aboutsummaryrefslogtreecommitdiffstats
path: root/techlibs/xilinx/abc9_map.v
diff options
context:
space:
mode:
Diffstat (limited to 'techlibs/xilinx/abc9_map.v')
-rw-r--r--techlibs/xilinx/abc9_map.v354
1 files changed, 0 insertions, 354 deletions
diff --git a/techlibs/xilinx/abc9_map.v b/techlibs/xilinx/abc9_map.v
index 81f8a1d42..1d733a650 100644
--- a/techlibs/xilinx/abc9_map.v
+++ b/techlibs/xilinx/abc9_map.v
@@ -22,360 +22,6 @@
// before invoking the `abc9` pass in order to transform the design into
// a format that it understands.
-`ifdef DFF_MODE
-// For example, (complex) flip-flops are expected to be described as an
-// combinatorial box (containing all control logic such as clock enable
-// or synchronous resets) followed by a basic D-Q flop.
-// Yosys will automatically analyse the simulation model (described in
-// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
-// order to extract the combinatorial control logic left behind.
-// Specifically, a simulation model similar to the one below:
-//
-// ++===================================++
-// || Sim model ||
-// || /\/\/\/\ ||
-// D -->>-----< > +------+ ||
-// R -->>-----< Comb. > |$_DFF_| ||
-// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
-// || +--< > +------+ | ||
-// || | \/\/\/\/ | ||
-// || | | ||
-// || +----------------------------+ ||
-// || ||
-// ++===================================++
-//
-// is transformed into:
-//
-// ++==================++
-// || Comb box ||
-// || ||
-// || /\/\/\/\ ||
-// D -->>-----< > ||
-// R -->>-----< Comb. > || +-----------+
-// CE -->>-----< logic >--->>-- $Q --|$__ABC9_FF_|--+-->> Q
-// abc9_ff.Q +-->>-----< > || +-----------+ |
-// | || \/\/\/\/ || |
-// | || || |
-// | ++==================++ |
-// | |
-// +-----------------------------------------------+
-//
-// The purpose of the following FD* rules are to wrap the flop with:
-// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
-// the connectivity of its basic D-Q flop
-// (b) an optional $__ABC9_ASYNC_ cell in front of $__ABC_FF_'s output to
-// capture asynchronous behaviour
-// (c) a special abc9_ff.clock wire to capture its clock domain and polarity
-// (indicated to `abc9' so that it only performs sequential synthesis
-// (with reachability analysis) correctly on one domain at a time)
-// (d) an (* abc9_init *) attribute on the $__ABC9_FF_ cell capturing its
-// initial state
-// NOTE: in order to perform sequential synthesis, `abc9' requires that
-// the initial value of all flops be zero
-// (e) a special _TECHMAP_REPLACE_.abc9_ff.Q wire that will be used for feedback
-// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
-
-module FDRE (output Q, (* techmap_autopurge *) input C, CE, D, R);
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_R_INVERTED = 1'b0;
- wire QQ, $Q;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDSE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_S_INVERTED(IS_R_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
- );
- end
- else begin
- assign Q = QQ;
- FDRE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_R_INVERTED(IS_R_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
- );
- end
- endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
-endmodule
-module FDRE_1 (output Q, (* techmap_autopurge *) input C, CE, D, R);
- parameter [0:0] INIT = 1'b0;
- wire QQ, $Q;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDSE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .S(R)
- );
- end
- else begin
- assign Q = QQ;
- FDRE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .R(R)
- );
- end
- endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
-endmodule
-
-module FDSE (output Q, (* techmap_autopurge *) input C, CE, D, S);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_S_INVERTED = 1'b0;
- wire QQ, $Q;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDRE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_R_INVERTED(IS_S_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
- );
- end
- else begin
- assign Q = QQ;
- FDSE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_S_INVERTED(IS_S_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
- );
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
-endmodule
-module FDSE_1 (output Q, (* techmap_autopurge *) input C, CE, D, S);
- parameter [0:0] INIT = 1'b1;
- wire QQ, $Q;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDRE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .R(S)
- );
- end
- else begin
- assign Q = QQ;
- FDSE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .S(S)
- );
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q(QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = QQ;
-endmodule
-
-module FDCE (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
- parameter [0:0] INIT = 1'b0;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_CLR_INVERTED = 1'b0;
- wire QQ, $Q, $QQ;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDPE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_PRE_INVERTED(IS_CLR_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC1 below
- );
- // Since this is an async flop, async behaviour is dealt with here
- $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
- end
- else begin
- assign Q = QQ;
- FDCE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_CLR_INVERTED(IS_CLR_INVERTED)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC0 below
- );
- // Since this is an async flop, async behaviour is dealt with here
- $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
-endmodule
-module FDCE_1 (output Q, (* techmap_autopurge *) input C, CE, D, CLR);
- parameter [0:0] INIT = 1'b0;
- wire QQ, $Q, $QQ;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDPE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .PRE(CLR)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC1 below
- );
- $__ABC9_ASYNC1 abc_async (.A($QQ), .S(CLR), .Y(QQ));
- end
- else begin
- assign Q = QQ;
- FDCE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .CLR(CLR)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC0 below
- );
- $__ABC9_ASYNC0 abc_async (.A($QQ), .S(CLR), .Y(QQ));
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
-endmodule
-
-module FDPE (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
- parameter [0:0] INIT = 1'b1;
- parameter [0:0] IS_C_INVERTED = 1'b0;
- parameter [0:0] IS_D_INVERTED = 1'b0;
- parameter [0:0] IS_PRE_INVERTED = 1'b0;
- wire QQ, $Q, $QQ;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDCE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_CLR_INVERTED(IS_PRE_INVERTED),
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC0 below
- );
- $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
- end
- else begin
- assign Q = QQ;
- FDPE #(
- .INIT(1'b0),
- .IS_C_INVERTED(IS_C_INVERTED),
- .IS_D_INVERTED(IS_D_INVERTED),
- .IS_PRE_INVERTED(IS_PRE_INVERTED),
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC1 below
- );
- $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, IS_C_INVERTED};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
-endmodule
-module FDPE_1 (output Q, (* techmap_autopurge *) input C, CE, D, PRE);
- parameter [0:0] INIT = 1'b1;
- wire QQ, $Q, $QQ;
- generate if (INIT == 1'b1) begin
- assign Q = ~QQ;
- FDCE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(~D), .Q($Q), .C(C), .CE(CE), .CLR(PRE)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC0 below
- );
- $__ABC9_ASYNC0 abc_async (.A($QQ), .S(PRE), .Y(QQ));
- end
- else begin
- assign Q = QQ;
- FDPE_1 #(
- .INIT(1'b0)
- ) _TECHMAP_REPLACE_ (
- .D(D), .Q($Q), .C(C), .CE(CE), .PRE(PRE)
- // ^^^ Note that async
- // control is not directly
- // supported by abc9 but its
- // behaviour is captured by
- // $__ABC9_ASYNC1 below
- );
- $__ABC9_ASYNC1 abc_async (.A($QQ), .S(PRE), .Y(QQ));
- end endgenerate
- (* abc9_init = 1'b0 *)
- $__ABC9_FF_ abc9_ff (.D($Q), .Q($QQ));
-
- // Special signals
- wire [1:0] abc9_ff.clock = {C, 1'b1 /* IS_C_INVERTED */};
- wire [0:0] _TECHMAP_REPLACE_.abc9_ff.Q = $QQ;
-endmodule
-`endif
-
// Attach a (combinatorial) black-box onto the output
// of thes LUTRAM primitives to capture their
// asynchronous read behaviour