/* * DANUBE internal switch ethernet driver. * * (C) Copyright 2003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \ && defined(CONFIG_DANUBE_SWITCH) #include <malloc.h> #include <net.h> #include <asm/danube.h> #include <asm/addrspace.h> #include <asm/pinstrap.h> #define MII_MODE 1 #define REV_MII_MODE 2 #define TX_CHAN_NO 7 #define RX_CHAN_NO 6 #define NUM_RX_DESC PKTBUFSRX #define NUM_TX_DESC 8 #define MAX_PACKET_SIZE 1536 #define TOUT_LOOP 100 #define PHY0_ADDR 1 /*fixme: set the correct value here*/ #define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value #define DMA_READ_REG(reg, value) value = (u32)*((volatile u32*)reg) #define SW_WRITE_REG(reg, value) *((volatile u32*)reg) = (u32)value #define SW_READ_REG(reg, value) value = (u32)*((volatile u32*)reg) typedef struct { union { struct { volatile u32 OWN :1; volatile u32 C :1; volatile u32 Sop :1; volatile u32 Eop :1; volatile u32 reserved :3; volatile u32 Byteoffset :2; volatile u32 reserve :7; volatile u32 DataLen :16; }field; volatile u32 word; }status; volatile u32 DataPtr; } danube_rx_descriptor_t; typedef struct { union { struct { volatile u32 OWN :1; volatile u32 C :1; volatile u32 Sop :1; volatile u32 Eop :1; volatile u32 Byteoffset :5; volatile u32 reserved :7; volatile u32 DataLen :16; }field; volatile u32 word; }status; volatile u32 DataPtr; } danube_tx_descriptor_t; static danube_rx_descriptor_t rx_des_ring[NUM_RX_DESC] __attribute__ ((aligned(8))); static danube_tx_descriptor_t tx_des_ring[NUM_TX_DESC] __attribute__ ((aligned(8))); static int tx_num, rx_num; int danube_switch_init(struct eth_device *dev, bd_t * bis); int danube_switch_send(struct eth_device *dev, volatile void *packet,int length); int danube_switch_recv(struct eth_device *dev); void danube_switch_halt(struct eth_device *dev); static void danube_init_switch_chip(int mode); static void danube_dma_init(void); int danube_switch_initialize(bd_t * bis) { struct eth_device *dev; #if 0 printf("Entered danube_switch_initialize()\n"); #endif if (!(dev = (struct eth_device *) malloc (sizeof *dev))) { printf("Failed to allocate memory\n"); return 0; } memset(dev, 0, sizeof(*dev)); danube_dma_init(); danube_init_switch_chip(REV_MII_MODE); #ifdef CLK_OUT2_25MHZ *DANUBE_GPIO_P0_DIR=0x0000ae78; *DANUBE_GPIO_P0_ALTSEL0=0x00008078; //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080; *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1 *DANUBE_CGU_IFCCR=0x00400010; *DANUBE_GPIO_P0_OD=0x0000ae78; #endif /*patch for 6996*/ *DANUBE_RCU_RST_REQ |=1; mdelay(200); *DANUBE_RCU_RST_REQ &=(unsigned long)~1; mdelay(1); /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602; */ /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602; */ /***************/ sprintf(dev->name, "danube Switch"); dev->init = danube_switch_init; dev->halt = danube_switch_halt; dev->send = danube_switch_send; dev->recv = danube_switch_recv; eth_register(dev); #if 0 printf("Leaving danube_switch_initialize()\n"); #endif while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F; while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F; //while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); //*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F; while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602; #ifdef CLK_OUT2_25MHZ while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000); *DANUBE_PPE_ETOP_MDIO_ACC =0x80334000; #endif return 1; } int danube_switch_init(struct eth_device *dev, bd_t * bis) { int i; tx_num=0; rx_num=0; /* Reset DMA */ // serial_puts("i \n\0"); *DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CPOLL= 0x80000040; /*set descriptor base*/ *DANUBE_DMA_CDBA=(u32)rx_des_ring; *DANUBE_DMA_CDLEN=NUM_RX_DESC; *DANUBE_DMA_CIE = 0; *DANUBE_DMA_CCTRL=0x30000; *DANUBE_DMA_CS=TX_CHAN_NO; *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CDBA=(u32)tx_des_ring; *DANUBE_DMA_CDLEN=NUM_TX_DESC; *DANUBE_DMA_CIE = 0; *DANUBE_DMA_CCTRL=0x30100; for(i=0;i < NUM_RX_DESC; i++) { danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]); rx_desc->status.word=0; rx_desc->status.field.OWN=1; rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */ rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]); } for(i=0;i < NUM_TX_DESC; i++) { danube_tx_descriptor_t * tx_desc = KSEG1ADDR(&tx_des_ring[i]); memset(tx_desc, 0, sizeof(tx_des_ring[0])); } /* turn on DMA rx & tx channel */ *DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/ return 0; } void danube_switch_halt(struct eth_device *dev) { int i; for(i=0;i<8;i++) { *DANUBE_DMA_CS=i; *DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/ } // udelay(1000000); } int danube_switch_send(struct eth_device *dev, volatile void *packet,int length) { int i; int res = -1; danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]); if (length <= 0) { printf ("%s: bad packet size: %d\n", dev->name, length); goto Done; } for(i=0; tx_desc->status.field.OWN==1; i++) { if(i>=TOUT_LOOP) { printf("NO Tx Descriptor..."); goto Done; } } //serial_putc('s'); tx_desc->status.field.Sop=1; tx_desc->status.field.Eop=1; tx_desc->status.field.C=0; tx_desc->DataPtr = (u32)KSEG1ADDR(packet); if(length<60) tx_desc->status.field.DataLen = 60; else tx_desc->status.field.DataLen = (u32)length; asm("SYNC"); tx_desc->status.field.OWN=1; res=length; tx_num++; if(tx_num==NUM_TX_DESC) tx_num=0; *DANUBE_DMA_CS=TX_CHAN_NO; if(!(*DANUBE_DMA_CCTRL & 1)) *DANUBE_DMA_CCTRL|=1; Done: return res; } int danube_switch_recv(struct eth_device *dev) { int length = 0; danube_rx_descriptor_t * rx_desc; int anchor_num=0; int i; for (;;) { rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]); if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1)) { break; } length = rx_desc->status.field.DataLen; if (length) { NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4); // serial_putc('*'); } else { printf("Zero length!!!\n"); } rx_desc->status.field.Sop=0; rx_desc->status.field.Eop=0; rx_desc->status.field.C=0; rx_desc->status.field.DataLen=PKTSIZE_ALIGN; rx_desc->status.field.OWN=1; rx_num++; if(rx_num==NUM_RX_DESC) rx_num=0; } return length; } static void danube_init_switch_chip(int mode) { int i; /*get and set mac address for MAC*/ static unsigned char addr[6]; char *tmp,*end; tmp = getenv ("ethaddr"); if (NULL == tmp) { printf("Can't get environment ethaddr!!!\n"); // return NULL; } else { printf("ethaddr=%s\n", tmp); } *DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF; *DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6; *DANUBE_PPE32_ENET_MAC_CFG = 0x187; // turn on port0, set to rmii and turn off port1. if(mode==REV_MII_MODE) { *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a; } else if (mode == MII_MODE) { *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008; } *DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen. *ENET_MAC_CFG|=1<<11;/*enable the crc*/ return; } static void danube_dma_init(void) { int i; // serial_puts("d \n\0"); *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/ /* Reset DMA */ *DANUBE_DMA_CTRL|=1; *DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/ /* Clear Interrupt Status Register */ *DANUBE_DMA_IRNCR=0xfffff; /*disable all the dma interrupts*/ *DANUBE_DMA_IRNEN=0; /*disable channel 0 and channel 1 interrupts*/ *DANUBE_DMA_CS=RX_CHAN_NO; *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CPOLL= 0x80000040; /*set descriptor base*/ *DANUBE_DMA_CDBA=(u32)rx_des_ring; *DANUBE_DMA_CDLEN=NUM_RX_DESC; *DANUBE_DMA_CIE = 0; *DANUBE_DMA_CCTRL=0x30000; *DANUBE_DMA_CS=TX_CHAN_NO; *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/ *DANUBE_DMA_CPOLL= 0x80000040; *DANUBE_DMA_CDBA=(u32)tx_des_ring; *DANUBE_DMA_CDLEN=NUM_TX_DESC; *DANUBE_DMA_CIE = 0; *DANUBE_DMA_CCTRL=0x30100; /*enable the poll function and set the poll counter*/ //*DANUBE_DMA_CPOLL=DANUBE_DMA_POLL_EN | (DANUBE_DMA_POLL_COUNT<<4); /*set port properties, enable endian conversion for switch*/ *DANUBE_DMA_PS=0; *DANUBE_DMA_PCTRL|=0xf<<8;/*enable 32 bit endian conversion*/ return; } #endif