/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * The internal logic cell technology mapper. * * This Verilog library contains the mapping of internal cells (e.g. $not with * variable bit width) to the internal logic cells (such as the single bit $_NOT_ * gate). Usually this logic network is then mapped to the actual technology * using e.g. the "abc" pass. * * Note that this library does not map $mem cells. They must be mapped to logic * and $dff cells using the "memory_map" pass first. (Or map it to custom cells, * which is of course highly recommended for larger memories.) * */ `define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b)) `define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b)) // -------------------------------------------------------- // Use simplemap for trivial cell types // -------------------------------------------------------- (* techmap_simplemap *) (* techmap_celltype = "$not $and $or $xor $xnor" *) module _90_simplemap_bool_ops; endmodule (* techmap_simplemap *) (* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *) module _90_simplemap_reduce_ops; endmodule (* techmap_simplemap *) (* techmap_celltype = "$logic_not $logic_and $logic_or" *) module _90_simplemap_logic_ops; endmodule (* techmap_simplemap *) (* techmap_celltype = "$eq $eqx $ne $nex" *) module _90_simplemap_compare_ops; endmodule (* techmap_simplemap *) (* techmap_celltype = "$pos $slice $concat $mux $tribuf" *) module _90_simplemap_various; endmodule (* techmap_simplemap *) (* techmap_celltype = "$sr $ff $dff $dffe $adff $adffe $aldff $aldffe $sdff $sdffe $sdffce $dffsr $dffsre $dlatch $adlatch $dlatchsr" *) module _90_simplemap_registers; endmodule // -------------------------------------------------------- // Shift operators // -------------------------------------------------------- (* techmap_celltype = "$shr $shl $sshl $sshr" *) module _90_shift_ops_shr_shl_sshl_sshr (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; parameter _TECHMAP_CELLTYPE_ = ""; localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl"; localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr"; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH); localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH); wire [1023:0] _TECHMAP_DO_00_ = "proc;;"; wire [1023:0] _TECHMAP_DO_01_ = "RECURSION; CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;"; integer i; (* force_downto *) reg [WIDTH-1:0] buffer; reg overflow; always @* begin overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0; buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A}; for (i = 0; i < BB_WIDTH; i = i+1) if (B[i]) begin if (shift_left) buffer = {buffer, (2**i)'b0}; else if (2**i < WIDTH) buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]}; else buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}}; end end assign Y = buffer; endmodule (* techmap_celltype = "$shift $shiftx" *) module _90_shift_shiftx (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; parameter _TECHMAP_CELLTYPE_ = ""; parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0; parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0; localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx; wire a_padding = _TECHMAP_CELLTYPE_ == "$shiftx" ? extbit : (A_SIGNED ? A[A_WIDTH-1] : 1'b0); localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH); localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0); wire [1023:0] _TECHMAP_DO_00_ = "proc;;"; wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_expr -mux_undef -mux_bool -fine;;;"; integer i; (* force_downto *) reg [WIDTH-1:0] buffer; reg overflow; always @* begin overflow = 0; buffer = {WIDTH{extbit}}; buffer[Y_WIDTH-1:0] = {Y_WIDTH{a_padding}}; buffer[A_WIDTH-1:0] = A; if (B_WIDTH > BB_WIDTH) begin if (B_SIGNED) begin for (i = BB_WIDTH; i < B_WIDTH; i = i+1) if (B[i] != B[BB_WIDTH-1]) overflow = 1; end else overflow = |B[B_WIDTH-1:BB_WIDTH]; if (overflow) buffer = {WIDTH{extbit}}; end if (B_SIGNED && B[BB_WIDTH-1]) buffer = {buffer, {2**(BB_WIDTH-1){extbit}}}; for (i = 0; i < (B_SIGNED ? BB_WIDTH-1 : BB_WIDTH); i = i+1) if (B[i]) begin if (2**i < WIDTH) buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]}; else buffer = {WIDTH{extbit}}; end end assign Y = buffer; endmodule // -------------------------------------------------------- // Arithmetic operators // -------------------------------------------------------- (* techmap_celltype = "$fa" *) module _90_fa (A, B, C, X, Y); parameter WIDTH = 1; (* force_downto *) input [WIDTH-1:0] A, B, C; (* force_downto *) output [WIDTH-1:0] X, Y; (* force_downto *) wire [WIDTH-1:0] t1, t2, t3; assign t1 = A ^ B, t2 = A & B, t3 = C & t1; assign Y = t1 ^ C, X = t2 | t3; endmodule (* techmap_celltype = "$lcu" *) module _90_lcu (P, G, CI, CO); parameter WIDTH = 2; (* force_downto *) input [WIDTH-1:0] P, G; input CI; (* force_downto *) output [WIDTH-1:0] CO; integer i, j; (* force_downto *) reg [WIDTH-1:0] p, g; wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast"; always @* begin p = P; g = G; // in almost all cases CI will be constant zero g[0] = g[0] | (p[0] & CI); // [[CITE]] Brent Kung Adder // R. P. Brent and H. T. Kung, "A Regular Layout for Parallel Adders", // IEEE Transaction on Computers, Vol. C-31, No. 3, p. 260-264, March, 1982 // Main tree for (i = 1; i <= $clog2(WIDTH); i = i+1) begin for (j = 2**i - 1; j < WIDTH; j = j + 2**i) begin g[j] = g[j] | p[j] & g[j - 2**(i-1)]; p[j] = p[j] & p[j - 2**(i-1)]; end end // Inverse tree for (i = $clog2(WIDTH); i > 0; i = i-1) begin for (j = 2**i + 2**(i-1) - 1; j < WIDTH; j = j + 2**i) begin g[j] = g[j] | p[j] & g[j - 2**(i-1)]; p[j] = p[j] & p[j - 2**(i-1)]; end end end assign CO = g; endmodule (* techmap_celltype = "$alu" *) module _90_alu (A, B, CI, BI, X, Y, CO); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] X, Y; input CI, BI; (* force_downto *) output [Y_WIDTH-1:0] CO; (* force_downto *) wire [Y_WIDTH-1:0] AA = A_buf; (* force_downto *) wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf; (* force_downto *) wire [Y_WIDTH-1:0] A_buf, B_buf; \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf)); \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf)); \$lcu #(.WIDTH(Y_WIDTH)) lcu (.P(X), .G(AA & BB), .CI(CI), .CO(CO)); assign X = AA ^ BB; assign Y = X ^ {CO, CI}; endmodule (* techmap_maccmap *) (* techmap_celltype = "$macc" *) module _90_macc; endmodule (* techmap_wrap = "alumacc" *) (* techmap_celltype = "$lt $le $ge $gt $add $sub $neg $mul" *) module _90_alumacc; endmodule // -------------------------------------------------------- // Divide and Modulo // -------------------------------------------------------- module \$__div_mod_u (A, B, Y, R); parameter WIDTH = 1; (* force_downto *) input [WIDTH-1:0] A, B; (* force_downto *) output [WIDTH-1:0] Y, R; (* force_downto *) wire [WIDTH*WIDTH-1:0] chaindata; assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)]; genvar i; generate begin for (i = 0; i < WIDTH; i=i+1) begin:stage (* force_downto *) wire [WIDTH-1:0] stage_in; if (i == 0) begin:cp assign stage_in = A; end else begin:cp assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH]; end assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}}; assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in; end end endgenerate endmodule // truncating signed division/modulo module \$__div_mod_trunc (A, B, Y, R); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; localparam WIDTH = A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH : B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y, R; (* force_downto *) wire [WIDTH-1:0] A_buf, B_buf; \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf)); \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf)); (* force_downto *) wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u; assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf; assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf; \$__div_mod_u #( .WIDTH(WIDTH) ) div_mod_u ( .A(A_buf_u), .B(B_buf_u), .Y(Y_u), .R(R_u) ); assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u; assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u; endmodule (* techmap_celltype = "$div" *) module _90_div (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; \$__div_mod_trunc #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) div_mod ( .A(A), .B(B), .Y(Y) ); endmodule (* techmap_celltype = "$mod" *) module _90_mod (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; \$__div_mod_trunc #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) div_mod ( .A(A), .B(B), .R(Y) ); endmodule // flooring signed division/modulo module \$__div_mod_floor (A, B, Y, R); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; localparam WIDTH = A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH : B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y, R; wire [WIDTH-1:0] A_buf, B_buf; \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf)); \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf)); wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u, R_s; assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf; assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf; \$__div_mod_u #( .WIDTH(WIDTH) ) div_mod_u ( .A(A_buf_u), .B(B_buf_u), .Y(Y_u), .R(R_u) ); // For negative results, if there was a remainder, subtract one to turn // the round towards 0 into a round towards -inf assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? (R_u == 0 ? -Y_u : -Y_u-1) : Y_u; // truncating modulo assign R_s = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u; // Flooring modulo differs from truncating modulo only if it is nonzero and // A and B have different signs - then `floor - trunc = B` assign R = (R_s != 0) && A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? $signed(B_buf) + $signed(R_s) : R_s; endmodule (* techmap_celltype = "$divfloor" *) module _90_divfloor (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; \$__div_mod_floor #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) div_mod ( .A(A), .B(B), .Y(Y) ); endmodule (* techmap_celltype = "$modfloor" *) module _90_modfloor (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; \$__div_mod_floor #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) div_mod ( .A(A), .B(B), .R(Y) ); endmodule // -------------------------------------------------------- // Power // -------------------------------------------------------- (* techmap_celltype = "$pow" *) module _90_pow (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; (* force_downto *) input [A_WIDTH-1:0] A; (* force_downto *) input [B_WIDTH-1:0] B; (* force_downto *) output [Y_WIDTH-1:0] Y; wire _TECHMAP_FAIL_ = 1; endmodule // -------------------------------------------------------- // Parallel Multiplexers // -------------------------------------------------------- (* techmap_celltype = "$pmux" *) module _90_pmux (A, B, S, Y); parameter WIDTH = 1; parameter S_WIDTH = 1; (* force_downto *) input [WIDTH-1:0] A; (* force_downto *) input [WIDTH*S_WIDTH-1:0] B; (* force_downto *) input [S_WIDTH-1:0] S; (* force_downto *) output [WIDTH-1:0] Y; (* force_downto *) wire [WIDTH-1:0] Y_B; genvar i, j; generate (* force_downto *) wire [WIDTH*S_WIDTH-1:0] B_AND_S; for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}}; end:B_AND for (i = 0; i < WIDTH; i = i + 1) begin:B_OR (* force_downto *) wire [S_WIDTH-1:0] B_AND_BITS; for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i]; end:B_AND_BITS_COLLECT assign Y_B[i] = |B_AND_BITS; end:B_OR endgenerate assign Y = |S ? Y_B : A; endmodule // -------------------------------------------------------- // LUTs // -------------------------------------------------------- `ifndef NOLUT (* techmap_simplemap *) (* techmap_celltype = "$lut $sop" *) module _90_lut; endmodule `endif 3 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658