$__ABC_FF_|--+-->> Q +// $abc9_currQ +-->>-----< > || +----------+ | +// | || \/\/\/\/ || | +// | || || | +// | ++==================++ | +// | | +// +----------------------------------------------+ +// +// The purpose of the following FD* rules are to wrap the flop with: +// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9 +// the connectivity of its basic D-Q flop +// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to +// capture asynchronous behaviour +// (c) a special _TECHMAP_REPLACE_.$abc9_clock wire to capture its clock +// domain and polarity (used when partitioning the module so that `abc9' only +// performs sequential synthesis (with reachability analysis) correctly on +// one domain at a time) and also used to infer the optional delay target +// from the (* abc9_clock_period = %d *) attribute attached to any wire +// within +// (d) a special _TECHMAP_REPLACE_.$abc9_init wire to encode the flop's initial +// state +// (e) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback +// into the (combinatorial) FD* cell to facilitate clock-enable behaviour +// +// In order to perform sequential synthesis, `abc9' also requires that +// the initial value of all flops be zero. + +module FDRE (output Q, input C, CE, D, R); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_R_INVERTED = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDSE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_S_INVERTED(IS_R_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) + ); + end + else begin + assign Q = QQ; + FDRE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_R_INVERTED(IS_R_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .R(R) + ); + end + endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ; +`else + (* abc9_keep *) + FDRE #( + .INIT(INIT), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_R_INVERTED(IS_R_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .R(R) + ); +`endif +endmodule +module FDRE_1 (output Q, input C, CE, D, R); + parameter [0:0] INIT = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDSE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .S(R) + ); + end + else begin + assign Q = QQ; + FDRE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .R(R) + ); + end + endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ; +`else + (* abc9_keep *) + FDRE_1 #( + .INIT(INIT) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .R(R) + ); +`endif +endmodule + +module FDCE (output Q, input C, CE, D, CLR); + parameter [0:0] INIT = 1'b0; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_CLR_INVERTED = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q, $abc9_currQ; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDPE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_PRE_INVERTED(IS_CLR_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC1 below + ); + // Since this is an async flop, async behaviour is dealt with here + $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); + end + else begin + assign Q = QQ; + FDCE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_CLR_INVERTED(IS_CLR_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC0 below + ); + // Since this is an async flop, async behaviour is dealt with here + $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ)); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ; +`else + (* abc9_keep *) + FDCE #( + .INIT(INIT), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_CLR_INVERTED(IS_CLR_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) + ); +`endif +endmodule +module FDCE_1 (output Q, input C, CE, D, CLR); + parameter [0:0] INIT = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q, $abc9_currQ; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDPE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC1 below + ); + $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ)); + end + else begin + assign Q = QQ; + FDCE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC0 below + ); + $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ)); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ; +`else + (* abc9_keep *) + FDCE_1 #( + .INIT(INIT) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) + ); +`endif +endmodule + +module FDPE (output Q, input C, CE, D, PRE); + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_PRE_INVERTED = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q, $abc9_currQ; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDCE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_CLR_INVERTED(IS_PRE_INVERTED), + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC0 below + ); + $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); + end + else begin + assign Q = QQ; + FDPE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_PRE_INVERTED(IS_PRE_INVERTED), + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC1 below + ); + $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ)); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ; +`else + (* abc9_keep *) + FDPE #( + .INIT(INIT), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_PRE_INVERTED(IS_PRE_INVERTED), + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) + ); +`endif +endmodule +module FDPE_1 (output Q, input C, CE, D, PRE); + parameter [0:0] INIT = 1'b1; +`ifdef DFF_MODE + wire QQ, $Q, $abc9_currQ; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDCE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC0 below + ); + $__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ)); + end + else begin + assign Q = QQ; + FDPE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE) + // ^^^ Note that async + // control is not directly + // supported by abc9 but its + // behaviour is captured by + // $__ABC9_ASYNC1 below + ); + $__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ)); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q($abc9_currQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ; +`else + (* abc9_keep *) + FDPE_1 #( + .INIT(INIT) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) + ); +`endif +endmodule + +module FDSE (output Q, input C, CE, D, S); + parameter [0:0] INIT = 1'b1; + parameter [0:0] IS_C_INVERTED = 1'b0; + parameter [0:0] IS_D_INVERTED = 1'b0; + parameter [0:0] IS_S_INVERTED = 1'b0; +`ifdef DFF_MODE + wire QQ, $Q; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDRE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_R_INVERTED(IS_S_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) + ); + end + else begin + assign Q = QQ; + FDSE #( + .INIT(1'b0), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_S_INVERTED(IS_S_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .S(S) + ); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ; +`else + (* abc9_keep *) + FDSE #( + .INIT(INIT), + .IS_C_INVERTED(IS_C_INVERTED), + .IS_D_INVERTED(IS_D_INVERTED), + .IS_S_INVERTED(IS_S_INVERTED) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .S(S) + ); +`endif +endmodule +module FDSE_1 (output Q, input C, CE, D, S); + parameter [0:0] INIT = 1'b1; +`ifdef DFF_MODE + wire QQ, $Q; + generate if (INIT == 1'b1) begin + assign Q = ~QQ; + FDRE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(~D), .Q($Q), .C(C), .CE(CE), .R(S) + ); + end + else begin + assign Q = QQ; + FDSE_1 #( + .INIT(1'b0) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q($Q), .C(C), .CE(CE), .S(S) + ); + end endgenerate + $__ABC9_FF_ abc_dff (.D($Q), .Q(QQ)); + + // Special signals + wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; + wire [0:0] _TECHMAP_REPLACE_.$abc9_init = 1'b0; + wire [0:0] _TECHMAP_REPLACE_.$abc9_currQ = QQ; +`else + (* abc9_keep *) + FDSE_1 #( + .INIT(INIT) + ) _TECHMAP_REPLACE_ ( + .D(D), .Q(Q), .C(C), .CE(CE), .S(S) + ); +`endif +endmodule module RAM32X1D ( output DPO, SPO, @@ -30,17 +472,17 @@ module RAM32X1D ( ); parameter INIT = 32'h0; parameter IS_WCLK_INVERTED = 1'b0; - wire \$DPO , \$SPO ; + wire $DPO, $SPO; RAM32X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .DPO(\$DPO ), .SPO(\$SPO ), + .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4) ); - \$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO)); - \$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); + $__ABC9_LUT6 spo (.A($SPO), .S({1'b1, A4, A3, A2, A1, A0}), .Y(SPO)); + $__ABC9_LUT6 dpo (.A($DPO), .S({1'b1, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); endmodule module RAM64X1D ( @@ -53,17 +495,17 @@ module RAM64X1D ( ); parameter INIT = 64'h0; parameter IS_WCLK_INVERTED = 1'b0; - wire \$DPO , \$SPO ; + wire $DPO, $SPO; RAM64X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .DPO(\$DPO ), .SPO(\$SPO ), + .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5), .DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5) ); - \$__ABC9_LUT6 spo (.A(\$SPO ), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO)); - \$__ABC9_LUT6 dpo (.A(\$DPO ), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); + $__ABC9_LUT6 spo (.A($SPO), .S({A5, A4, A3, A2, A1, A0}), .Y(SPO)); + $__ABC9_LUT6 dpo (.A($DPO), .S({DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}), .Y(DPO)); endmodule module RAM128X1D ( @@ -75,17 +517,17 @@ module RAM128X1D ( ); parameter INIT = 128'h0; parameter IS_WCLK_INVERTED = 1'b0; - wire \$DPO , \$SPO ; + wire $DPO, $SPO; RAM128X1D #( .INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .DPO(\$DPO ), .SPO(\$SPO ), + .DPO($DPO), .SPO($SPO), .D(D), .WCLK(WCLK), .WE(WE), .A(A), .DPRA(DPRA) ); - \$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO)); - \$__ABC9_LUT7 dpo (.A(\$DPO ), .S(DPRA), .Y(DPO)); + $__ABC9_LUT7 spo (.A($SPO), .S(A), .Y(SPO)); + $__ABC9_LUT7 dpo (.A($DPO), .S(DPRA), .Y(DPO)); endmodule module RAM32M ( @@ -109,24 +551,24 @@ module RAM32M ( parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; - wire [1:0] \$DOA , \$DOB , \$DOC , \$DOD ; + wire [1:0] $DOA, $DOB, $DOC, $DOD; RAM32M #( .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ), + .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), .WCLK(WCLK), .WE(WE), .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) ); - \$__ABC9_LUT6 doa0 (.A(\$DOA [0]), .S({1'b1, ADDRA}), .Y(DOA[0])); - \$__ABC9_LUT6 doa1 (.A(\$DOA [1]), .S({1'b1, ADDRA}), .Y(DOA[1])); - \$__ABC9_LUT6 dob0 (.A(\$DOB [0]), .S({1'b1, ADDRB}), .Y(DOB[0])); - \$__ABC9_LUT6 dob1 (.A(\$DOB [1]), .S({1'b1, ADDRB}), .Y(DOB[1])); - \$__ABC9_LUT6 doc0 (.A(\$DOC [0]), .S({1'b1, ADDRC}), .Y(DOC[0])); - \$__ABC9_LUT6 doc1 (.A(\$DOC [1]), .S({1'b1, ADDRC}), .Y(DOC[1])); - \$__ABC9_LUT6 dod0 (.A(\$DOD [0]), .S({1'b1, ADDRD}), .Y(DOD[0])); - \$__ABC9_LUT6 dod1 (.A(\$DOD [1]), .S({1'b1, ADDRD}), .Y(DOD[1])); + $__ABC9_LUT6 doa0 (.A($DOA[0]), .S({1'b1, ADDRA}), .Y(DOA[0])); + $__ABC9_LUT6 doa1 (.A($DOA[1]), .S({1'b1, ADDRA}), .Y(DOA[1])); + $__ABC9_LUT6 dob0 (.A($DOB[0]), .S({1'b1, ADDRB}), .Y(DOB[0])); + $__ABC9_LUT6 dob1 (.A($DOB[1]), .S({1'b1, ADDRB}), .Y(DOB[1])); + $__ABC9_LUT6 doc0 (.A($DOC[0]), .S({1'b1, ADDRC}), .Y(DOC[0])); + $__ABC9_LUT6 doc1 (.A($DOC[1]), .S({1'b1, ADDRC}), .Y(DOC[1])); + $__ABC9_LUT6 dod0 (.A($DOD[0]), .S({1'b1, ADDRD}), .Y(DOD[0])); + $__ABC9_LUT6 dod1 (.A($DOD[1]), .S({1'b1, ADDRD}), .Y(DOD[1])); endmodule module RAM64M ( @@ -150,20 +592,20 @@ module RAM64M ( parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; - wire \$DOA , \$DOB , \$DOC , \$DOD ; + wire $DOA, $DOB, $DOC, $DOD; RAM64M #( .INIT_A(INIT_A), .INIT_B(INIT_B), .INIT_C(INIT_C), .INIT_D(INIT_D), .IS_WCLK_INVERTED(IS_WCLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .DOA(\$DOA ), .DOB(\$DOB ), .DOC(\$DOC ), .DOD(\$DOD ), + .DOA($DOA), .DOB($DOB), .DOC($DOC), .DOD($DOD), .WCLK(WCLK), .WE(WE), .ADDRA(ADDRA), .ADDRB(ADDRB), .ADDRC(ADDRC), .ADDRD(ADDRD), .DIA(DIA), .DIB(DIB), .DIC(DIC), .DID(DID) ); - \$__ABC9_LUT6 doa (.A(\$DOA ), .S(ADDRA), .Y(DOA)); - \$__ABC9_LUT6 dob (.A(\$DOB ), .S(ADDRB), .Y(DOB)); - \$__ABC9_LUT6 doc (.A(\$DOC ), .S(ADDRC), .Y(DOC)); - \$__ABC9_LUT6 dod (.A(\$DOD ), .S(ADDRD), .Y(DOD)); + $__ABC9_LUT6 doa (.A($DOA), .S(ADDRA), .Y(DOA)); + $__ABC9_LUT6 dob (.A($DOB), .S(ADDRB), .Y(DOB)); + $__ABC9_LUT6 doc (.A($DOC), .S(ADDRC), .Y(DOC)); + $__ABC9_LUT6 dod (.A($DOD), .S(ADDRD), .Y(DOD)); endmodule module SRL16E ( @@ -172,14 +614,14 @@ module SRL16E ( ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; - wire \$Q ; + wire $Q; SRL16E #( .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .Q(\$Q ), + .Q($Q), .A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D) ); - \$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); + $__ABC9_LUT6 q (.A($Q), .S({1'b1, A3, A2, A1, A0, 1'b1}), .Y(Q)); endmodule module SRLC32E ( @@ -190,14 +632,14 @@ module SRLC32E ( ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_CLK_INVERTED = 1'b0; - wire \$Q ; + wire $Q; SRLC32E #( .INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED) ) _TECHMAP_REPLACE_ ( - .Q(\$Q ), .Q31(Q31), + .Q($Q), .Q31(Q31), .A(A), .CE(CE), .CLK(CLK), .D(D) ); - \$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q)); + $__ABC9_LUT6 q (.A($Q), .S({1'b1, A}), .Y(Q)); endmodule module DSP48E1 ( @@ -386,15 +828,15 @@ __CELL__ #( if (AREG == 0 && MREG == 0 && PREG == 0) assign iA = A, pA = 1'bx; else - \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); + $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); if (BREG == 0 && MREG == 0 && PREG == 0) assign iB = B, pB = 1'bx; else - \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); + $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); if (CREG == 0 && PREG == 0) assign iC = C, pC = 1'bx; else - \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); + $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); if (DREG == 0) assign iD = D; else if (techmap_guard) @@ -405,27 +847,27 @@ __CELL__ #( assign pAD = 1'bx; if (PREG == 0) begin if (MREG == 1) - \$__ABC9_REG rM (.Q(pM)); + $__ABC9_REG rM (.Q(pM)); else assign pM = 1'bx; assign pP = 1'bx; end else begin assign pM = 1'bx; - \$__ABC9_REG rP (.Q(pP)); + $__ABC9_REG rP (.Q(pP)); end if (MREG == 0 && PREG == 0) assign mP = oP, mPCOUT = oPCOUT; else assign mP = 1'bx, mPCOUT = 1'bx; - \$__ABC9_DSP48E1_MULT_P_MUX muxP ( + $__ABC9_DSP48E1_MULT_P_MUX muxP ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P) ); - \$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT ( + $__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT) ); - `DSP48E1_INST(\$__ABC9_DSP48E1_MULT ) + `DSP48E1_INST($__ABC9_DSP48E1_MULT ) end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin // Disconnect the A-input if MREG is enabled, since @@ -433,26 +875,26 @@ __CELL__ #( if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0) assign iA = A, pA = 1'bx; else - \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); + $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); if (BREG == 0 && MREG == 0 && PREG == 0) assign iB = B, pB = 1'bx; else - \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); + $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); if (CREG == 0 && PREG == 0) assign iC = C, pC = 1'bx; else - \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); + $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); if (DREG == 0 && ADREG == 0) assign iD = D, pD = 1'bx; else - \$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD)); + $__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD)); if (PREG == 0) begin if (MREG == 1) begin assign pAD = 1'bx; - \$__ABC9_REG rM (.Q(pM)); + $__ABC9_REG rM (.Q(pM)); end else begin if (ADREG == 1) - \$__ABC9_REG rAD (.Q(pAD)); + $__ABC9_REG rAD (.Q(pAD)); else assign pAD = 1'bx; assign pM = 1'bx; @@ -460,21 +902,21 @@ __CELL__ #( assign pP = 1'bx; end else begin assign pAD = 1'bx, pM = 1'bx; - \$__ABC9_REG rP (.Q(pP)); + $__ABC9_REG rP (.Q(pP)); end if (MREG == 0 && PREG == 0) assign mP = oP, mPCOUT = oPCOUT; else assign mP = 1'bx, mPCOUT = 1'bx; - \$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP ( + $__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P) ); - \$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT ( + $__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT) ); - `DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT ) + `DSP48E1_INST($__ABC9_DSP48E1_MULT_DPORT ) end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin // Disconnect the A-input if MREG is enabled, since @@ -482,15 +924,15 @@ __CELL__ #( if (AREG == 0 && PREG == 0) assign iA = A, pA = 1'bx; else - \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); + $__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA)); if (BREG == 0 && PREG == 0) assign iB = B, pB = 1'bx; else - \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); + $__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB)); if (CREG == 0 && PREG == 0) assign iC = C, pC = 1'bx; else - \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); + $__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC)); if (DREG == 1 && techmap_guard) $error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\""); assign pD = 1'bx; @@ -501,7 +943,7 @@ __CELL__ #( $error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\""); assign pM = 1'bx; if (PREG == 1) - \$__ABC9_REG rP (.Q(pP)); + $__ABC9_REG rP (.Q(pP)); else assign pP = 1'bx; @@ -509,14 +951,14 @@ __CELL__ #( assign mP = oP, mPCOUT = oPCOUT; else assign mP = 1'bx, mPCOUT = 1'bx; - \$__ABC9_DSP48E1_P_MUX muxP ( + $__ABC9_DSP48E1_P_MUX muxP ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P) ); - \$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT ( + $__ABC9_DSP48E1_PCOUT_MUX muxPCOUT ( .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT) ); - `DSP48E1_INST(\$__ABC9_DSP48E1 ) + `DSP48E1_INST($__ABC9_DSP48E1 ) end else $error("Invalid DSP48E1 configuration"); |