From 7c5dba8b77571aa6a2c0c38eeed7963b401d1cbd Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Marcelina=20Ko=C5=9Bcielnicka?= <mwk@0x04.net>
Date: Sun, 6 Feb 2022 10:10:21 +0100
Subject: Add memory_libmap pass.

---
 passes/memory/memory_libmap.cc | 2093 ++++++++++++++++++++++++++++++++++++++++
 1 file changed, 2093 insertions(+)
 create mode 100644 passes/memory/memory_libmap.cc

(limited to 'passes/memory/memory_libmap.cc')

diff --git a/passes/memory/memory_libmap.cc b/passes/memory/memory_libmap.cc
new file mode 100644
index 000000000..ab7bb7bb2
--- /dev/null
+++ b/passes/memory/memory_libmap.cc
@@ -0,0 +1,2093 @@
+/*
+ *  yosys -- Yosys Open SYnthesis Suite
+ *
+ *  Copyright (C) 2021  Marcelina Kościelnicka <mwk@0x04.net>
+ *
+ *  Permission to use, copy, modify, and/or distribute this software for any
+ *  purpose with or without fee is hereby granted, provided that the above
+ *  copyright notice and this permission notice appear in all copies.
+ *
+ *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#include "memlib.h"
+
+#include <ctype.h>
+
+#include "kernel/yosys.h"
+#include "kernel/sigtools.h"
+#include "kernel/mem.h"
+#include "kernel/qcsat.h"
+
+USING_YOSYS_NAMESPACE
+PRIVATE_NAMESPACE_BEGIN
+
+using namespace MemLibrary;
+
+#define FACTOR_MUX 0.5
+#define FACTOR_DEMUX 0.5
+#define FACTOR_EMU 2
+
+struct PassOptions {
+	bool no_auto_distributed;
+	bool no_auto_block;
+	bool no_auto_huge;
+	double logic_cost_rom;
+	double logic_cost_ram;
+};
+
+struct WrPortConfig {
+	// Index of the read port this port is merged with, or -1 if none.
+	int rd_port;
+	// Index of the PortGroup in the Ram.
+	int port_group;
+	int port_variant;
+	const PortVariant *def;
+	// Emulate priority logic for this list of (source) write port indices.
+	std::vector<int> emu_prio;
+	// If true, this port needs to end up with uniform byte enables to work correctly.
+	bool force_uniform;
+
+	WrPortConfig() : rd_port(-1), force_uniform(false) {}
+};
+
+struct RdPortConfig {
+	// Index of the write port this port is merged with, or -1 if none.
+	int wr_port;
+	// Index of the PortGroup in the Ram.
+	int port_group;
+	int port_variant;
+	const PortVariant *def;
+	// If true, this is a sync port mapped into async mem, make an output
+	// register.  Mutually exclusive with the following options.
+	bool emu_sync;
+	// Emulate the EN / ARST / SRST / init value circuitry.
+	bool emu_en;
+	bool emu_arst;
+	bool emu_srst;
+	bool emu_init;
+	// Emulate EN-SRST priority.
+	bool emu_srst_en_prio;
+	// If true, use clk_en as rd_en.
+	bool rd_en_to_clk_en;
+	// Emulate transparency logic for this list of (source) write port indices.
+	std::vector<int> emu_trans;
+
+	RdPortConfig() : wr_port(-1), emu_sync(false), emu_en(false), emu_arst(false), emu_srst(false), emu_init(false), emu_srst_en_prio(false), rd_en_to_clk_en(false) {}
+};
+
+// The named clock and clock polarity assignments.
+struct SharedClockConfig {
+	bool used;
+	SigBit clk;
+	// For anyedge clocks.
+	bool polarity;
+	// For non-anyedge clocks.
+	bool invert;
+};
+
+struct MemConfig {
+	// Reference to the library ram definition
+	const Ram *def;
+	// Port assignments, indexed by Mem port index.
+	std::vector<WrPortConfig> wr_ports;
+	std::vector<RdPortConfig> rd_ports;
+	std::vector<SharedClockConfig> shared_clocks;
+	// Emulate read-first write-read behavior using soft logic.
+	bool emu_read_first;
+	// This many low bits of (target) address are always-0 on all ports.
+	int base_width_log2;
+	int unit_width_log2;
+	std::vector<int> swizzle;
+	int hard_wide_mask;
+	int emu_wide_mask;
+	// How many times the base memory block will need to be duplicated to get more
+	// data bits.
+	int repl_d;
+	// How many times the whole memory array will need to be duplicated to cover
+	// all read ports required.
+	int repl_port;
+	// Emulation score — how much circuitry we need to add for priority / transparency /
+	// reset / initial value emulation.
+	int score_emu;
+	// Mux score — how much circuitry we need to add to manually decode whatever address
+	// bits are not decoded by the memory array itself, for reads.
+	int score_mux;
+	// Demux score — how much circuitry we need to add to manually decode whatever address
+	// bits are not decoded by the memory array itself, for writes.
+	int score_demux;
+	double cost;
+	MemConfig() : emu_read_first(false) {}
+};
+
+typedef std::vector<MemConfig> MemConfigs;
+
+struct MapWorker {
+	Module *module;
+	ModWalker modwalker;
+	SigMap sigmap;
+	SigMap sigmap_xmux;
+	FfInitVals initvals;
+
+	MapWorker(Module *module) : module(module), modwalker(module->design, module), sigmap(module), sigmap_xmux(module), initvals(&sigmap, module) {
+		for (auto cell : module->cells())
+		{
+			if (cell->type == ID($mux))
+			{
+				RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort(ID::A));
+				RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort(ID::B));
+
+				if (sig_a.is_fully_undef())
+					sigmap_xmux.add(cell->getPort(ID::Y), sig_b);
+				else if (sig_b.is_fully_undef())
+					sigmap_xmux.add(cell->getPort(ID::Y), sig_a);
+			}
+		}
+	}
+};
+
+struct SwizzleBit {
+	bool valid;
+	int mux_idx;
+	int addr;
+	int bit;
+};
+
+struct Swizzle {
+	int addr_shift;
+	int addr_start;
+	int addr_end;
+	std::vector<int> addr_mux_bits;
+	std::vector<std::vector<SwizzleBit>> bits;
+};
+
+struct MemMapping {
+	MapWorker &worker;
+	QuickConeSat qcsat;
+	Mem &mem;
+	const Library &lib;
+	const PassOptions &opts;
+	std::vector<MemConfig> cfgs;
+	bool logic_ok;
+	double logic_cost;
+	RamKind kind;
+	std::string style;
+	dict<int, int> wr_en_cache;
+	dict<std::pair<int, int>, bool> wr_implies_rd_cache;
+	dict<std::pair<int, int>, bool> wr_excludes_rd_cache;
+	dict<std::pair<int, int>, bool> wr_excludes_srst_cache;
+
+	MemMapping(MapWorker &worker, Mem &mem, const Library &lib, const PassOptions &opts) : worker(worker), qcsat(worker.modwalker), mem(mem), lib(lib), opts(opts) {
+		determine_style();
+		logic_ok = determine_logic_ok();
+		if (GetSize(mem.wr_ports) == 0)
+			logic_cost = mem.width * mem.size * opts.logic_cost_rom;
+		else
+			logic_cost = mem.width * mem.size * opts.logic_cost_ram;
+		if (kind == RamKind::Logic)
+			return;
+		for (int i = 0; i < GetSize(lib.rams); i++) {
+			auto &rdef = lib.rams[i];
+			if (!check_ram_kind(rdef))
+				continue;
+			if (!check_ram_style(rdef))
+				continue;
+			if (!check_init(rdef))
+				continue;
+			if (rdef.prune_rom && mem.wr_ports.empty())
+				continue;
+			MemConfig cfg;
+			cfg.def = &rdef;
+			for (auto &cdef: rdef.shared_clocks) {
+				(void)cdef;
+				SharedClockConfig clk;
+				clk.used = false;
+				cfg.shared_clocks.push_back(clk);
+			}
+			cfgs.push_back(cfg);
+		}
+		assign_wr_ports();
+		assign_rd_ports();
+		handle_trans();
+		// If we got this far, the memory is mappable.  The following two can require emulating
+		// some functionality, but cannot cause the mapping to fail.
+		handle_priority();
+		handle_rd_rst();
+		score_emu_ports();
+		// Now it is just a matter of picking geometry.
+		handle_geom();
+		dump_configs(0);
+		prune_post_geom();
+		dump_configs(1);
+	}
+
+	bool addr_compatible(int wpidx, int rpidx) {
+		auto &wport = mem.wr_ports[wpidx];
+		auto &rport = mem.rd_ports[rpidx];
+		int max_wide_log2 = std::max(rport.wide_log2, wport.wide_log2);
+		SigSpec raddr = rport.addr.extract_end(max_wide_log2);
+		SigSpec waddr = wport.addr.extract_end(max_wide_log2);
+		int abits = std::max(GetSize(raddr), GetSize(waddr));
+		raddr.extend_u0(abits);
+		waddr.extend_u0(abits);
+		return worker.sigmap_xmux(raddr) == worker.sigmap_xmux(waddr);
+	}
+
+	int get_wr_en(int wpidx) {
+		auto it = wr_en_cache.find(wpidx);
+		if (it != wr_en_cache.end())
+			return it->second;
+		int res = qcsat.ez->expression(qcsat.ez->OpOr, qcsat.importSig(mem.wr_ports[wpidx].en));
+		wr_en_cache.insert({wpidx, res});
+		return res;
+	}
+
+	bool get_wr_implies_rd(int wpidx, int rpidx) {
+		auto key = std::make_pair(wpidx, rpidx);
+		auto it = wr_implies_rd_cache.find(key);
+		if (it != wr_implies_rd_cache.end())
+			return it->second;
+		int wr_en = get_wr_en(wpidx);
+		int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
+		qcsat.prepare();
+		bool res = !qcsat.ez->solve(wr_en, qcsat.ez->NOT(rd_en));
+		wr_implies_rd_cache.insert({key, res});
+		return res;
+	}
+
+	bool get_wr_excludes_rd(int wpidx, int rpidx) {
+		auto key = std::make_pair(wpidx, rpidx);
+		auto it = wr_excludes_rd_cache.find(key);
+		if (it != wr_excludes_rd_cache.end())
+			return it->second;
+		int wr_en = get_wr_en(wpidx);
+		int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
+		qcsat.prepare();
+		bool res = !qcsat.ez->solve(wr_en, rd_en);
+		wr_excludes_rd_cache.insert({key, res});
+		return res;
+	}
+
+	bool get_wr_excludes_srst(int wpidx, int rpidx) {
+		auto key = std::make_pair(wpidx, rpidx);
+		auto it = wr_excludes_srst_cache.find(key);
+		if (it != wr_excludes_srst_cache.end())
+			return it->second;
+		int wr_en = get_wr_en(wpidx);
+		int srst = qcsat.importSigBit(mem.rd_ports[rpidx].srst);
+		if (mem.rd_ports[rpidx].ce_over_srst) {
+			int rd_en = qcsat.importSigBit(mem.rd_ports[rpidx].en[0]);
+			srst = qcsat.ez->AND(srst, rd_en);
+		}
+		qcsat.prepare();
+		bool res = !qcsat.ez->solve(wr_en, srst);
+		wr_excludes_srst_cache.insert({key, res});
+		return res;
+	}
+
+	void dump_configs(int stage);
+	void dump_config(MemConfig &cfg);
+	void determine_style();
+	bool determine_logic_ok();
+	bool check_ram_kind(const Ram &ram);
+	bool check_ram_style(const Ram &ram);
+	bool check_init(const Ram &ram);
+	void assign_wr_ports();
+	void assign_rd_ports();
+	void handle_trans();
+	void handle_priority();
+	void handle_rd_rst();
+	void score_emu_ports();
+	void handle_geom();
+	void prune_post_geom();
+	void emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle);
+	void emit(const MemConfig &cfg);
+};
+
+void MemMapping::dump_configs(int stage) {
+	const char *stage_name;
+	switch (stage) {
+		case 0:
+			stage_name = "post-geometry";
+			break;
+		case 1:
+			stage_name = "after post-geometry prune";
+			break;
+		default:
+			abort();
+	}
+	log_debug("Memory %s.%s mapping candidates (%s):\n", log_id(mem.module->name), log_id(mem.memid), stage_name);
+	if (logic_ok) {
+		log_debug("- logic fallback\n");
+		log_debug("  - cost: %f\n", logic_cost);
+	}
+	for (auto &cfg: cfgs) {
+		dump_config(cfg);
+	}
+}
+
+void MemMapping::dump_config(MemConfig &cfg) {
+	log_debug("- %s:\n", log_id(cfg.def->id));
+	for (auto &it: cfg.def->options)
+		log_debug("  - option %s %s\n", it.first.c_str(), log_const(it.second));
+	log_debug("  - emulation score: %d\n", cfg.score_emu);
+	log_debug("  - replicates (for ports): %d\n", cfg.repl_port);
+	log_debug("  - replicates (for data): %d\n", cfg.repl_d);
+	log_debug("  - mux score: %d\n", cfg.score_mux);
+	log_debug("  - demux score: %d\n", cfg.score_demux);
+	log_debug("  - cost: %f\n", cfg.cost);
+	std::stringstream os;
+	for (int x: cfg.def->dbits)
+		os << " " << x;
+	std::string dbits_s = os.str();
+	log_debug("  - abits %d dbits%s\n", cfg.def->abits, dbits_s.c_str());
+	if (cfg.def->byte != 0)
+		log_debug("  - byte width %d\n", cfg.def->byte);
+	log_debug("  - chosen base width %d\n", cfg.def->dbits[cfg.base_width_log2]);
+	os.str("");
+	for (int x: cfg.swizzle)
+		if (x == -1)
+			os << " -";
+		else
+			os << " " << x;
+	std::string swizzle_s = os.str();
+	log_debug("  - swizzle%s\n", swizzle_s.c_str());
+	os.str("");
+	for (int i = 0; (1 << i) <= cfg.hard_wide_mask; i++)
+		if (cfg.hard_wide_mask & 1 << i)
+			os << " " << i;
+	std::string wide_s = os.str();
+	if (cfg.hard_wide_mask)
+		log_debug("  - hard wide bits%s\n", wide_s.c_str());
+	if (cfg.emu_read_first)
+		log_debug("  - emulate read-first behavior\n");
+	for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+		auto &pcfg = cfg.wr_ports[i];
+		if (pcfg.rd_port == -1)
+			log_debug("  - write port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str());
+		else
+			log_debug("  - write port %d: port group %s (shared with read port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.rd_port);
+
+		for (auto &it: pcfg.def->options)
+			log_debug("    - option %s %s\n", it.first.c_str(), log_const(it.second));
+		if (cfg.def->width_mode == WidthMode::PerPort) {
+			std::stringstream os;
+			for (int i = pcfg.def->min_wr_wide_log2; i <= pcfg.def->max_wr_wide_log2; i++)
+				os << " " << cfg.def->dbits[i];
+			std::string widths_s = os.str();
+			const char *note = "";
+			if (pcfg.rd_port != -1)
+				note = pcfg.def->width_tied ? " (tied)" : " (independent)";
+			log_debug("    - widths%s%s\n", widths_s.c_str(), note);
+		}
+		for (auto i: pcfg.emu_prio)
+			log_debug("    - emulate priority over write port %d\n", i);
+	}
+	for (int i = 0; i < GetSize(mem.rd_ports); i++) {
+		auto &pcfg = cfg.rd_ports[i];
+		if (pcfg.wr_port == -1)
+			log_debug("  - read port %d: port group %s\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str());
+		else
+			log_debug("  - read port %d: port group %s (shared with write port %d)\n", i, cfg.def->port_groups[pcfg.port_group].names[0].c_str(), pcfg.wr_port);
+		for (auto &it: pcfg.def->options)
+			log_debug("    - option %s %s\n", it.first.c_str(), log_const(it.second));
+		if (cfg.def->width_mode == WidthMode::PerPort) {
+			std::stringstream os;
+			for (int i = pcfg.def->min_rd_wide_log2; i <= pcfg.def->max_rd_wide_log2; i++)
+				os << " " << cfg.def->dbits[i];
+			std::string widths_s = os.str();
+			const char *note = "";
+			if (pcfg.wr_port != -1)
+				note = pcfg.def->width_tied ? " (tied)" : " (independent)";
+			log_debug("    - widths%s%s\n", widths_s.c_str(), note);
+		}
+		if (pcfg.emu_sync)
+			log_debug("    - emulate data register\n");
+		if (pcfg.emu_en)
+			log_debug("    - emulate clock enable\n");
+		if (pcfg.emu_arst)
+			log_debug("    - emulate async reset\n");
+		if (pcfg.emu_srst)
+			log_debug("    - emulate sync reset\n");
+		if (pcfg.emu_init)
+			log_debug("    - emulate init value\n");
+		if (pcfg.emu_srst_en_prio)
+			log_debug("    - emulate sync reset / enable priority\n");
+		for (auto i: pcfg.emu_trans)
+			log_debug("    - emulate transparency with write port %d\n", i);
+	}
+}
+
+// Go through memory attributes to determine user-requested mapping style.
+void MemMapping::determine_style() {
+	kind = RamKind::Auto;
+	style = "";
+	if (mem.get_bool_attribute(ID::lram)) {
+		kind = RamKind::Huge;
+		return;
+	}
+	for (auto attr: {ID::ram_block, ID::rom_block, ID::ram_style, ID::rom_style, ID::ramstyle, ID::romstyle, ID::syn_ramstyle, ID::syn_romstyle}) {
+		if (mem.has_attribute(attr)) {
+			Const val = mem.attributes.at(attr);
+			if (val == 1) {
+				kind = RamKind::NotLogic;
+				return;
+			}
+			std::string val_s = val.decode_string();
+			for (auto &c: val_s)
+				c = std::tolower(c);
+			if (val_s == "auto") {
+				// Nothing.
+			} else if (val_s == "logic" || val_s == "registers") {
+				kind = RamKind::Logic;
+			} else if (val_s == "distributed") {
+				kind = RamKind::Distributed;
+			} else if (val_s == "block" || val_s == "block_ram" || val_s == "ebr") {
+				kind = RamKind::Block;
+			} else if (val_s == "huge" || val_s == "ultra") {
+				kind = RamKind::Huge;
+			} else {
+				kind = RamKind::NotLogic;
+				style = val_s;
+			}
+			return;
+		}
+	}
+	if (mem.get_bool_attribute(ID::logic_block))
+		kind = RamKind::Logic;
+}
+
+// Determine whether the memory can be mapped entirely to soft logic.
+bool MemMapping::determine_logic_ok() {
+	if (kind != RamKind::Auto && kind != RamKind::Logic)
+		return false;
+	// Memory is mappable entirely to soft logic iff all its write ports are in the same clock domain.
+	if (mem.wr_ports.empty())
+		return true;
+	for (auto &port: mem.wr_ports) {
+		if (!port.clk_enable)
+			return false;
+		if (port.clk != mem.wr_ports[0].clk)
+			return false;
+		if (port.clk_polarity != mem.wr_ports[0].clk_polarity)
+			return false;
+	}
+	return true;
+}
+
+// Apply RAM kind restrictions (logic/distributed/block/huge), if any.
+bool MemMapping::check_ram_kind(const Ram &ram) {
+	if (style != "")
+		return true;
+	if (ram.kind == kind)
+		return true;
+	if (kind == RamKind::Auto || kind == RamKind::NotLogic) {
+		if (ram.kind == RamKind::Distributed && opts.no_auto_distributed)
+			return false;
+		if (ram.kind == RamKind::Block && opts.no_auto_block)
+			return false;
+		if (ram.kind == RamKind::Huge && opts.no_auto_huge)
+			return false;
+		return true;
+	}
+	return false;
+}
+
+// Apply specific RAM style restrictions, if any.
+bool MemMapping::check_ram_style(const Ram &ram) {
+	if (style == "")
+		return true;
+	for (auto &s: ram.style)
+		if (s == style)
+			return true;
+	return false;
+}
+
+// Handle memory initializer restrictions, if any.
+bool MemMapping::check_init(const Ram &ram) {
+	bool has_nonx = false;
+	bool has_one = false;
+
+	for (auto &init: mem.inits) {
+		if (init.data.is_fully_undef())
+			continue;
+		has_nonx = true;
+		for (auto bit: init.data)
+			if (bit == State::S1)
+				has_one = true;
+	}
+
+	switch (ram.init) {
+		case MemoryInitKind::None:
+			return !has_nonx;
+		case MemoryInitKind::Zero:
+			return !has_one;
+		default:
+			return true;
+	}
+}
+
+bool apply_clock(MemConfig &cfg, const PortVariant &def, SigBit clk, bool clk_polarity) {
+	if (def.clk_shared == -1)
+		return true;
+	auto &cdef = cfg.def->shared_clocks[def.clk_shared];
+	auto &ccfg = cfg.shared_clocks[def.clk_shared];
+	if (cdef.anyedge) {
+		if (!ccfg.used) {
+			ccfg.used = true;
+			ccfg.clk = clk;
+			ccfg.polarity = clk_polarity;
+			return true;
+		} else {
+			return ccfg.clk == clk && ccfg.polarity == clk_polarity;
+		}
+	} else {
+		bool invert = clk_polarity ^ (def.clk_pol == ClkPolKind::Posedge);
+		if (!ccfg.used) {
+			ccfg.used = true;
+			ccfg.clk = clk;
+			ccfg.invert = invert;
+			return true;
+		} else {
+			return ccfg.clk == clk && ccfg.invert == invert;
+		}
+	}
+}
+
+// Perform write port assignment, validating clock options as we go.
+void MemMapping::assign_wr_ports() {
+	for (auto &port: mem.wr_ports) {
+		if (!port.clk_enable) {
+			// Async write ports not supported.
+			cfgs.clear();
+			return;
+		}
+		MemConfigs new_cfgs;
+		for (auto &cfg: cfgs) {
+			for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
+				auto &pg = cfg.def->port_groups[pgi];
+				// Make sure the target port group still has a free port.
+				int used = 0;
+				for (auto &oport: cfg.wr_ports)
+					if (oport.port_group == pgi)
+						used++;
+				if (used >= GetSize(pg.names))
+					continue;
+				for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) {
+					auto &def = pg.variants[pvi];
+					// Make sure the target is a write port.
+					if (def.kind == PortKind::Ar || def.kind == PortKind::Sr)
+						continue;
+					MemConfig new_cfg = cfg;
+					WrPortConfig pcfg;
+					pcfg.rd_port = -1;
+					pcfg.port_group = pgi;
+					pcfg.port_variant = pvi;
+					pcfg.def = &def;
+					if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity))
+						continue;
+					new_cfg.wr_ports.push_back(pcfg);
+					new_cfgs.push_back(new_cfg);
+				}
+			}
+		}
+		cfgs = new_cfgs;
+	}
+}
+
+// Perform read port assignment, validating clock and rden options as we go.
+void MemMapping::assign_rd_ports() {
+	for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
+		auto &port = mem.rd_ports[pidx];
+		MemConfigs new_cfgs;
+		for (auto &cfg: cfgs) {
+			// First pass: read port not shared with a write port.
+			for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
+				auto &pg = cfg.def->port_groups[pgi];
+				// Make sure the target port group has a port not used up by write ports.
+				// Overuse by other read ports is not a problem — this will just result
+				// in memory duplication.
+				int used = 0;
+				for (auto &oport: cfg.wr_ports)
+					if (oport.port_group == pgi)
+						used++;
+				if (used >= GetSize(pg.names))
+					continue;
+				for (int pvi = 0; pvi < GetSize(pg.variants); pvi++) {
+					auto &def = pg.variants[pvi];
+					// Make sure the target is a read port.
+					if (def.kind == PortKind::Sw)
+						continue;
+					// If mapping an async port, accept only async defs.
+					if (!port.clk_enable) {
+						if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw)
+							continue;
+					}
+					MemConfig new_cfg = cfg;
+					RdPortConfig pcfg;
+					pcfg.wr_port = -1;
+					pcfg.port_group = pgi;
+					pcfg.port_variant = pvi;
+					pcfg.def = &def;
+					if (def.kind == PortKind::Sr || def.kind == PortKind::Srsw) {
+						pcfg.emu_sync = false;
+						if (!apply_clock(new_cfg, def, port.clk, port.clk_polarity))
+							continue;
+						// Decide if rden is usable.
+						if (port.en != State::S1) {
+							if (def.clk_en) {
+								pcfg.rd_en_to_clk_en = true;
+							} else {
+								pcfg.emu_en = !def.rd_en;
+							}
+						}
+					} else {
+						pcfg.emu_sync = port.clk_enable;
+					}
+					new_cfg.rd_ports.push_back(pcfg);
+					new_cfgs.push_back(new_cfg);
+				}
+			}
+			// Second pass: read port shared with a write port.
+			for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) {
+				auto &wport = mem.wr_ports[wpidx];
+				auto &wpcfg = cfg.wr_ports[wpidx];
+				auto &def = *wpcfg.def;
+				// Make sure the write port is not yet shared.
+				if (wpcfg.rd_port != -1)
+					continue;
+				// Make sure the target is a read port.
+				if (def.kind == PortKind::Sw)
+					continue;
+				// Validate address compatibility.
+				if (!addr_compatible(wpidx, pidx))
+					continue;
+				// Validate clock compatibility, if needed.
+				if (def.kind == PortKind::Srsw) {
+					if (!port.clk_enable)
+						continue;
+					if (port.clk != wport.clk)
+						continue;
+					if (port.clk_polarity != wport.clk_polarity)
+						continue;
+				}
+				// Okay, let's fill it in.
+				MemConfig new_cfg = cfg;
+				new_cfg.wr_ports[wpidx].rd_port = pidx;
+				RdPortConfig pcfg;
+				pcfg.wr_port = wpidx;
+				pcfg.port_group = wpcfg.port_group;
+				pcfg.port_variant = wpcfg.port_variant;
+				pcfg.def = wpcfg.def;
+				pcfg.emu_sync = port.clk_enable && def.kind == PortKind::Arsw;
+				// For srsw, check rden capability.
+				if (def.kind == PortKind::Srsw) {
+					bool trans = port.transparency_mask[wpidx];
+					bool col_x = port.collision_x_mask[wpidx];
+					if (def.rdwr == RdWrKind::NoChange) {
+						if (!get_wr_excludes_rd(wpidx, pidx)) {
+							if (!trans && !col_x)
+								continue;
+							if (trans)
+								pcfg.emu_trans.push_back(wpidx);
+							new_cfg.wr_ports[wpidx].force_uniform = true;
+						}
+						if (port.en != State::S1) {
+							if (def.clk_en) {
+								pcfg.rd_en_to_clk_en = true;
+							} else {
+								pcfg.emu_en = !def.rd_en;
+							}
+						}
+					} else {
+						if (!col_x && !trans && def.rdwr != RdWrKind::Old)
+							continue;
+						if (trans) {
+							if (def.rdwr != RdWrKind::New && def.rdwr != RdWrKind::NewOnly)
+								pcfg.emu_trans.push_back(wpidx);
+						}
+						if (def.rdwr == RdWrKind::NewOnly) {
+							if (!get_wr_excludes_rd(wpidx, pidx))
+								new_cfg.wr_ports[wpidx].force_uniform = true;
+						}
+						if (port.en != State::S1) {
+							if (def.clk_en) {
+								if (get_wr_implies_rd(wpidx, pidx)) {
+									pcfg.rd_en_to_clk_en = true;
+								} else {
+									pcfg.emu_en = !def.rd_en;
+								}
+							} else {
+								pcfg.emu_en = !def.rd_en;
+							}
+						}
+					}
+				}
+				new_cfg.rd_ports.push_back(pcfg);
+				new_cfgs.push_back(new_cfg);
+			}
+		}
+		cfgs = new_cfgs;
+	}
+}
+
+// Validate transparency restrictions, determine where to add soft transparency logic.
+void MemMapping::handle_trans() {
+	if (mem.emulate_read_first_ok()) {
+		MemConfigs new_cfgs;
+		for (auto &cfg: cfgs) {
+			new_cfgs.push_back(cfg);
+			bool ok = true;
+			// Using this trick will break read-write port sharing.
+			for (auto &pcfg: cfg.rd_ports)
+				if (pcfg.wr_port != -1)
+					ok = false;
+			if (ok) {
+				cfg.emu_read_first = true;
+				new_cfgs.push_back(cfg);
+			}
+		}
+		cfgs = new_cfgs;
+	}
+	for (int rpidx = 0; rpidx < GetSize(mem.rd_ports); rpidx++) {
+		auto &rport = mem.rd_ports[rpidx];
+		if (!rport.clk_enable)
+			continue;
+		for (int wpidx = 0; wpidx < GetSize(mem.wr_ports); wpidx++) {
+			auto &wport = mem.wr_ports[wpidx];
+			if (!wport.clk_enable)
+				continue;
+			if (rport.clk != wport.clk)
+				continue;
+			if (rport.clk_polarity != wport.clk_polarity)
+				continue;
+			// If we got this far, we have a transparency restriction
+			// to uphold.
+			MemConfigs new_cfgs;
+			for (auto &cfg: cfgs) {
+				auto &rpcfg = cfg.rd_ports[rpidx];
+				auto &wpcfg = cfg.wr_ports[wpidx];
+				// The transparency relation for shared ports already handled while assigning them.
+				if (rpcfg.wr_port == wpidx) {
+					new_cfgs.push_back(cfg);
+					continue;
+				}
+				if (rport.collision_x_mask[wpidx] && !cfg.emu_read_first) {
+					new_cfgs.push_back(cfg);
+					continue;
+				}
+				bool transparent = rport.transparency_mask[wpidx] || cfg.emu_read_first;
+				if (rpcfg.emu_sync) {
+					// For async read port, just add the transparency logic
+					// if necessary.
+					if (transparent)
+						rpcfg.emu_trans.push_back(wpidx);
+					new_cfgs.push_back(cfg);
+				} else {
+					// Otherwise, split through the relevant wrtrans caps.
+					// For non-transparent ports, the cap needs to be present.
+					// For transparent ports, we can emulate transparency
+					// even without a direct cap.
+					bool found = false;
+					for (auto &tdef: wpcfg.def->wrtrans) {
+						// Check if the target matches.
+						if (tdef.target_kind == WrTransTargetKind::Group && rpcfg.port_group != tdef.target_group)
+							continue;
+						// Check if the transparency kind is acceptable.
+						if (transparent) {
+							if (tdef.kind == WrTransKind::Old)
+								continue;
+						} else {
+							if (tdef.kind != WrTransKind::Old)
+								continue;
+						}
+						// Okay, we can use this cap.
+						new_cfgs.push_back(cfg);
+						found = true;
+						break;
+					}
+					if (!found && transparent) {
+						// If the port pair is transparent, but no cap was
+						// found, use emulation.
+						rpcfg.emu_trans.push_back(wpidx);
+						new_cfgs.push_back(cfg);
+					}
+				}
+			}
+			cfgs = new_cfgs;
+		}
+	}
+}
+
+// Determine where to add soft priority logic.
+void MemMapping::handle_priority() {
+	for (int p1idx = 0; p1idx < GetSize(mem.wr_ports); p1idx++) {
+		for (int p2idx = 0; p2idx < GetSize(mem.wr_ports); p2idx++) {
+			auto &port2 = mem.wr_ports[p2idx];
+			if (!port2.priority_mask[p1idx])
+				continue;
+			for (auto &cfg: cfgs) {
+				auto &p1cfg = cfg.rd_ports[p1idx];
+				auto &p2cfg = cfg.wr_ports[p2idx];
+				bool found = false;
+				for (auto &pgi: p2cfg.def->wrprio) {
+					if (pgi == p1cfg.port_group) {
+						found = true;
+						break;
+					}
+				}
+				// If no cap was found, emulate.
+				if (!found)
+					p2cfg.emu_prio.push_back(p1idx);
+			}
+		}
+	}
+}
+
+bool is_all_zero(const Const &val) {
+	for (auto bit: val.bits)
+		if (bit == State::S1)
+			return false;
+	return true;
+}
+
+// Determine where to add soft init value / reset logic.
+void MemMapping::handle_rd_rst() {
+	for (auto &cfg: cfgs) {
+		for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
+			auto &port = mem.rd_ports[pidx];
+			auto &pcfg = cfg.rd_ports[pidx];
+			// Only sync ports are relevant.
+			// If emulated by async port or we already emulate CE, init will be
+			// included for free.
+			if (!port.clk_enable || pcfg.emu_sync || pcfg.emu_en)
+				continue;
+			switch (pcfg.def->rdinitval) {
+				case ResetValKind::None:
+					pcfg.emu_init = !port.init_value.is_fully_undef();
+					break;
+				case ResetValKind::Zero:
+					pcfg.emu_init = !is_all_zero(port.init_value);
+					break;
+				default:
+					break;
+			}
+			Const init_val = port.init_value;
+			if (port.arst != State::S0) {
+				switch (pcfg.def->rdarstval) {
+					case ResetValKind::None:
+						pcfg.emu_arst = true;
+						break;
+					case ResetValKind::Zero:
+						pcfg.emu_arst = !is_all_zero(port.arst_value);
+						break;
+					case ResetValKind::Init:
+						if (init_val.is_fully_undef())
+							init_val = port.arst_value;
+						pcfg.emu_arst = init_val != port.arst_value;
+						break;
+					default:
+						break;
+				}
+			}
+			if (port.srst != State::S0) {
+				switch (pcfg.def->rdsrstval) {
+					case ResetValKind::None:
+						pcfg.emu_srst = true;
+						break;
+					case ResetValKind::Zero:
+						pcfg.emu_srst = !is_all_zero(port.srst_value);
+						break;
+					case ResetValKind::Init:
+						if (init_val.is_fully_undef())
+							init_val = port.srst_value;
+						pcfg.emu_srst = init_val != port.srst_value;
+						break;
+					default:
+						break;
+				}
+				if (!pcfg.emu_srst && pcfg.def->rdsrst_block_wr && pcfg.wr_port != -1) {
+					if (!get_wr_excludes_srst(pcfg.wr_port, pidx))
+						pcfg.emu_srst = true;
+				}
+				if (!pcfg.emu_srst && port.en != State::S1) {
+					if (port.ce_over_srst) {
+						switch (pcfg.def->rdsrstmode) {
+							case SrstKind::Ungated:
+								pcfg.emu_srst_en_prio = true;
+								break;
+							case SrstKind::GatedClkEn:
+								pcfg.emu_srst_en_prio = !pcfg.rd_en_to_clk_en;
+								break;
+							case SrstKind::GatedRdEn:
+								break;
+							default:
+								log_assert(0);
+						}
+					} else {
+						switch (pcfg.def->rdsrstmode) {
+							case SrstKind::Ungated:
+								break;
+							case SrstKind::GatedClkEn:
+								if (pcfg.rd_en_to_clk_en) {
+									if (pcfg.def->rd_en) {
+										pcfg.rd_en_to_clk_en = false;
+									} else {
+										pcfg.emu_srst_en_prio = true;
+									}
+								}
+								break;
+							case SrstKind::GatedRdEn:
+								pcfg.emu_srst_en_prio = true;
+								break;
+							default:
+								log_assert(0);
+						}
+					}
+				}
+			} else {
+				if (pcfg.def->rd_en && pcfg.def->rdwr == RdWrKind::NoChange && pcfg.wr_port != -1) {
+					pcfg.rd_en_to_clk_en = false;
+				}
+			}
+		}
+	}
+}
+
+void MemMapping::score_emu_ports() {
+	for (auto &cfg: cfgs) {
+		std::vector<int> port_usage_wr(cfg.def->port_groups.size());
+		std::vector<int> port_usage_rd(cfg.def->port_groups.size());
+		int score = 0;
+		// 3 points for every write port if we need to do read-first emulation.
+		if (cfg.emu_read_first)
+			score += 3 * GetSize(cfg.wr_ports);
+		for (auto &pcfg: cfg.wr_ports) {
+			// 1 point for every priority relation we need to fix up.
+			// This is just a gate for every distinct wren pair.
+			score += GetSize(pcfg.emu_prio);
+			port_usage_wr[pcfg.port_group]++;
+		}
+		for (auto &pcfg: cfg.rd_ports) {
+			// 3 points for every soft transparency logic instance.  This involves
+			// registers and other major mess.
+			score += 3 * GetSize(pcfg.emu_trans);
+			// 3 points for CE soft logic.  Likewise involves registers.
+			// If we already do this, subsumes any init/srst/arst emulation.
+			if (pcfg.emu_en)
+				score += 3;
+			// 2 points for soft init value / reset logic: involves single bit
+			// register and some muxes.
+			if (pcfg.emu_init)
+				score += 2;
+			if (pcfg.emu_arst)
+				score += 2;
+			if (pcfg.emu_srst)
+				score += 2;
+			// 1 point for wrong srst/en priority (fixed with a single gate).
+			if (pcfg.emu_srst_en_prio)
+				score++;
+			// 1 point for every non-shared read port used, as a tiebreaker
+			// to prefer single-port configs.
+			if (pcfg.wr_port == -1) {
+				score++;
+				port_usage_rd[pcfg.port_group]++;
+			}
+		}
+		cfg.score_emu = score;
+		int repl_port = 1;
+		for (int i = 0; i < GetSize(cfg.def->port_groups); i++) {
+			int space = GetSize(cfg.def->port_groups[i].names) - port_usage_wr[i];
+			log_assert(space >= 0);
+			if (port_usage_rd[i] > 0) {
+				log_assert(space > 0);
+				int usage = port_usage_rd[i];
+				int cur = (usage + space - 1) / space;
+				if (cur > repl_port)
+					repl_port = cur;
+			}
+		}
+		cfg.repl_port = repl_port;
+	}
+}
+
+void MemMapping::handle_geom() {
+	std::vector<int> wren_size;
+	for (auto &port: mem.wr_ports) {
+		SigSpec en = port.en;
+		en.sort_and_unify();
+		wren_size.push_back(GetSize(en));
+	}
+	for (auto &cfg: cfgs) {
+		// First, create a set of "byte boundaries": the bit positions in source memory word
+		// that have write enable different from the previous bit in any write port.
+		// Bit 0 is considered to be a byte boundary as well.
+		// Likewise, create a set of "word boundaries" that are like above, but only for write ports
+		// with the "force uniform" flag set.
+		std::vector<bool> byte_boundary(mem.width, false);
+		std::vector<bool> word_boundary(mem.width, false);
+		byte_boundary[0] = true;
+		for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
+			auto &port = mem.wr_ports[pidx];
+			auto &pcfg = cfg.wr_ports[pidx];
+			if (pcfg.force_uniform)
+				word_boundary[0] = true;
+			for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
+				for (int i = 1; i < mem.width; i++) {
+					int pos = sub * mem.width + i;
+					if (port.en[pos] != port.en[pos-1]) {
+						byte_boundary[i] = true;
+						if (pcfg.force_uniform)
+							word_boundary[i] = true;
+					}
+				}
+			}
+		}
+		bool got_config = false;
+		int best_cost = 0;
+		int byte_width_log2 = 0;
+		for (int i = 0; i < GetSize(cfg.def->dbits); i++)
+			if (cfg.def->byte >= cfg.def->dbits[i])
+				byte_width_log2 = i;
+		if (cfg.def->byte == 0)
+			byte_width_log2 = GetSize(cfg.def->dbits) - 1;
+		pool<int> no_wide_bits;
+		// Determine which of the source address bits involved in wide ports
+		// are "uniform".  Bits are considered uniform if, when a port is widened through
+		// them, the write enables are the same for both values of the bit.
+		int max_wr_wide_log2 = 0;
+		for (auto &port: mem.wr_ports)
+			if (port.wide_log2 > max_wr_wide_log2)
+				max_wr_wide_log2 = port.wide_log2;
+		int max_wide_log2 = max_wr_wide_log2;
+		for (auto &port: mem.rd_ports)
+			if (port.wide_log2 > max_wide_log2)
+				max_wide_log2 = port.wide_log2;
+		int wide_nu_start = max_wide_log2;
+		int wide_nu_end = max_wr_wide_log2;
+		for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+			auto &port = mem.wr_ports[i];
+			auto &pcfg = cfg.wr_ports[i];
+			for (int j = 0; j < port.wide_log2; j++) {
+				bool uniform = true;
+				// If write enables don't match, mark bit as non-uniform.
+				for (int k = 0; k < (1 << port.wide_log2); k += 2 << j)
+					if (port.en.extract(k * mem.width, mem.width << j) != port.en.extract((k + (1 << j)) * mem.width, mem.width << j))
+						uniform = false;
+				if (!uniform) {
+					if (pcfg.force_uniform) {
+						for (int k = j; k < port.wide_log2; k++)
+							no_wide_bits.insert(k);
+					}
+					if (j < wide_nu_start)
+						wide_nu_start = j;
+					break;
+				}
+			}
+			if (pcfg.def->width_tied && pcfg.rd_port != -1) {
+				// If:
+				//
+				// - the write port is merged with a read port
+				// - the read port is wider than the write port
+				// - read and write widths are tied
+				//
+				// then we will have to artificially widen the write
+				// port to the width of the read port, and emulate
+				// a narrower write path by use of write enables,
+				// which will definitely be non-uniform over the added
+				// bits.
+				auto &rport = mem.rd_ports[pcfg.rd_port];
+				if (rport.wide_log2 > port.wide_log2) {
+					if (port.wide_log2 < wide_nu_start)
+						wide_nu_start = port.wide_log2;
+					if (rport.wide_log2 > wide_nu_end)
+						wide_nu_end = rport.wide_log2;
+					if (pcfg.force_uniform) {
+						for (int k = port.wide_log2; k < rport.wide_log2; k++)
+							no_wide_bits.insert(k);
+					}
+				}
+			}
+		}
+		// Iterate over base widths.
+		for (int base_width_log2 = 0; base_width_log2 < GetSize(cfg.def->dbits); base_width_log2++) {
+			// Now, see how many data bits we actually have available.
+			// This is usually dbits[base_width_log2], but could be smaller if we
+			// ran afoul of a max width limitation.  Configurations where this
+			// happens are not useful, unless we need it to satisfy a *minimum*
+			// width limitation.
+			int unit_width_log2 = base_width_log2;
+			for (auto &pcfg: cfg.wr_ports)
+				if (unit_width_log2 > pcfg.def->max_wr_wide_log2)
+					unit_width_log2 = pcfg.def->max_wr_wide_log2;
+			for (auto &pcfg: cfg.rd_ports)
+				if (unit_width_log2 > pcfg.def->max_rd_wide_log2)
+					unit_width_log2 = pcfg.def->max_rd_wide_log2;
+			if (unit_width_log2 != base_width_log2 && got_config)
+				break;
+			int unit_width = cfg.def->dbits[unit_width_log2];
+			// Also determine effective byte width (the granularity of write enables).
+			int effective_byte = cfg.def->byte;
+			if (effective_byte == 0 || effective_byte > unit_width)
+				effective_byte = unit_width;
+			if (mem.wr_ports.empty())
+				effective_byte = 1;
+			log_assert(unit_width % effective_byte == 0);
+			// Create the swizzle pattern.
+			std::vector<int> swizzle;
+			for (int i = 0; i < mem.width; i++) {
+				if (word_boundary[i])
+					while (GetSize(swizzle) % unit_width)
+						swizzle.push_back(-1);
+				else if (byte_boundary[i])
+					while (GetSize(swizzle) % effective_byte)
+						swizzle.push_back(-1);
+				swizzle.push_back(i);
+			}
+			if (word_boundary[0])
+				while (GetSize(swizzle) % unit_width)
+					swizzle.push_back(-1);
+			else
+				while (GetSize(swizzle) % effective_byte)
+					swizzle.push_back(-1);
+			// Now evaluate the configuration, then keep adding more hard wide bits
+			// and evaluating.
+			int hard_wide_mask = 0;
+			int hard_wide_num = 0;
+			bool byte_failed = false;
+			while (1) {
+				// Check if all min width constraints are satisfied.
+				// Only check these constraints for write ports with width below
+				// byte width — for other ports, we can emulate narrow width with
+				// a larger one.
+				bool min_width_ok = true;
+				int min_width_bit = wide_nu_start;
+				for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
+					auto &port = mem.wr_ports[pidx];
+					int w = base_width_log2;
+					for (int i = 0; i < port.wide_log2; i++)
+						if (hard_wide_mask & 1 << i)
+							w++;
+					if (w < cfg.wr_ports[pidx].def->min_wr_wide_log2 && w < byte_width_log2) {
+						min_width_ok = false;
+						if (min_width_bit > port.wide_log2)
+							min_width_bit = port.wide_log2;
+					}
+				}
+				if (min_width_ok) {
+					int emu_wide_bits = max_wide_log2 - hard_wide_num;
+					int mult_wide = 1 << emu_wide_bits;
+					int addrs = 1 << (cfg.def->abits - base_width_log2 + emu_wide_bits);
+					int min_addr = mem.start_offset / addrs;
+					int max_addr = (mem.start_offset + mem.size - 1) / addrs;
+					int mult_a = max_addr - min_addr + 1;
+					int bits = mult_a * mult_wide * GetSize(swizzle);
+					int repl = (bits + unit_width - 1) / unit_width;
+					int score_demux = 0;
+					for (int i = 0; i < GetSize(mem.wr_ports); i++) {
+						auto &port = mem.wr_ports[i];
+						int w = emu_wide_bits;
+						for (int i = 0; i < port.wide_log2; i++)
+							if (!(hard_wide_mask & 1 << i))
+								w--;
+						if (w || mult_a != 1)
+							score_demux += (mult_a << w) * wren_size[i];
+					}
+					int score_mux = 0;
+					for (auto &port: mem.rd_ports) {
+						int w = emu_wide_bits;
+						for (int i = 0; i < port.wide_log2; i++)
+							if (!(hard_wide_mask & 1 << i))
+								w--;
+						score_mux += ((mult_a << w) - 1) * GetSize(port.data);
+					}
+					double cost = (cfg.def->cost - cfg.def->widthscale) * repl * cfg.repl_port;
+					cost += cfg.def->widthscale * mult_a * mult_wide * mem.width / unit_width * cfg.repl_port;
+					cost += score_mux * FACTOR_MUX;
+					cost += score_demux * FACTOR_DEMUX;
+					cost += cfg.score_emu * FACTOR_EMU;
+					if (!got_config || cost < best_cost) {
+						cfg.base_width_log2 = base_width_log2;
+						cfg.unit_width_log2 = unit_width_log2;
+						cfg.swizzle = swizzle;
+						cfg.hard_wide_mask = hard_wide_mask;
+						cfg.emu_wide_mask = ((1 << max_wide_log2) - 1) & ~hard_wide_mask;
+						cfg.repl_d = repl;
+						cfg.score_demux = score_demux;
+						cfg.score_mux = score_mux;
+						cfg.cost = cost;
+						best_cost = cost;
+						got_config = true;
+					}
+				}
+				if (cfg.def->width_mode != WidthMode::PerPort)
+					break;
+				// Now, pick the next bit to add to the hard wide mask.
+next_hw:
+				int scan_from;
+				int scan_to;
+				bool retry = false;
+				if (!min_width_ok) {
+					// If we still haven't met the minimum width limits,
+					// add the highest one that will be useful for working
+					// towards all unmet limits.
+					scan_from = min_width_bit;
+					scan_to = 0;
+					// If the relevant write port is not wide, it's impossible.
+				} else if (byte_failed) {
+					// If we already failed with uniformly-written bits only,
+					// go with uniform bits that are only involved in reads.
+					scan_from = max_wide_log2;
+					scan_to = wide_nu_end;
+				} else if (base_width_log2 + hard_wide_num < byte_width_log2) {
+					// If we still need uniform bits, prefer the low ones.
+					scan_from = wide_nu_start;
+					scan_to = 0;
+					retry = true;
+				} else {
+					scan_from = max_wide_log2;
+					scan_to = 0;
+				}
+				int bit = scan_from - 1;
+				while (1) {
+					if (bit < scan_to) {
+hw_bit_failed:
+						if (retry) {
+							byte_failed = true;
+							goto next_hw;
+						} else {
+							goto bw_done;
+						}
+					}
+					if (!(hard_wide_mask & 1 << bit) && !no_wide_bits.count(bit))
+						break;
+					bit--;
+				}
+				int new_hw_mask = hard_wide_mask | 1 << bit;
+				// Check if all max width constraints are satisfied.
+				for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
+					auto &port = mem.wr_ports[pidx];
+					int w = base_width_log2;
+					for (int i = 0; i < port.wide_log2; i++)
+						if (new_hw_mask & 1 << i)
+							w++;
+					if (w > cfg.wr_ports[pidx].def->max_wr_wide_log2) {
+						goto hw_bit_failed;
+					}
+				}
+				for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
+					auto &port = mem.rd_ports[pidx];
+					int w = base_width_log2;
+					for (int i = 0; i < port.wide_log2; i++)
+						if (new_hw_mask & 1 << i)
+							w++;
+					if (w > cfg.rd_ports[pidx].def->max_rd_wide_log2) {
+						goto hw_bit_failed;
+					}
+				}
+				// Bit ok, commit.
+				hard_wide_mask = new_hw_mask;
+				hard_wide_num++;
+			}
+bw_done:;
+		}
+		log_assert(got_config);
+	}
+}
+
+void MemMapping::prune_post_geom() {
+	std::vector<bool> keep;
+	dict<std::string, int> rsrc;
+	for (int i = 0; i < GetSize(cfgs); i++) {
+		auto &cfg = cfgs[i];
+		std::string key = cfg.def->resource_name;
+		if (key.empty()) {
+			switch (cfg.def->kind) {
+				case RamKind::Distributed:
+					key = "[distributed]";
+					break;
+				case RamKind::Block:
+					key = "[block]";
+					break;
+				case RamKind::Huge:
+					key = "[huge]";
+					break;
+				default:
+					break;
+			}
+		}
+		auto it = rsrc.find(key);
+		if (it == rsrc.end()) {
+			rsrc[key] = i;
+			keep.push_back(true);
+		} else {
+			auto &ocfg = cfgs[it->second];
+			if (cfg.cost < ocfg.cost) {
+				keep[it->second] = false;
+				it->second = i;
+				keep.push_back(true);
+			} else {
+				keep.push_back(false);
+			}
+		}
+	}
+	MemConfigs new_cfgs;
+	for (int i = 0; i < GetSize(cfgs); i++)
+		if (keep[i])
+			new_cfgs.push_back(cfgs[i]);
+	cfgs = new_cfgs;
+}
+
+Swizzle gen_swizzle(const Mem &mem, const MemConfig &cfg, int sw_wide_log2, int hw_wide_log2) {
+	Swizzle res;
+
+	std::vector<int> emu_wide_bits;
+	std::vector<int> hard_wide_bits;
+	for (int i = 0; i < ceil_log2(mem.size); i++) {
+		if (cfg.emu_wide_mask & 1 << i)
+			emu_wide_bits.push_back(i);
+		else if (GetSize(hard_wide_bits) < hw_wide_log2 - cfg.base_width_log2)
+			hard_wide_bits.push_back(i);
+	}
+	for (int x : hard_wide_bits)
+		if (x >= sw_wide_log2)
+			res.addr_mux_bits.push_back(x);
+	for (int x : emu_wide_bits)
+		if (x >= sw_wide_log2)
+			res.addr_mux_bits.push_back(x);
+
+	res.addr_shift = cfg.def->abits - cfg.base_width_log2 + GetSize(emu_wide_bits);
+	res.addr_start = mem.start_offset & ~((1 << res.addr_shift) - 1);
+	res.addr_end = ((mem.start_offset + mem.size - 1) | ((1 << res.addr_shift) - 1)) + 1;
+	int hnum = (res.addr_end - res.addr_start) >> res.addr_shift;
+	int unit_width = cfg.def->dbits[cfg.unit_width_log2];
+
+	for (int rd = 0; rd < cfg.repl_d; rd++) {
+		std::vector<SwizzleBit> bits(cfg.def->dbits[hw_wide_log2]);
+		for (auto &bit: bits)
+			bit.valid = false;
+		res.bits.push_back(bits);
+	}
+
+	for (int hi = 0; hi < hnum; hi++) {
+		for (int ewi = 0; ewi < (1 << GetSize(emu_wide_bits)); ewi++) {
+			for (int hwi = 0; hwi < (1 << GetSize(hard_wide_bits)); hwi++) {
+				int mux_idx = 0;
+				int sub = 0;
+				int mib = 0;
+				int hbit_base = 0;
+				for (int i = 0; i < GetSize(hard_wide_bits); i++) {
+					if (hard_wide_bits[i] < sw_wide_log2) {
+						if (hwi & 1 << i)
+							sub |= 1 << hard_wide_bits[i];
+					} else {
+						if (hwi & 1 << i)
+							mux_idx |= 1 << mib;
+						mib++;
+					}
+					if (hwi & 1 << i)
+						hbit_base += cfg.def->dbits[i + cfg.base_width_log2];
+				}
+				for (int i = 0; i < GetSize(emu_wide_bits); i++) {
+					if (emu_wide_bits[i] < sw_wide_log2) {
+						if (ewi & 1 << i)
+							sub |= 1 << emu_wide_bits[i];
+					} else {
+						if (ewi & 1 << i)
+							mux_idx |= 1 << mib;
+						mib++;
+					}
+				}
+				mux_idx |= hi << mib;
+				int addr = res.addr_start + (hi << res.addr_shift);
+				for (int i = 0; i < GetSize(res.addr_mux_bits); i++)
+					if (mux_idx & 1 << i)
+						addr += 1 << res.addr_mux_bits[i];
+				for (int bit = 0; bit < GetSize(cfg.swizzle); bit++) {
+					if (cfg.swizzle[bit] == -1)
+						continue;
+					int rbit = bit + GetSize(cfg.swizzle) * (ewi + (hi << GetSize(emu_wide_bits)));
+					int rep = rbit / unit_width;
+					int hbit = hbit_base + rbit % unit_width;
+					auto &swz = res.bits[rep][hbit];
+					swz.valid = true;
+					swz.addr = addr;
+					swz.mux_idx = mux_idx;
+					swz.bit = cfg.swizzle[bit] + sub * mem.width;
+				}
+			}
+		}
+	}
+
+	return res;
+}
+
+void clean_undef(std::vector<State> &val) {
+	for (auto &bit : val)
+		if (bit != State::S1)
+			bit = State::S0;
+}
+
+std::vector<SigSpec> generate_demux(Mem &mem, int wpidx, const Swizzle &swz) {
+	auto &port = mem.wr_ports[wpidx];
+	std::vector<SigSpec> res;
+	int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift;
+	auto compressed = port.compress_en();
+	SigSpec sig_a = compressed.first;
+	SigSpec addr = port.addr;
+	if (GetSize(addr) > hi_bits + swz.addr_shift) {
+		int lo = mem.start_offset;
+		int hi = mem.start_offset + mem.size;
+		int bits = ceil_log2(hi);
+		for (int i = 0; i < bits; i++) {
+			int new_lo = lo;
+			if (lo & 1 << i)
+				new_lo -= 1 << i;
+			int new_hi = hi;
+			if (hi & 1 << i)
+				new_hi += 1 << i;
+			if (new_hi - new_lo > (1 << (hi_bits + swz.addr_shift)))
+				break;
+			lo = new_lo;
+			hi = new_hi;
+		}
+		SigSpec in_range = mem.module->And(NEW_ID, mem.module->Ge(NEW_ID, addr, lo), mem.module->Lt(NEW_ID, addr, hi));
+		sig_a = mem.module->Mux(NEW_ID, Const(State::S0, GetSize(sig_a)), sig_a, in_range);
+	}
+	addr.extend_u0(swz.addr_shift + hi_bits, false);
+	SigSpec sig_s;
+	for (int x : swz.addr_mux_bits)
+		sig_s.append(addr[x]);
+	for (int i = 0; i < hi_bits; i++)
+		sig_s.append(addr[swz.addr_shift + i]);
+	SigSpec sig_y;
+	if (GetSize(sig_s) == 0)
+		sig_y = sig_a;
+	else
+		sig_y = mem.module->Demux(NEW_ID, sig_a, sig_s);
+	for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) {
+		for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) {
+			int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1);
+			int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(sig_a);
+			res.push_back(port.decompress_en(compressed.second, sig_y.extract(pos, GetSize(sig_a))));
+		}
+	}
+	return res;
+}
+
+std::vector<SigSpec> generate_mux(Mem &mem, int rpidx, const Swizzle &swz) {
+	auto &port = mem.rd_ports[rpidx];
+	std::vector<SigSpec> res;
+	int hi_bits = ceil_log2(swz.addr_end - swz.addr_start) - swz.addr_shift;
+	SigSpec sig_s;
+	SigSpec addr = port.addr;
+	addr.extend_u0(swz.addr_shift + hi_bits, false);
+	for (int x : swz.addr_mux_bits)
+		sig_s.append(addr[x]);
+	for (int i = 0; i < hi_bits; i++)
+		sig_s.append(addr[swz.addr_shift + i]);
+	if (GetSize(sig_s) == 0) {
+		return {port.data};
+	}
+	if (port.clk_enable) {
+		SigSpec new_sig_s = mem.module->addWire(NEW_ID, GetSize(sig_s));
+		mem.module->addDffe(NEW_ID, port.clk, port.en, sig_s, new_sig_s, port.clk_polarity);
+		sig_s = new_sig_s;
+	}
+	SigSpec sig_a = Const(State::Sx, GetSize(port.data) << hi_bits << GetSize(swz.addr_mux_bits));
+	for (int i = 0; i < ((swz.addr_end - swz.addr_start) >> swz.addr_shift); i++) {
+		for (int j = 0; j < (1 << GetSize(swz.addr_mux_bits)); j++) {
+			SigSpec sig = mem.module->addWire(NEW_ID, GetSize(port.data));
+			int hi = ((swz.addr_start >> swz.addr_shift) + i) & ((1 << hi_bits) - 1);
+			int pos = (hi << GetSize(swz.addr_mux_bits) | j) * GetSize(port.data);
+			for (int k = 0; k < GetSize(port.data); k++)
+				sig_a[pos + k] = sig[k];
+			res.push_back(sig);
+		}
+	}
+	mem.module->addBmux(NEW_ID, sig_a, sig_s, port.data);
+	return res;
+}
+
+void MemMapping::emit_port(const MemConfig &cfg, std::vector<Cell*> &cells, const PortVariant &pdef, const char *name, int wpidx, int rpidx, const std::vector<int> &hw_addr_swizzle) {
+	for (auto &it: pdef.options)
+		for (auto cell: cells)
+			cell->setParam(stringf("\\PORT_%s_OPTION_%s", name, it.first.c_str()), it.second);
+	SigSpec addr = Const(State::Sx, cfg.def->abits);
+	int wide_log2 = 0, wr_wide_log2 = 0, rd_wide_log2 = 0;
+	SigSpec clk = State::S0;
+	SigSpec clk_en = State::S0;
+	bool clk_pol = true;
+	if (wpidx != -1) {
+		auto &wport = mem.wr_ports[wpidx];
+		clk = wport.clk;
+		clk_pol = wport.clk_polarity;
+		addr = wport.addr;
+		wide_log2 = wr_wide_log2 = wport.wide_log2;
+		if (rpidx != -1) {
+			auto &rport = mem.rd_ports[rpidx];
+			auto &rpcfg = cfg.rd_ports[rpidx];
+			rd_wide_log2 = rport.wide_log2;
+			if (rd_wide_log2 > wr_wide_log2)
+				wide_log2 = rd_wide_log2;
+			else
+				addr = rport.addr;
+			if (pdef.clk_en) {
+				if (rpcfg.rd_en_to_clk_en) {
+					if (pdef.rdwr == RdWrKind::NoChange) {
+						clk_en = mem.module->Or(NEW_ID, rport.en, mem.module->ReduceOr(NEW_ID, wport.en));
+					} else {
+						clk_en = rport.en;
+					}
+				} else {
+					clk_en = State::S1;
+				}
+			}
+		} else {
+			if (pdef.clk_en)
+				clk_en = State::S1;
+		}
+	} else if (rpidx != -1) {
+		auto &rport = mem.rd_ports[rpidx];
+		auto &rpcfg = cfg.rd_ports[rpidx];
+		if (rport.clk_enable) {
+			clk = rport.clk;
+			clk_pol = rport.clk_polarity;
+		}
+		addr = rport.addr;
+		wide_log2 = rd_wide_log2 = rport.wide_log2;
+		if (pdef.clk_en) {
+			if (rpcfg.rd_en_to_clk_en)
+				clk_en = rport.en;
+			else
+				clk_en = State::S1;
+		}
+
+	}
+	addr = worker.sigmap_xmux(addr);
+	if (pdef.kind != PortKind::Ar) {
+		switch (pdef.clk_pol) {
+			case ClkPolKind::Posedge:
+				if (!clk_pol)
+					clk = mem.module->Not(NEW_ID, clk);
+				break;
+			case ClkPolKind::Negedge:
+				if (clk_pol)
+					clk = mem.module->Not(NEW_ID, clk);
+				break;
+			case ClkPolKind::Anyedge:
+				for (auto cell: cells)
+					cell->setParam(stringf("\\PORT_%s_CLK_POL", name), clk_pol);
+		}
+		for (auto cell: cells) {
+			cell->setPort(stringf("\\PORT_%s_CLK", name), clk);
+			if (pdef.clk_en)
+				cell->setPort(stringf("\\PORT_%s_CLK_EN", name), clk_en);
+		}
+	}
+
+	// Width determination.
+	if (pdef.width_tied) {
+		rd_wide_log2 = wr_wide_log2 = wide_log2;
+	}
+	int hw_wr_wide_log2 = cfg.base_width_log2;
+	for (int i = 0; i < wr_wide_log2; i++)
+		if (cfg.hard_wide_mask & (1 << i))
+			hw_wr_wide_log2++;
+	if (hw_wr_wide_log2 < pdef.min_wr_wide_log2)
+		hw_wr_wide_log2 = pdef.min_wr_wide_log2;
+	if (hw_wr_wide_log2 > pdef.max_wr_wide_log2)
+		hw_wr_wide_log2 = pdef.max_wr_wide_log2;
+	int hw_rd_wide_log2 = cfg.base_width_log2;
+	for (int i = 0; i < rd_wide_log2; i++)
+		if (cfg.hard_wide_mask & (1 << i))
+			hw_rd_wide_log2++;
+	if (hw_rd_wide_log2 < pdef.min_rd_wide_log2)
+		hw_rd_wide_log2 = pdef.min_rd_wide_log2;
+	if (hw_rd_wide_log2 > pdef.max_rd_wide_log2)
+		hw_rd_wide_log2 = pdef.max_rd_wide_log2;
+	if (pdef.width_tied) {
+		// For unused ports, pick max available width,
+		// in case narrow ports require disabling parity
+		// bits etc.
+		if (wpidx == -1 && rpidx == -1) {
+			hw_wr_wide_log2 = pdef.max_wr_wide_log2;
+			hw_rd_wide_log2 = pdef.max_rd_wide_log2;
+		}
+	} else {
+		if (wpidx == -1)
+			hw_wr_wide_log2 = pdef.max_wr_wide_log2;
+		if (rpidx == -1)
+			hw_rd_wide_log2 = pdef.max_rd_wide_log2;
+	}
+	if (cfg.def->width_mode == WidthMode::PerPort) {
+		for (auto cell: cells) {
+			if (pdef.width_tied) {
+				cell->setParam(stringf("\\PORT_%s_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]);
+			} else {
+				if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr)
+					cell->setParam(stringf("\\PORT_%s_WR_WIDTH", name), cfg.def->dbits[hw_wr_wide_log2]);
+				if (pdef.kind != PortKind::Sw)
+					cell->setParam(stringf("\\PORT_%s_RD_WIDTH", name), cfg.def->dbits[hw_rd_wide_log2]);
+			}
+		}
+	}
+
+	// Address determination.
+	SigSpec hw_addr;
+	for (int x: hw_addr_swizzle) {
+		if (x == -1 || x >= GetSize(addr))
+			hw_addr.append(State::S0);
+		else
+			hw_addr.append(addr[x]);
+	}
+	for (int i = 0; i < hw_wr_wide_log2 && i < hw_rd_wide_log2; i++)
+		hw_addr[i] = State::S0;
+	for (auto cell: cells)
+		cell->setPort(stringf("\\PORT_%s_ADDR", name), hw_addr);
+
+	// Write part.
+	if (pdef.kind != PortKind::Ar && pdef.kind != PortKind::Sr) {
+		int width = cfg.def->dbits[hw_wr_wide_log2];
+		int effective_byte = cfg.def->byte;
+		if (effective_byte == 0 || effective_byte > width)
+			effective_byte = width;
+		if (wpidx != -1) {
+			auto &wport = mem.wr_ports[wpidx];
+			Swizzle port_swz = gen_swizzle(mem, cfg, wport.wide_log2, hw_wr_wide_log2);
+			std::vector<SigSpec> big_wren = generate_demux(mem, wpidx, port_swz);
+			for (int rd = 0; rd < cfg.repl_d; rd++) {
+				auto cell = cells[rd];
+				SigSpec hw_wdata;
+				SigSpec hw_wren;
+				for (auto &bit : port_swz.bits[rd]) {
+					if (!bit.valid) {
+						hw_wdata.append(State::Sx);
+					} else {
+						hw_wdata.append(wport.data[bit.bit]);
+					}
+				}
+				for (int i = 0; i < GetSize(port_swz.bits[rd]); i += effective_byte) {
+					auto &bit = port_swz.bits[rd][i];
+					if (!bit.valid) {
+						hw_wren.append(State::S0);
+					} else {
+						hw_wren.append(big_wren[bit.mux_idx][bit.bit]);
+					}
+				}
+				cell->setPort(stringf("\\PORT_%s_WR_DATA", name), hw_wdata);
+				if (pdef.wrbe_separate) {
+					// TODO make some use of it
+					SigSpec en = mem.module->ReduceOr(NEW_ID, hw_wren);
+					cell->setPort(stringf("\\PORT_%s_WR_EN", name), en);
+					cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren);
+					if (cfg.def->width_mode != WidthMode::Single)
+						cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren));
+				} else {
+					cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren);
+					if (cfg.def->byte != 0 && cfg.def->width_mode != WidthMode::Single)
+						cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren));
+				}
+			}
+		} else {
+			for (auto cell: cells) {
+				cell->setPort(stringf("\\PORT_%s_WR_DATA", name), Const(State::Sx, width));
+				SigSpec hw_wren = Const(State::S0, width / effective_byte);
+				if (pdef.wrbe_separate) {
+					cell->setPort(stringf("\\PORT_%s_WR_EN", name), State::S0);
+					cell->setPort(stringf("\\PORT_%s_WR_BE", name), hw_wren);
+					cell->setParam(stringf("\\PORT_%s_WR_BE_WIDTH", name), GetSize(hw_wren));
+				} else {
+					cell->setPort(stringf("\\PORT_%s_WR_EN", name), hw_wren);
+					if (cfg.def->byte != 0)
+						cell->setParam(stringf("\\PORT_%s_WR_EN_WIDTH", name), GetSize(hw_wren));
+				}
+			}
+		}
+	}
+
+	// Read part.
+	if (pdef.kind != PortKind::Sw) {
+		int width = cfg.def->dbits[hw_rd_wide_log2];
+		if (rpidx != -1) {
+			auto &rport = mem.rd_ports[rpidx];
+			auto &rpcfg = cfg.rd_ports[rpidx];
+			Swizzle port_swz = gen_swizzle(mem, cfg, rport.wide_log2, hw_rd_wide_log2);
+			std::vector<SigSpec> big_rdata = generate_mux(mem, rpidx, port_swz);
+			for (int rd = 0; rd < cfg.repl_d; rd++) {
+				auto cell = cells[rd];
+				if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) {
+					if (pdef.rd_en)
+						cell->setPort(stringf("\\PORT_%s_RD_EN", name), rpcfg.rd_en_to_clk_en ? State::S1 : rport.en);
+					if (pdef.rdarstval != ResetValKind::None)
+						cell->setPort(stringf("\\PORT_%s_RD_ARST", name), rport.arst);
+					if (pdef.rdsrstval != ResetValKind::None)
+						cell->setPort(stringf("\\PORT_%s_RD_SRST", name), rport.srst);
+					if (pdef.rdinitval == ResetValKind::Any || pdef.rdinitval == ResetValKind::NoUndef) {
+						Const val = rport.init_value;
+						if (pdef.rdarstval == ResetValKind::Init && rport.arst != State::S0) {
+							log_assert(val.is_fully_undef() || val == rport.arst_value);
+							val = rport.arst_value;
+						}
+						if (pdef.rdsrstval == ResetValKind::Init && rport.srst != State::S0) {
+							log_assert(val.is_fully_undef() || val == rport.srst_value);
+							val = rport.srst_value;
+						}
+						std::vector<State> hw_val;
+						for (auto &bit : port_swz.bits[rd]) {
+							if (!bit.valid) {
+								hw_val.push_back(State::Sx);
+							} else {
+								hw_val.push_back(val.bits[bit.bit]);
+							}
+						}
+						if (pdef.rdinitval == ResetValKind::NoUndef)
+							clean_undef(hw_val);
+						cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), hw_val);
+					}
+					if (pdef.rdarstval == ResetValKind::Any || pdef.rdarstval == ResetValKind::NoUndef) {
+						std::vector<State> hw_val;
+						for (auto &bit : port_swz.bits[rd]) {
+							if (!bit.valid) {
+								hw_val.push_back(State::Sx);
+							} else {
+								hw_val.push_back(rport.arst_value.bits[bit.bit]);
+							}
+						}
+						if (pdef.rdarstval == ResetValKind::NoUndef)
+							clean_undef(hw_val);
+						cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), hw_val);
+					}
+					if (pdef.rdsrstval == ResetValKind::Any || pdef.rdsrstval == ResetValKind::NoUndef) {
+						std::vector<State> hw_val;
+						for (auto &bit : port_swz.bits[rd]) {
+							if (!bit.valid) {
+								hw_val.push_back(State::Sx);
+							} else {
+								hw_val.push_back(rport.srst_value.bits[bit.bit]);
+							}
+						}
+						if (pdef.rdsrstval == ResetValKind::NoUndef)
+							clean_undef(hw_val);
+						cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), hw_val);
+					}
+				}
+				SigSpec hw_rdata = mem.module->addWire(NEW_ID, width);
+				cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata);
+				SigSpec lhs;
+				SigSpec rhs;
+				for (int i = 0; i < GetSize(hw_rdata); i++) {
+					auto &bit = port_swz.bits[rd][i];
+					if (bit.valid) {
+						lhs.append(big_rdata[bit.mux_idx][bit.bit]);
+						rhs.append(hw_rdata[i]);
+					}
+				}
+				mem.module->connect(lhs, rhs);
+			}
+		} else {
+			for (auto cell: cells) {
+				if (pdef.kind == PortKind::Sr || pdef.kind == PortKind::Srsw) {
+					if (pdef.rd_en)
+						cell->setPort(stringf("\\PORT_%s_RD_EN", name), State::S0);
+					if (pdef.rdarstval != ResetValKind::None)
+						cell->setPort(stringf("\\PORT_%s_RD_ARST", name), State::S0);
+					if (pdef.rdsrstval != ResetValKind::None)
+						cell->setPort(stringf("\\PORT_%s_RD_SRST", name), State::S0);
+					if (pdef.rdinitval == ResetValKind::Any)
+						cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::Sx, width));
+					else if (pdef.rdinitval == ResetValKind::NoUndef)
+						cell->setParam(stringf("\\PORT_%s_RD_INIT_VALUE", name), Const(State::S0, width));
+					if (pdef.rdarstval == ResetValKind::Any)
+						cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::Sx, width));
+					else if (pdef.rdarstval == ResetValKind::NoUndef)
+						cell->setParam(stringf("\\PORT_%s_RD_ARST_VALUE", name), Const(State::S0, width));
+					if (pdef.rdsrstval == ResetValKind::Any)
+						cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::Sx, width));
+					else if (pdef.rdsrstval == ResetValKind::NoUndef)
+						cell->setParam(stringf("\\PORT_%s_RD_SRST_VALUE", name), Const(State::S0, width));
+				}
+				SigSpec hw_rdata = mem.module->addWire(NEW_ID, width);
+				cell->setPort(stringf("\\PORT_%s_RD_DATA", name), hw_rdata);
+			}
+		}
+	}
+}
+
+void MemMapping::emit(const MemConfig &cfg) {
+	log("mapping memory %s.%s via %s\n", log_id(mem.module->name), log_id(mem.memid), log_id(cfg.def->id));
+	// First, handle emulations.
+	if (cfg.emu_read_first)
+		mem.emulate_read_first(&worker.initvals);
+	for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
+		auto &pcfg = cfg.rd_ports[pidx];
+		auto &port = mem.rd_ports[pidx];
+		if (pcfg.emu_sync)
+			mem.extract_rdff(pidx, &worker.initvals);
+		else if (pcfg.emu_en)
+			mem.emulate_rden(pidx, &worker.initvals);
+		else {
+			if (pcfg.emu_srst_en_prio) {
+				if (port.ce_over_srst)
+					mem.emulate_rd_ce_over_srst(pidx);
+				else
+					mem.emulate_rd_srst_over_ce(pidx);
+			}
+			mem.emulate_reset(pidx, pcfg.emu_init, pcfg.emu_arst, pcfg.emu_srst, &worker.initvals);
+		}
+	}
+	for (int pidx = 0; pidx < GetSize(mem.wr_ports); pidx++) {
+		auto &pcfg = cfg.wr_ports[pidx];
+		for (int opidx: pcfg.emu_prio) {
+			mem.emulate_priority(opidx, pidx, &worker.initvals);
+		}
+	}
+	for (int pidx = 0; pidx < GetSize(mem.rd_ports); pidx++) {
+		auto &port = mem.rd_ports[pidx];
+		auto &pcfg = cfg.rd_ports[pidx];
+		for (int opidx: pcfg.emu_trans) {
+			// The port may no longer be transparent due to transparency being
+			// nuked as part of emu_sync or emu_prio.
+			if (port.transparency_mask[opidx])
+				mem.emulate_transparency(opidx, pidx, &worker.initvals);
+		}
+	}
+
+	// tgt (repl, port group, port) -> mem (wr port, rd port), where -1 means no port.
+	std::vector<std::vector<std::vector<std::pair<int, int>>>> ports(cfg.repl_port);
+	for (int i = 0; i < cfg.repl_port; i++)
+		ports[i].resize(cfg.def->port_groups.size());
+	for (int i = 0; i < GetSize(cfg.wr_ports); i++) {
+		auto &pcfg = cfg.wr_ports[i];
+		for (int j = 0; j < cfg.repl_port; j++) {
+			if (j == 0) {
+				ports[j][pcfg.port_group].push_back({i, pcfg.rd_port});
+			} else {
+				ports[j][pcfg.port_group].push_back({i, -1});
+			}
+		}
+	}
+	for (int i = 0; i < GetSize(cfg.rd_ports); i++) {
+		auto &pcfg = cfg.rd_ports[i];
+		if (pcfg.wr_port != -1)
+			continue;
+		auto &pg = cfg.def->port_groups[pcfg.port_group];
+		int j = 0;
+		while (GetSize(ports[j][pcfg.port_group]) >= GetSize(pg.names))
+			j++;
+		ports[j][pcfg.port_group].push_back({-1, i});
+	}
+
+	Swizzle init_swz = gen_swizzle(mem, cfg, 0, GetSize(cfg.def->dbits) - 1);
+	Const init_data = mem.get_init_data();
+
+	std::vector<int> hw_addr_swizzle;
+	for (int i = 0; i < cfg.base_width_log2; i++)
+		hw_addr_swizzle.push_back(-1);
+	for (int i = 0; i < init_swz.addr_shift; i++)
+		if (!(cfg.emu_wide_mask & 1 << i))
+			hw_addr_swizzle.push_back(i);
+	log_assert(GetSize(hw_addr_swizzle) == cfg.def->abits);
+
+	for (int rp = 0; rp < cfg.repl_port; rp++) {
+		std::vector<Cell *> cells;
+		for (int rd = 0; rd < cfg.repl_d; rd++) {
+			Cell *cell = mem.module->addCell(stringf("%s.%d.%d", mem.memid.c_str(), rp, rd), cfg.def->id);
+			if (cfg.def->width_mode == WidthMode::Global)
+				cell->setParam(ID::WIDTH, cfg.def->dbits[cfg.base_width_log2]);
+			if (cfg.def->widthscale) {
+				std::vector<State> val;
+				for (auto &bit: init_swz.bits[rd])
+					val.push_back(bit.valid ? State::S1 : State::S0);
+				cell->setParam(ID::BITS_USED, val);
+			}
+			for (auto &it: cfg.def->options)
+				cell->setParam(stringf("\\OPTION_%s", it.first.c_str()), it.second);
+			for (int i = 0; i < GetSize(cfg.def->shared_clocks); i++) {
+				auto &cdef = cfg.def->shared_clocks[i];
+				auto &ccfg = cfg.shared_clocks[i];
+				if (cdef.anyedge) {
+					cell->setParam(stringf("\\CLK_%s_POL", cdef.name.c_str()), ccfg.used ? ccfg.polarity : true);
+					cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), ccfg.used ? ccfg.clk : State::S0);
+				} else {
+					SigSpec sig = ccfg.used ? ccfg.clk : State::S0;
+					if (ccfg.used && ccfg.invert)
+						sig = mem.module->Not(NEW_ID, sig);
+					cell->setPort(stringf("\\CLK_%s", cdef.name.c_str()), sig);
+				}
+			}
+			if (cfg.def->init == MemoryInitKind::Any || cfg.def->init == MemoryInitKind::NoUndef) {
+				std::vector<State> initval;
+				for (int hwa = 0; hwa < (1 << cfg.def->abits); hwa += 1 << (GetSize(cfg.def->dbits) - 1)) {
+					for (auto &bit: init_swz.bits[rd]) {
+						if (!bit.valid) {
+							initval.push_back(State::Sx);
+						} else {
+							int addr = bit.addr;
+							for (int i = GetSize(cfg.def->dbits) - 1; i < cfg.def->abits; i++)
+								if (hwa & 1 << i)
+									addr += 1 << hw_addr_swizzle[i];
+							if (addr >= mem.start_offset && addr < mem.start_offset + mem.size)
+								initval.push_back(init_data.bits[(addr - mem.start_offset) * mem.width + bit.bit]);
+							else
+								initval.push_back(State::Sx);
+						}
+					}
+				}
+				if (cfg.def->init == MemoryInitKind::NoUndef)
+					clean_undef(initval);
+				cell->setParam(ID::INIT, initval);
+			}
+			cells.push_back(cell);
+		}
+		for (int pgi = 0; pgi < GetSize(cfg.def->port_groups); pgi++) {
+			auto &pg = cfg.def->port_groups[pgi];
+			for (int pi = 0; pi < GetSize(pg.names); pi++) {
+				bool used = pi < GetSize(ports[rp][pgi]);
+				bool used_r = false;
+				bool used_w = false;
+				if (used) {
+					auto &pd = ports[rp][pgi][pi];
+					const PortVariant *pdef;
+					if (pd.first != -1)
+						pdef = cfg.wr_ports[pd.first].def;
+					else
+						pdef = cfg.rd_ports[pd.second].def;
+					used_w = pd.first != -1;
+					used_r = pd.second != -1;
+					emit_port(cfg, cells, *pdef, pg.names[pi].c_str(), pd.first, pd.second, hw_addr_swizzle);
+				} else {
+					emit_port(cfg, cells, pg.variants[0], pg.names[pi].c_str(), -1, -1, hw_addr_swizzle);
+				}
+				if (pg.optional)
+					for (auto cell: cells)
+						cell->setParam(stringf("\\PORT_%s_USED", pg.names[pi].c_str()), used);
+				if (pg.optional_rw)
+					for (auto cell: cells) {
+						cell->setParam(stringf("\\PORT_%s_RD_USED", pg.names[pi].c_str()), used_r);
+						cell->setParam(stringf("\\PORT_%s_WR_USED", pg.names[pi].c_str()), used_w);
+					}
+			}
+		}
+	}
+	mem.remove();
+}
+
+struct MemoryLibMapPass : public Pass {
+	MemoryLibMapPass() : Pass("memory_libmap", "map memories to cells") { }
+	void help() override
+	{
+		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
+		log("\n");
+		log("    memory_libmap -lib <library_file> [-D <condition>] [selection]\n");
+		log("\n");
+		log("This pass takes a description of available RAM cell types and maps\n");
+		log("all selected memories to one of them, or leaves them  to be mapped to FFs.\n");
+		log("\n");
+		log("  -lib <library_file>\n");
+		log("    Selects a library file containing RAM cell definitions. This option\n");
+		log("    can be passed more than once to select multiple libraries.\n");
+		log("    See passes/memory/memlib.md for description of the library format.\n");
+		log("\n");
+		log("  -D <condition>\n");
+		log("    Enables a condition that can be checked within the library file\n");
+		log("    to eg. select between slightly different hardware variants.\n");
+		log("    This option can be passed any number of times.\n");
+		log("\n");
+		log("  -logic-cost-rom <num>\n");
+		log("  -logic-cost-ram <num>\n");
+		log("    Sets the cost of a single bit for memory lowered to soft logic.\n");
+		log("\n");
+		log("  -no-auto-distributed\n");
+		log("  -no-auto-block\n");
+		log("  -no-auto-huge\n");
+		log("    Disables automatic mapping of given kind of RAMs.  Manual mapping\n");
+		log("    (using ram_style or other attributes) is still supported.\n");
+		log("\n");
+	}
+	void execute(std::vector<std::string> args, RTLIL::Design *design) override
+	{
+		std::vector<std::string> lib_files;
+		pool<std::string> defines;
+		PassOptions opts;
+		opts.no_auto_distributed = false;
+		opts.no_auto_block = false;
+		opts.no_auto_huge = false;
+		opts.logic_cost_ram = 1.0;
+		opts.logic_cost_rom = 1.0/16.0;
+		log_header(design, "Executing MEMORY_LIBMAP pass (mapping memories to cells).\n");
+
+		size_t argidx;
+		for (argidx = 1; argidx < args.size(); argidx++) {
+			if (args[argidx] == "-lib" && argidx+1 < args.size()) {
+				lib_files.push_back(args[++argidx]);
+				continue;
+			}
+			if (args[argidx] == "-D" && argidx+1 < args.size()) {
+				defines.insert(args[++argidx]);
+				continue;
+			}
+			if (args[argidx] == "-no-auto-distributed") {
+				opts.no_auto_distributed = true;
+				continue;
+			}
+			if (args[argidx] == "-no-auto-block") {
+				opts.no_auto_block = true;
+				continue;
+			}
+			if (args[argidx] == "-no-auto-huge") {
+				opts.no_auto_huge = true;
+				continue;
+			}
+			if (args[argidx] == "-logic-cost-rom" && argidx+1 < args.size()) {
+				opts.logic_cost_rom = strtod(args[++argidx].c_str(), nullptr);
+				continue;
+			}
+			if (args[argidx] == "-logic-cost-ram" && argidx+1 < args.size()) {
+				opts.logic_cost_ram = strtod(args[++argidx].c_str(), nullptr);
+				continue;
+			}
+			break;
+		}
+		extra_args(args, argidx, design);
+
+		Library lib = parse_library(lib_files, defines);
+
+		for (auto module : design->selected_modules()) {
+			MapWorker worker(module);
+			auto mems = Mem::get_selected_memories(module);
+			for (auto &mem : mems)
+			{
+				MemMapping map(worker, mem, lib, opts);
+				int idx = -1;
+				int best = map.logic_cost;
+				if (!map.logic_ok) {
+					if (map.cfgs.empty())
+						log_error("no valid mapping found for memory %s.%s\n", log_id(module->name), log_id(mem.memid));
+					idx = 0;
+					best = map.cfgs[0].cost;
+				}
+				for (int i = 0; i < GetSize(map.cfgs); i++) {
+					if (map.cfgs[i].cost < best) {
+						idx = i;
+						best = map.cfgs[i].cost;
+					}
+				}
+				if (idx == -1) {
+					log("using FF mapping for memory %s.%s\n", log_id(module->name), log_id(mem.memid));
+				} else {
+					map.emit(map.cfgs[idx]);
+				}
+			}
+		}
+	}
+} MemoryLibMapPass;
+
+PRIVATE_NAMESPACE_END
-- 
cgit v1.2.3